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Abstract: Two new fluorescent pteridine alkaloids, tedaniophorbasins A (1) and B (2), together
with the known alkaloid N-methyltryptamine, were isolated, through application of mass directed
purification, from the sponge Tedaniophorbas ceratosis collected from northern New South Wales,
Australia. The structures of tedaniophorbasins A and B were deduced from the analysis of 1D/2D
NMR and MS data and through application of 13C NMR DFT calculations. Tedaniophorbasin A
possesses a novel 2-imino-1,3-dimethyl-2,3,7,8-tetrahydro-1H-[1,4]thiazino[3,2-g]pteridin-4(6H)-one
skeleton, while tedaniophorbasin B is its 2-oxo derivative. The compounds show significant Stokes
shifts (~14,000 cm−1) between excitation and emission wavelengths in their fluorescence spectra. The
new compounds were tested for bioactivity against chloroquine-sensitive and chloroquine-resistant
strains of the malaria parasite Plasmodium falciparum, breast and pancreatic cancer cell lines, and the
protozoan parasite Trypanosoma brucei brucei but were inactive against all targets at 40 µM.

Keywords: sponge; Tedaniophorbas ceratosis; pteridine alkaloids; fluorescence; tedaniophorbasin
A; malaria

1. Introduction

Chemical diversity has been correlated with biological activity, and the structural
diversity of natural products is more like that observed in drugs compared to synthetic
libraries [1]. It has also been well documented that the marine environment is a source
of unique structural motifs or scaffolds absent in species from the terrestrial environment
or in synthetic libraries [2,3]. These novel scaffolds also contain a higher percentage of
nitrogen atoms relative to carbon and oxygen compared to scaffolds derived from terrestrial
sources [4]. This makes the marine environment a preferred source for biodiscovery. The
northern coast of New South Wales in eastern Australia is a biogeographic transition
zone in the south-west Pacific that is represented by marine species from both tropical
and temperate regions [5]. Little is known about the sessile marine invertebrate (apart
from corals) biodiversity of this region, and consequently there has been very little natural
product chemistry reported for species collected from this location [6]. Due to the paucity of
chemical data reported for species from this region, we have initiated a project to investigate
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the chemical diversity in relation to the sessile marine invertebrate biodiversity of the
region. To date, we have collected over 500 sponges, ascidian, and bryozoan specimens
from reefs from this region, and a systematic analysis of the chemistry they contain has
been initiated [7–12]. Herein, we report on the isolation, structure determination, and
biological activity of two new alkaloids, tedaniophorbasins A (1) and B (2), possessing a
novel skeleton (Figure 1) that we have isolated from Tedaniophorbas ceratosis collected from
oceanic waters adjacent to Cook Island in far northern New South Wales, Australia. This is
the first report on the chemistry of sponges from the genus Tedaniophorbas.
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and 265, fractions 19 and 20 had an ion peak at m/z 175 and fraction 27 had an ion peak at 
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tions 17 and 18 contained a mixture of 1 and N-methyltryptamine. These compounds were 
separated from each other by recrystallization from MeOH. The supernatant was pure N-
methyltryptamine, and 1 was obtained as fine needles (18.5 mg, 0.09%). Fractions 19 and 
20 were pure N-methyltryptamine (34.7 mg, 0.17%) and fraction 27 was pure 2 (1.3 mg, 
0.007%). 

Tedaniophorbasin A (1) was isolated as fluorescent yellow needles as its TFA salt. 
Positive HRESIMS measurement of the MH+ peak (at m/z 265.0863 (Δ −1.2 ppm)) estab-
lished a molecular formula of C10H12N6OS for 1, inferring that it contained eight degrees 
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chromophore. Excitation at the absorption maxima at 280 and 419 nm led to intense fluo-
rescence at 490 nm (Figure 2).  

Figure 1. Chemical structures of tedaniophorbasin A (1) and B (2) isolated from the Australian
sponge Tedaniophorbas ceratosis.

