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Abstract: The importance of closely observing patients receiving antibiotic therapy, performing
therapeutic drug monitoring (TDM), and regularly adjusting dosing regimens has been extensively
demonstrated. Additionally, antibiotic resistance is a contemporary concerningly dangerous issue.
Optimizing the use of antibiotics is crucial to ensure treatment efficacy and prevent toxicity caused
by overdosing, as well as to combat the prevalence and wide spread of resistant strains. Some
antibiotics have been selected and reserved for the treatment of severe infections, including amikacin,
gentamicin, tobramycin, and vancomycin. Critically ill patients often require long treatments,
hospitalization, and require particular attention regarding TDM and dosing adjustments. As these
antibiotics are eliminated by the kidneys, critical deterioration of renal function and toxic effects must
be prevented. In this work, clinical data from a Portuguese cohort of 82 inpatients was analyzed
and physiologically based pharmacokinetic (PBPK) modeling and simulation was used to study
the influence of different therapeutic regimens and parameters as biological sex, body weight, and
renal function on the biodistribution and pharmacokinetic (PK) profile of these four antibiotics.
Renal function demonstrated the greatest impact on plasma concentration of these antibiotics, and
vancomycin had the most considerable accumulation in plasma over time, particularly in patients
with impaired renal function. Thus, through a PBPK study, it is possible to understand which
pharmacokinetic parameters will have the greatest variation in a given population receiving antibiotic
administrations in hospital context.

Keywords: PBPK modeling; therapeutic drug monitoring; antibiotics use; amikacin; gentamicin;
tobramycin; vancomycin; GastroPlus™

1. Introduction

Therapeutic drug monitoring (TDM) was implemented in the 1960s to improve patient
care and clinical outcome, and specializes in the measurement of circulating drug concen-
trations to adjust dosing regimens, so as to reach a defined target exposure associated with
optimal efficacy and minimal toxicity [1,2]. Since then, some pharmacological properties
have been identified (particularly narrow therapeutic window and significant interpatient
variability) and the cases that required such dosage individualization have been compre-
hensively reviewed. TDM is now indicated and recommended for critically ill patients
undergoing sufficiently long treatment to justify dosage adjustment [3], whether with
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anticancer drugs [4], anti-infectives [5], antiretrovirals [6], biologic therapeutic agents [7] or
psychotropic agents [8], etc.

Importantly for this work, therapeutic drug monitoring and dosage adjustments are
crucial for antibiotics, and have confirmed beneficial results [9–15]. The four antibiotics
studied here, amikacin, gentamicin, tobramycin, and vancomycin, are the most frequently
monitored in inpatients, which can be explained by their narrow therapeutic indexes
and potential to cause adverse effects, namely nephrotoxicity, particularly in prolonged
treatments [15–17]. The value of TDM of these antibiotics has been extensively demon-
strated [13,14,18–27].

Furthermore, the increasing resistance rates to antimicrobial agents are a pressing
problem that has been indefectibly associated with the inappropriate administration and
overuse of these drugs, which has accelerated this process over the past 80 years. About
half of the antimicrobial agents prescribed to hospital inpatients are considered inappro-
priate [28]. Different approaches have been promoted, and antimicrobial stewardship is
currently considered the most promising and has been promoted for all hospitals and health
care facilities [29–32]. In 2014, the U.S. Centers for Disease Control and Prevention (CDC)
identified seven core elements of antibiotic stewardship and recommend that all hospitals
have an antibiotic stewardship program (ASP). Tracking (monitoring process measures),
reporting information on antibiotic use and resistance, and education of clinicians and
health care providers are three of these core elements [33].

These four antimicrobial agents are an example of antibiotics that have been reserved
for the treatment of severe infections, in an attempt to save these valuable drugs from
the threat of selection of resistant bacteria. Healing these infections often requires long
periods of time of antibiotic therapy and hospitalization. This poses serious concerns,
namely regarding plasma accumulation of these drugs, toxicity, and impairment of renal
function. Kidneys’ deterioration can be an effect of the disease or a consequence of long-
term treatment. Since these antibiotics are mainly renally eliminated and their clearance
is an important factor to consider when determining treatment regimens, therapeutic
drug monitoring and dose adjustment are imperative to ensure a good clinical outcome of
these patients.