2. Results and Discussion

The frozen sponge was chopped into small pieces and extracted by repeated sonication
in MeOH. The MeOH extracts were combined and evaporated, and the yellow brown
residue was adsorbed onto C18 silica gel. The extract-impregnated gel was separated
by preparative HPLC on C18-bonded silica gel with a gradient from 1% aqueous TFA
to MeOH containing 1% TFA with one min. timed fractions collected. These fractions
were further analyzed by (+)−LRESIMS, and only two groups of fractions (fraction 17–20
and fraction 27) showed prominent ions by MS. Fractions 17 and 18 had ion peaks at m/z
175 and 265, fractions 19 and 20 had an ion peak at m/z 175 and fraction 27 had an ion
peak at m/z 266. These fractions were evaporated and analyzed by 1H NMR spectroscopy.
Fractions 17 and 18 contained a mixture of 1 and N-methyltryptamine. These compounds
were separated from each other by recrystallization from MeOH. The supernatant was
pure N-methyltryptamine, and 1 was obtained as fine needles (18.5 mg, 0.09%). Fractions
19 and 20 were pure N-methyltryptamine (34.7 mg, 0.17%) and fraction 27 was pure 2
(1.3 mg, 0.007%).

Tedaniophorbasin A (1) was isolated as fluorescent yellow needles as its TFA salt. Pos-
itive HRESIMS measurement of the MH+ peak (at m/z 265.0863 (∆ −1.2 ppm)) established
a molecular formula of C10H12N6OS for 1, inferring that it contained eight degrees of un-
saturation. The IR spectrum of 1 had absorption bands at 1712 and 1679 cm−1, suggesting
that it contained amide and aromatic groups. The UV spectrum had absorption maxima at
223, 280, 296, and 419 nm, indicating that 1 contained an extended aromatic chromophore.
Excitation at the absorption maxima at 280 and 419 nm led to intense fluorescence at 490 nm
(Figure 2).

The 1H NMR spectrum of 1 (Table 1) was very simple, with only six resonances
being observed. Edited HSQC correlations (Figure S5) indicated that two of the proton
singlets could be assigned to N-methyl groups δH/C 3.66/31.3 and 3.46/30.3 and two were
methylene groups δH/C 3.65/40.6 and 3.34/26.3, while the remaining two signals were due
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to protons that were not attached to carbons. COSY correlations (Figure S4) between the
methylene resonance at δH 3.65 and both the methylene resonance at δH 3.34 and an amine
signal at δH 8.15 indicated that a CH2CH2NH moiety was present in the molecule. The
1H and 13C chemical shifts for the methylene at 3.34/26.3 were consistent with it being
substituted by a sulfur atom [13].
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Table 1. NMR data for tedaniophorbasins A and B (1 and 2) recorded in DMSO d6 at 30 ◦C a.

1 2

Position δc, Type δH, Mult. (J in Hz) δc, Type δH, Mult. (J in Hz)

1-NCH3 31.3, CH3 3.66, s 28.9, CH3 3.43, s
2 151.0, C - 150.0, C -

2-NH2
+ - 9.05, bs - -

3-NCH3 30.3, CH3 3.46, s 28.2, CH3 3.27, s
4 157.4, C - 159.9, C -

4a 120.6, C - 123.6, C -
5a 148.0 b, C - 146.6, C -
6 - 8.15, t (2.7) - 7.64, t (2.7)
7 40.6, CH2 3.65, m 40.7, CH2 3.61, m
8 26.3, CH2 3.34, m 26.5, CH2 3.29, m

9a 147.9 b, C - 146.0, C -
10a 137.6, C - 139.8, C -

a Spectra recorded at 600 MHz for 1H and 150 MHz for 13C; b assignments are interchangeable.

The 13C NMR spectrum (Table 1, Figure S3) contained six additional signals not
observed in the HSQC spectrum, and these could all be assigned to non-protonated sp2

carbons. HMBC correlations (Figures S6–S8) from the N-methyl proton resonance at δH 3.66
to carbons at δC 151.0 and 137.6 and from the N-methyl proton resonance at δH 3.46 to
carbons at δC 151.0 and 157.4 in combination with the presence of a two-proton broad
singlet at δH 9.05 suggested that a 1,3-di-N-methylpyrimidin-2-imino-4-one moiety was
present in the molecule. HMBC correlations from the two methylene proton resonances
and the amine proton at δH 8.15 to the carbon resonances at δC 147.9/148.0 suggested that
a disubstituted dehydrothiomorpholine was present in the molecule. The chemical shift of
the remaining carbon signal at δC 120.6 was consistent with it being assigned to C-4a of
the pyrimidine [13].

The degree of unsaturation derived from the molecular formula required two addi-
tional sp2 nitrogen atoms to be present in the molecule. These atoms could only logically be
placed between the pyrimidine and thiomorpholine partial structures, and six alternative
structures (two pyrazine (1a/1a′) and four pyridazines (1b/1b′ and 1c/1c′) (Figure 3))
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could be proposed, with three pairs of regioisomers about the thiomorpholino moiety
being possible. Based on the observed chemical shifts, the four pyridazine structures
were rejected. In the two pyridazine structures containing a C-C bond between C-4a and
the thiomorpholine (structures 1b/1b′), C-4a is predicted to be shielded and resonate at
~ δC 110 and C-10a deshielded, resonating at ~δC 160, while in the two pyridazine struc-
tures with a C-C bond between C-10a and the thiomorpholino moiety (structures 1c/1c′),
C-4a and C-10a would both resonate at ~δC 135 [13].
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Comparison of the 13C chemical shift data for C-2, C-4, C-4a, C-5a, C-9a, C-10a,
1-NCH3, and 3-NCH3 observed for 1 with equivalent carbons reported for the pteridine
metabolites urochordamine A (3) isolated from the ascidian Ciona savignyi [14] and aster-
opterin (4) isolated from the sponge Asteropus simplex [15] provided convincing evidence
that 1 contained a pyrazine moiety, since all carbons apart from C-4a and C-10a were within
3.5 ppm of those reported in 3, while C-2, C-4a, C-5a, and C-10a were within 3.1 ppm of
those reported in 4 (Figure 4).
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Figure 4. Marine pteridine natural products related to tedaniophorbasins A and B.

Unfortunately, the lack of pairs of protons proximal through space or protons within
three bonds of more than one nitrogen atom meant that neither ROESY nor 1H/15N
HMBC experiments would be useful to define the regiochemistry of the thiomorpholino
moiety. Therefore, computational methods using density functional theory (DFT) GIAO-
calculated 13C NMR chemical shifts were used to predict the most probable isomer for 1
(structures 1a or 1a′). The DFT-calculated 13C NMR isotropic shielding values were scaled
to account for the heavy atom effect of sulfur [16] attached to C-8 and C-9a in 1a, and C-5a
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and C-7 in 1a′, and compared with tedaniophorbasin A’s (1) experimental 13C NMR data.
The DFT-calculated 13C NMR data clearly indicated that structure 1a (mean absolute error
(MAE) = 1.8) containing the N and S atoms at positions 6 and 9, respectively, was a better
match with 1′s experimental 13C NMR data compared with that obtained for the alternate
structure 1a′ (MAE = 3.7, see supplementary material). The DFT-calculated 13C NMR
resonances in 1a′ with deviations >5.5 ppm were C-4, C-5a, and C-10a, whereas none of
the calculated 13C NMR resonances in 1a deviated from the observed data by more than
3.6 ppm (Figure 5). Tedaniophorbasin A therefore possesses a novel 2-imino-1,3-dimethyl-
2,3,7,8-tetrahydro-1H-[1,4]thiazino [3,2-g]pteridin-4(6H)-one skeleton.
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(DFT)-calculated δC compared to experimental δC for the two alternative regioisomers 1a and 1a′ of
tedaniophorbasin A.