In this work, clinical data from a cohort of Portuguese inpatients with severe infections
were collected and analyzed, and the influence of therapeutic regimens, biological sex,
total body weight, and renal function on the pharmacokinetic (PK) profile was studied for
four antibiotics: aminoglycosides amikacin, gentamicin, and tobramycin, and glycopeptide
vancomycin. PK studies including physiologically based pharmacokinetic (PBPK) mod-
eling and simulations were performed using GastroPlus™, based on our experience and
previous works that have highlighted the value of in silico tools [34–36].

2. Materials and Methods
2.1. Study Population

Demographic data (biological sex, age, weight, and height) and clinical informa-
tion were collected from 82 inpatients hospitalized in Centro Hospitalar Universitário do
Porto (CHUP, Portugal) with severe systemic infections of different etiologies. These pa-
tients received intravenous (IV) treatment with one of four antibiotics: aminoglycoside
amikacin, gentamicin, or tobramycin, or glycopeptide vancomycin. Drugs were adminis-
tered via 30-min infusions in the case of aminoglycosides and 1-h infusions for vancomycin.
Throughout the hospitalization and treatment period, trough and peak antibiotic con-
centrations as well as serum creatinine levels were determined to adjust posology and
evaluate renal function (estimating creatinine clearance using the Cockcroft–Gault for-
mula [37]). Recommended and followed treatment regimens were also recorded. The
gathered information is presented in Supplementary Table S1 and summarized in Table 1.
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Table 1. Summary of collected clinical data, with the indication of the average value, lower and upper limits for each
parameter. Normal range values (CHUP reference) are also presented.

Amikacin Gentamicin Tobramycin Vancomycin

nt (nsex) 8 (F: 1; M: 7) 22 (F: 8; M: 14) 5 (F: 4; M: 1) 47 (F: 21; M: 26)

Age (years) 14–87 (avg 57) 7–88 (avg 58) 13–19 (avg 15) 19–93 (avg 63)

Weight (kg) 50.0–92.5 (avg 66.0) 15.5–85.0 (avg 66.0) 25.8–44.5 (avg 33.0) 29.0–140. (avg 69.0)

Height (cm) 163–180 (avg 169) 108–185 (avg 165) 130–158 (avg 146) 147–185 (avg 163)

Cmin (mg/L) 0.30–16.40 (avg 3.70)
(ref 1–8)

0.20–4.80 (avg 1.05)
(ref 0.5–2)

0.06–0.23 (avg 0.17)
(ref 0.5–2; <1 CF)

4.50–45.60 (avg 16.34)
(ref 15–20)

Cmax (mg/L) 19.70–87.80 (avg 38.97)
(ref 20–30)

2.90–19.50 (avg 9.22)
(ref 5–10)

16.32–36.12 (avg 27.05)
(ref 5–10; 20–30 CF)

11.20–60.10 (avg 25.99)
(ref < 40)

[Cr] (mg/dL) 0.47–1.58 (avg 0.93) 0.29–1.89 (avg 0.83) 0.35–0.64 (avg 0.49) 0.27–4.78 (avg 1.00)

CL (L/h) * 1.40–11.30
(avg 6.07)

1.67–15.89
(avg 5.94)

3.87–8.77
(avg 6.01)

0.59–18.80
(avg 5.79)

* Estimation using the Cockcroft–Gault equation. Ref: normal range (CHUP). CF: Cystic fibrosis.

2.2. Pharmacokinetic Analysis Software

PBPK modeling and simulation software GastroPlus™ version 9.5 (Simulations Plus
Inc., Lancaster, CA, USA) was used for the prediction of PK parameters and generation of
simulated human plasma concentration profiles. Some physicochemical properties of the
four antibiotics and input parameters used in the simulations are presented in Table 2.

Table 2. Physicochemical properties of antibiotics and input parameters in GastroPlus™.