Tedaniophorbasin B (2) was isolated as a fluorescent yellow gum. A mass ion (MH+)
at m/z 266.0706 (∆ 0 ppm) was consistent with 2 possessing a molecular formula of
C10H11N5O2S. Its 1H and 13C NMR data (Table 1) were almost identical with that of 1, with
the most notable difference being the absence of the NH2 resonance at δH 9.05. The COSY
(Figure S13) (6-NH/7-CH2, 7-CH2/8-CH2) and HMBC (Figures S15–S17) (1-NCH3/C-2,
C-10a; 3-NCH3/C-2, C-4; 6-NH/C-8, C-9a; H-7/C-5a, C-8; and H-8/C-7, C-9a) correla-
tion data for 2 was identical with that observed for 1, indicating that the two molecules
possessed the same molecular framework. Considering that the molecular formula for 2
differed from 1 by the replacement of a NH2

+ with an oxygen, the most logical explanation
is that 2 is the 2-oxo derivative of 1. The structure proposed for tedaniophorbasin B (2a) is
also supported by 13C DFT (GIAO) NMR calculations (MAE = 1.3, compared to MAE = 3.2
for the 6-S, 9-NH regioisomer (2a′) (see supplementary material)). Tedaniophorbasin
B is therefore the 2-oxo derivative of 1 and contains a novel 2-oxo-1,3-dimethyl-2,3,7,8-
tetrahydro-1H-[1,4]thiazino[3,2-g]pteridin-4(6H)-one skeleton.

The tedaniophorbasins are structurally unique compounds, possessing a ring system
that has not been reported either naturally or synthetically. The closest related structure
is the synthetic 7,8-benzo derivative (5) prepared through reaction of 6,7-dichloro-1,3-
dimethyllumazine with 2-aminothiophenol (Figure 6) [17]. A similar reaction between
mercaptoethylamine and 6,7-dichloro-1,3-dimethyllumazine could yield tedaniophorbasin
B (2). Marine pteridine alkaloids have previously been isolated from polychaete worms [18],
sponges [15], ascidians [14,19], and fungi [20]. All previously reported marine pteridine
alkaloids, however, have been unsubstituted at C-7, thus making the tedaniophorbasins
the first C-7 substituted pteridines to be reported from a marine source. There have not
been any previous chemical investigation of sponges from the genus Tedaniophorbas.
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Tedaniophorbasins A (1) and B (2) were tested for their ability to inhibit the growth of
chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of the malaria parasite
Plasmodium falciparum [21], inhibition of the growth of the trypanosome Trypanosoma brucei
brucei [22], and cytotoxicity towards pancreatic (Bx-PC-3, Panc-1, and Su-86-86) and breast
cancer (BT-474, MCF-10A, and MDA-MB-231) cell lines [23] (assays that we routinely run
in our labs), however, both compounds were inactive against all targets at the highest
concentration (40 µM) tested.

The lack of cellular bioactivity prompted us to question the ecological role for these in-
tensely fluorescent molecules, since the intensely fluorescent yellow color of the sponge can
be attributed to the tedaniophorbasins. The fluorescence spectra for both 1 and 2 (Figure 2)
showed significant Stokes shifts of 14,000 cm−1 (280 nm ex/490 nm em) and 3400 cm−1

(420 nm ex/490 nm em), suggesting excited state reactions and a change in dipole moments,
respectively. The cyan fluorescence of tedaniophorbasin A (1) and B (2) further suggests
that the compounds might act as donor luminophores for bioluminescence, while their UV
absorbance between 280 and 419 nm suggests a role as sunscreens, since both compounds
absorb strongly in the UVA (315–400 nm) and UVB (280–315 nm) wavelength bands.