Amikacin Gentamicin Tobramycin Vancomycin

Molecular weight 585.61 477.61 467.52 1449.28

logP −5 1 −1.79 1; −3.1 2 −4.8 1; −5.8 2 2.48 1; −3.1 2

pKa 8.1 2 12.55; 10.18 2 12.54; 9.83 2 2.99; 9.93 2

Solubility 166.49 g/L, pH = 11.73 1;
50 g/L 2

56.54 g/L, pH = 11.51 1;
12.6 g/L 2

59.47 g/L, pH = 11.34 1;
freely soluble 2

0.26 g/L, pH = 8.17 1;
0.225 g/L 2

Diffusion Coefficient 0.53 cm2/s × 105 1 0.56 cm2/s × 105 1 0.6 cm2/s × 105 1 0.32 cm2/s × 105 1

Drug particle density 1.2 g/mL 1.2 g/mL 1.2 g/mL 1.2 g/mL

Mean particle radius 25 25 25 25

Peff 0.0202 cm/s × 10−4 1 0.0891 cm/s × 10−4 1 0.0368 cm/s × 10−4 1 0.0747 cm/s × 10−4 1

Fup 98.75% 1; >90% 2 85.4% 1; >70% 2 100% 1; >70% 2 21.36% 1; ~50% 2

Blood/plasma ratio 1.23 1 1.11 1 1.31 1 0.68 1

T1/2 2–3 h 2–3 h 2–3 h ~6 h (4–11 h)

Vc 0.24 1; ~0.34 L/kg 2 0.38 1; 0.2–0.3 L/kg 0.3 1; 0.2–0.3 L/kg 0.4–1 L/kg

Clearance 6.00 L/h 3.42 L/h 8.48 L/h 4.03 L/h

Typical dosing for
susceptible infections

7.5 mg/kg q12h
15 mg/kg q24h 1 mg/kg q8h 1 mg/kg q8h 1000 mg q12h

Common dosing in CHUP
Variable:

400–800 mg
q24h or q48h

120 mg q8h
200 mg q24h
70 mg q12h

70 mg q8h
420 mg q24h

1 g q12h
1 g q24h

1 predicted by GastroPlus™; 2 from DrugBank and references [38–44].

GastroPlus™, a powerful mechanistically based simulation and modeling software,
has been specifically developed for pharmaceutical research. Physiological parameters of
several species, including human, are preinstalled, allowing for the amount of drug that is
released, dissolved, and absorbed to be modeled for nine compartments, corresponding
to different segments of the digestive tract, based on a set of differential equations. The
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Advanced Compartmental Absorption and Transit (ACAT) and Physiologically Based Phar-
macokinetic (PBPK) models support model-based drug development throughout multiple
stages of drug discovery, translational research, and clinical development, making it a pow-
erful tool. As such, this software has been used in numerous research studies, but also by
distinguished pharmaceutical companies and by the U.S. Food and Drug Administration,
the U.S. Centers for Disease Control and Prevention, the U.S. National Institutes of Health,
the U.S. National Cancer Institute, and the China Food and Drug Administration [45,46].
A PBPK analysis uses models and simulations that combine physiology, population, and
drug characteristics to mechanistically describe the PK behavior of a drug. Throughout
a drug’s life cycle, PBPK model predictions can be used to support decisions on whether,
when, and how to conduct certain clinical pharmacology studies and to support dosing
recommendations in product labeling. The predictive performance of PBPK models in
specific clinical settings with heterogeneous and chronically ill patients characterized by
numerous unknown individual and clinical factors can be developed [47–51].

2.3. PBPK Modeling and Simulation

Every simulation was performed to study the PK for 72 h after IV administrations
of each antibiotic, over 30-min infusions for aminoglycosides amikacin, gentamicin and
tobramycin, and 1-h infusions for vancomycin.

For each antibiotic, a customized PBPK model was built to represent the average of
that subpopulation (receiving treatment with a particular antibiotic). The input parameters
were age, total body weight, and renal clearance (Table 1). Different therapeutic regimens
(doses and dosing intervals) were studied for each antibiotic, based on the most common
schemes administered to the patients in CHUP. Then, the most recurrent therapeutic
regimen was chosen for each antibiotic and the influence of biological sex, body weight
and renal function was assessed. Customized PBPK models were set up for male and
female individuals with the average characteristics of the subpopulation. The effect of
body weight and renal function was studied, defining these parameters as the lower and
upper limit of the observed range (Table 1), creating 4 additional tailored PBPK models
to represent these different conditions: lowest and highest body weight, and lowest and
highest renal function, estimated by creatinine clearance.