3. Materials and Methods
3.1. General Chemistry Experimental Procedures

NMR spectra were recorded at 30 ◦C on a Varian Inova 600 MHz NMR spectrometer
(Pola Alto, CA, USA) equipped with a cryoprobe. Samples were dissolved in DMSO-d6,
and the solvent peak was used as the reference at the chemicals shifts δH 2.50 ppm and δC
39.52 ppm. LRESIMS data were recorded on a Water ZQ ESI mass spectrometer (Milford,
MA, USA). (+)-High-resolution electrospray ionization mass spectrometry (HRESIMS) was
used to determine the accurate molecular weight and molecular formula of the isolated
compounds. HRESIMS were recorded on a Applied Biosystems Mariner Biospectrometry
TOF workstation (Foster City, CA, USA) using positive electrospray ionization. Ultraviolet
(UV) spectra were acquired on a Shimadzu UV-1800 UV spectrophotometer (Kyoto, Japan),
and infrared (IR) measurements were recorded on a Bruker Tensor 27 spectrometer (Zürich,
Switzerland). Fluorescence intensity spectra were recorded in MeOH by 3D top scanning
on a Tecan Spark Plate Reader (Männedorf, Switzerland) with excitation wavelengths from
250 to 700 nm incremented by 10 nm and emissions intensity recorded from 280 to 700 nm
at 10 nm steps at each excitation wavelength. HPLC separations were performed on a
Merck Hitachi L-7100 pump equipped with a Hitachi L-7455 PDA detector, D-7000 interface
(Tokyo, Japan), and a Gilson 215 liquid handler (Middleton, WI, USA) to collect the fractions.
The guard column (20 mm × 10 mm) was packed with Altech Davisil 30–40 µm 60 Å C18
silica gel (Columbia, MD, USA). The guard column was attached before the preparative
column, a Thermo Fisher Scientific BetaSil C18 (150 mm × 21.2 mm, 5 µm) (Waltham, MA,
USA). The solvents used were HPLC grade MeOH (Lab-Scan) (Barcelona, Spain), Milli-Q
PF (Sartorius, Göttingen, Germany) filtered water, and spectroscopy grade trifluoroacetic
acid (TFA, Alfa Aesar) (Ward Hill, MA, USA).
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3.2. Collections, Extraction, and Isolation

The sponge specimen Tedaniophorbas ceratosis (Ridley & Dendy, 1886) (Order: Poe-
cilosclerida; Family: Acarnidae) (sp. number QM1179) was hand collected by SCUBA from
Wommin Reef (10 m) just south of Cook Island, Northern NSW, Australia, in January 2010.
A voucher specimen (QM G331842) is housed in the Queensland Museum. The specimen
was identified by Dr. J. N. A. Hooper.

The sponge Tedaniophorbas ceratosis (20 g, wet weight) was chopped into small pieces
and exhaustively extracted with MeOH (6 × 200 mL) in an ultrasonic bath (20 min. per
extraction) to afford a yellow brown residue (0.892 g). This extract was then separated
by reversed phase C18 HPLC gradient elution from H2O to MeOH (containing 1% TFA)
over 60 min. and then eluted with MeOH (containing 1% TFA) for 10 min. to afford
70 fractions. Fractions 17 and 18 contained tedaniophorbasin A 1 and N-methyltryptamine,
which were subsequently separated by recrystallization from MeOH. Tedaniophorbasin
A (1) was crystallized from the solution to leave N-methyltryptamine in the supernatant.
Fraction 20 eluting with 66% H2O/34% MeOH yielded pure N-methyltryptamine, and
fraction 27 eluting with 55% H2O/45% MeOH (all containing 1% TFA) yielded pure
tedaniophorbasin B (2).

Tedaniophorbasin A (1): yellow crystals (18.5 mg, 0.09%); m.p. 316 ◦C; UV (MeOH)
λmax (log ε) 223 (4.12), 280 (4.02), 296 (3.88), 419 (3.87) nm; IR υmax (film) 3325, 3058, 2966,
2929, 1712, 1679, 1649, 1567, 1557, 1202, 1132 cm−1; FLR (MeOH) λex 280, λem 490 nm,
λex 419, λem 490 nm; 1H and 13C NMR data, Table 1; (+) HRESIMS m/z 265.0863 (calcd for
C10H13N6OS, 265.0866).