The available data only included measured concentrations from 2 time points: right
before a dose and 1 h (aminoglycosides) or 3 h (vancomycin) after the beginning of an
infusion. Since in GastroPlus™ the observed data can only be used as input referring to
a single administration, this prevented a further refined parameterization and validation
of the developed models. Nevertheless, the predicted pharmacokinetic parameters were
reasonably consistent with the observed values after administration of all analyzed doses
for these 4 antibiotics.

3. Results
3.1. Influence of Dose Regimens and Biological Sex

Different therapeutic regimens (doses and dosing intervals) were studied for each
antibiotic, based on the most common schemes administered to the patients in the study
population. The influence of biological sex was also assessed. The simulation-calculated PK
parameters are presented in Table 3 and the plasma concentration–time profiles showing
the influence of these two factors are presented for each antibiotic in Figures 1–4. As
expected for IV infusions, the predicted fraction absorbed (Fa) and bioavailability (F) of
all antibiotics were >99%, and a peak in antibiotic concentration was always predicted to
be reached at the end of infusions. GastroPlus™ also calculated a direct proportionality
of dose with Cmax and AUC: doubling the dose increased these PK parameters by 2-fold.
Additionally, with shorter time intervals between doses, antibiotic accumulation in plasma
was more evident. Regarding biological sex, slight differences were observed between the
profiles simulated for male and female subjects; a higher Cmax, but lower concentrations



Life 2021, 11, 1130 5 of 15

until following administration is predicted for male individuals, except for vancomycin,
where only differences in Cmax were noted.

Table 3. Influence of therapeutic regimens and biological sex on the pharmacokinetic parameters of the four studied antibiotics.

Drug & Posology Fa (%) 1 FDp (%) 2 F (%) 3 Cmax (mg/L) 4 Tmax (h) 5 AUC0-inf
(µg·h/mL) 6

AUC0-t
(µg·h/mL) 7

Cmax liver
(mg/L) 8

Amikacin
400 mg q24h 99.980 99.964 99.964 5.981 48.5 197.570 94.836 64.761
800 mg q24h 99.980 99.964 99.964 11.962 48.5 395.150 189.670 129.520

800 mg q24h female 99.978 99.960 99.960 11.790 48.5 395.060 209.520 128.610

Gentamicin
70 mg q12h 99.859 99.834 99.834 1.446 60.5 68.971 32.731 14.831
120 mg q8h 99.864 99.838 99.838 2.981 64.5 163.850 81.287 31.975
200 mg q24h 99.845 99.822 99.822 3.304 48.5 100.650 51.345 31.876

200 mg q24h female 99.829 99.806 99.806 3.246 48.5 100.630 56.321 31.524

Tobramycin
250 mg q24h 99.971 99.971 99.971 5.702 48.5 124.780 78.230 62.346
500 mg q24h 99.971 99.971 99.971 11.403 48.5 249.570 156.460 124.690
420 mg q24h 99.971 99.971 99.971 9.579 48.5 209.640 131.430 104.740

420 mg q24h female 99.969 99.969 99.969 9.460 48.5 209.640 139.840 104.770

Vancomycin
500 mg q12h 99.929 99.921 99.921 15.632 61.0 517.990 452.870 30.871

1000 mg q24h 99.926 99.921 99.921 25.547 49.0 518.000 477.990 50.086
1000 mg q12h 99.929 99.921 99.921 31.263 61.0 1036.000 905.740 61.742