Tedaniophorbasin B (2): yellow oil (1.3 mg, 0.007%); UV (MeOH) λmax (log ε) 219
(4.01), 277 (3.77), 302 (3.57), 416 (3.55) nm; IR υmax (film) 3302, 2918, 2850, 1679, 1200,
1135 cm−1; FLR (MeOH) λex 277, λem 490 nm, λex 416, λem 490 nm; 1H and 13C NMR data,
Table 1; (+) HRESIMS m/z 266.0706 (calcd for C10H12N5O2S, 266.0706).

3.3. DFT 13C NMR Calculations

A thorough conformer search was performed on 1a, 1a′, 2a, and 2a′ using MCMM with
the OPLS3 forcefield within the SchrÖdinger Macromodel 2016 software suite operating on
Windows 10. All conformers >21.0 kJ/mol from the energy minimum were discarded. The
resultant conformational suites underwent DFT geometry optimization in the gas phase
using the B3LYP/6-31G(d) functional and basis set in Gaussian 16 [24]. Modified python
scripts based on the Willoughby protocol [25] were used to confirm that the geometry-
optimized conformers were true energy minima and to confirm the absence of negative
vibrational frequencies. The DFT (GIAO) 13C NMR shielding values were calculated
on the geometry-optimized structures using the ωB97xD/6-31G(d) level of theory. The
subsequent DFT isotropic shielding values were then Boltzmann averaged across each
of the conformational suites [25] and scaled (with carbons attached to sulfur adjusted
binomially) using the procedure reported by Kutateladze et al. [16]. Finally, the scaled
13C NMR chemical shifts for the structural isomers (1a and 1a′; 2 and 2a′) were analyzed
using the sDP4+ method [26], however, the ωB97xD/6-31G(d) functional is not inherent to
the Grimblat method, therefore a small amount of caution should be applied to this result
(see supplementary material).

3.4. Biological Activity Testing

Biological profiling of compounds was undertaken using well-established proto-
cols. Antiplasmodial activity was determined by testing compounds against chloroquine-
sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum as previ-
ously comprehensively described by Duffy and Avery [21].

Antitrypanosomal activity of compounds against Trypanosoma brucei brucei was under-
taken as previously described by Sykes and Avery [22].
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Evaluation of compounds for anti-proliferative activity against the breast cancer cell
lines BT-474, MCF-10A, and MDA-MB-231 and pancreatic cell lines Bx-PC-3, Panc-1, and
Su-86-86 was undertaken as described in detail by Lovitt et al. [23].

4. Conclusions

Analysis of a sponge Tedaniophorbas ceratosis collected from the Australian south
Pacific coast led to the isolation of two highly fluorescent alkaloids, tedaniophorbasins
A and B. Both possess skeletons that are novel. Tedaniophorbasin A possesses a novel
2-imino-1,3-dimethyl-2,3,7,8-tetrahydro-1H-[1,4]thiazino[3,2-g]pteridin-4(6H)-one skeleton,
while tedaniophorbasin B is the 2-oxo derivative of tedaniophorbasin A. Their structures
were supported by comparison of experimental and DTF-calculated 13C NMR data. Both
compounds were inactive at 40 µM when tested for antiplasmodial, anticancer, and antit-
rypanosomal activity. This study highlights the fact that the south Pacific region contains
marine genera that, to date, have not been investigated, and that these marine organisms
hold the potential to contain novel chemistry. Futures studies of south Pacific marine
organisms will undoubtedly lead to further discoveries of novel chemistry.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/2/95/s1: Figures S1–S8: 1H NMR, 13C NMR, COSY, HSQC, HMBC spectra of tedaniophorbasin
A (1); Figures S10–S17: 1H NMR, 13C NMR, COSY, HSQC, HMBC spectra of tedaniophorbasin B
(2). HRESIMS spectra for tedaniophorbasin A (1): Figure S9 and tedaniophorbasin B (2): Figure S18,
Tables S1–S4 Calculated DFT (GIAO) 13C NMR Chemical Shift for 1a, 1a′, 2a, and 2a′ compared to
experimental 13C NMR data.
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