1000 mg q12h female 99.930 99.921 99.921 29.202 61.0 1036.000 901.460 57.773

1 fraction absorbed as a percent of the dose (crossing the lumen and entering enterocytes); 2 percent of the dose that has reached the portal
vein; 3 bioavailability; 4 maximum plasma concentration reached in the central compartment, in mg/L; 5 time to reach maximum plasma
concentration, in hours; 6 area under the plasma concentration–time curve, in µg·h/mL, extrapolated to infinity; 7 area under the plasma
concentration–time curve, in µg·h/mL, for the time of the simulation; 8 maximum concentration reached in the liver, in mg/L.
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Figure 1. Amikacin plasma concentration–time profile showing the influence of therapeutic regimens and biological sex 
(considering the average of the study population: 57 years old, 66.0 kg, 169 cm, CL = 6.07 L/h). 
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Figure 1. Amikacin plasma concentration–time profile showing the influence of therapeutic regimens and biological sex
(considering the average of the study population: 57 years old, 66.0 kg, 169 cm, CL = 6.07 L/h).

3.2. Influence of Total Body Weight

Concerning body composition, the influence of total body weight was assessed, and
the resulting PK parameters are presented in Table 4. As expected, simulations for patients
with a lower weight result in a higher Cmax and higher drug concentrations maintained
throughout time. The plasma concentration–time profiles showing the influence of this
parameter are shown for each antibiotic in Figures 5–8.
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Figure 2. Gentamicin plasma concentration–time profile showing the influence of therapeutic regimens and biological sex
(considering the average of the study population: 58 years old, 66.0 kg, 165 cm, CL = 5.94 L/h).
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Table 4. Influence of total body weight on the pharmacokinetic parameters of the four studied antibiotics.

Drug & Posology Fa (%) 1 FDp (%) 2 F (%) 3 Cmax (mg/L) 4 Tmax (h) 5 AUC0-inf
(µg·h/mL) 6

AUC0-t
(µg·h/mL) 7

Cmax liver
(mg/L) 8

Amikacin
800 mg q24h BW avg

(66.0 kg) 99.980 99.964 99.964 11.962 48.5 395.150 189.670 129.520

800 mg q24h BW min
(50.0 kg) 99.981 99.965 99.965 14.813 48.5 395.250 223.520 161.780

800 mg q24h BW max
(92.5 kg) 99.982 99.966 99.966 9.161 48.5 394.940 151.390 97.834

Gentamicin
200 mg q24h BW avg

(66.0 kg) 99.845 99.822 99.822 3.304 48.5 100.650 51.345 31.876

200 mg q24h BW min
(15.5 kg) 99.910 99.905 99.905 9.555 48.5 100.890 90.418 97.446

200 mg q24h BW max
(85.0 kg) 99.680 99.656 99.656 9.546 48.5 100.630 90.200 97.126
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Table 4. Cont.

Drug & Posology Fa (%) 1 FDp (%) 2 F (%) 3 Cmax (mg/L) 4 Tmax (h) 5 AUC0-inf
(µg·h/mL) 6

AUC0-t
(µg·h/mL) 7

Cmax liver
(mg/L) 8

Tobramycin
420 mg q24h BW avg

(33.0 kg) 99.971 99.971 99.971 9.579 48.5 209.640 131.430 104.740

420 mg q24h BW min
(25.8 kg) 99.973 99.973 99.973 11.479 48.5 209.660 147.220 127.010

420 mg q24h BW max
(44.5 kg) 99.970 99.970 99.970 7.646 48.5 209.600 111.740 82.333

Vancomycin
1000 mg q12h BW avg

(69.0 kg) 99.929 99.921 99.921 31.263 61.0 1036.000 905.740 61.742

1000 mg q12h BW min
(29.0 kg) 99.956 99.954 99.954 48.459 61.0 1036.300 1005.000 95.749

1000 mg q12h BW max
(140.0 kg) 99.936 99.926 99.926 22.535 61.0 1035.800 736.330 44.587

1 fraction absorbed as a percent of the dose (crossing the lumen and entering enterocytes); 2 percent of the dose that has reached the portal
vein; 3 bioavailability; 4 maximum plasma concentration reached in the central compartment, in mg/L; 5 time to reach maximum plasma
concentration, in hours; 6 area under the plasma concentration–time curve, in µg·h/mL, extrapolated to infinity; 7 area under the plasma
concentration–time curve, in µg·h/mL, for the time of the simulation; 8 maximum concentration reached in the liver, in mg/L.
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Figure 6. Gentamicin plasma concentration–time profile showing the influence of body weight (for a 200 mg q24h dose,
considering a male individual with the average characteristics of the study population: 58 years old, 165 cm, CL = 5.94 L/h).
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3.3. Influence of Renal Function

Finally, the influence of renal function was evaluated. This is a particularly relevant
consideration, since during treatment (especially for long periods of time), kidneys can
be affected as a side effect of medication, and renal function is often impaired. The PBPK
simulations confirmed this, and CLCr was the most significantly impacting factor on
antibiotics plasma concentrations. PK parameters are presented in Table 5 and plasma
concentration–time profiles are illustrated for each antibiotic in Figures 9–12.
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Table 5. Influence of renal function (creatinine clearance) on the pharmacokinetic parameters of the four studied antibiotics.

Drug & Posology Fa (%) 1 FDp (%) 2 F (%) 3 Cmax (mg/L) 4 Tmax (h) 5 AUC0-inf
(µg·h/mL) 6

AUC0-t
(µg·h/mL) 7

Cmax liver
(mg/L) 8

Amikacin
800 mg q24h CL avg

(6.068 L/h) 99.980 99.964 99.964 11.962 48.5 395.150 189.670 129.520

800 mg q24h CL min
(1.401 L/h) 99.974 99.950 99.950 13.293 48.5 1705.900 258.260 147.360

800 mg q24h CL max
(11.298 L/h) 99.985 99.973 99.973 11.015 48.5 212.320 142.930 117.190

Gentamicin
200 mg q24h CL avg

(5.941 L/h) 99.845 99.822 99.822 3.304 48.5 100.650 51.345 31.876

200 mg q24h CL min
(1.667 L/h) 99.789 99.751 99.751 3.667 48.5 355.600 69.999 36.212

200 mg q24h CL max
(15.887 L/h) 99.908 99.899 99.899 2.860 48.5 37.744 30.152 26.809

Tobramycin
420 mg q24h CL avg

(6.007 L/h) 99.971 99.971 99.971 9.579 48.5 209.640 131.430 104.740

420 mg q24h CL min
(3.868 L/h) 99.965 99.965 99.965 10.149 48.5 325.460 158.850 111.740

420 mg q24h CL max
(8.771 L/h) 99.977 99.977 99.977 9.032 48.5 143.600 106.330 98.209

Vancomycin
1000 mg q12h CL avg

(5.787 L/h) 99.929 99.921 99.921 31.263 61.0 1036.000 905.740 61.742

1000 mg q12h CL min
(0.590 L/h) 99.789 99.743 99.743 73.192 61.0 10090.000 2659.400 146.400

1000 mg q12h CL max
(18.796 L/h) 99.976 99.974 99.974 19.356 61.0 319.140 313.790 38.136

1 fraction absorbed as a percent of the dose (crossing the lumen and entering enterocytes); 2 percent of the dose that has reached the portal
vein; 3 bioavailability; 4 maximum plasma concentration reached in the central compartment, in mg/L; 5 time to reach maximum plasma
concentration, in hours; 6 area under the plasma concentration–time curve, in µg·h/mL, extrapolated to infinity; 7 area under the plasma
concentration–time curve, in µg·h/mL, for the time of the simulation; 8 maximum concentration reached in the liver, in mg/L.

When considering the lowest CLCr, antibiotic concentrations are much higher in com-
parison to individuals with normal functioning kidneys. This is exceptionally important
in the case of vancomycin, where the differences between the lower and upper limits of
observed CLCr were exceedingly significant.
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Figure 9. Amikacin plasma concentration–time profile showing the influence of renal function (for an 800 mg q24h dose,
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Figure 10. Gentamicin plasma concentration–time profile showing the influence of renal function (for a 200 mg q24h dose,
considering a male individual with the average characteristics of the study population: 58 years old, 66.0 kg, 165 cm).

3.4. Effect of Renal Function on the Accumulation of Drugs in Plasma over Time

Since the influence of renal function on the PK profile of the antibiotics was so signifi-
cant, the observed differences were further analyzed.

The differences in the predicted antibiotics concentrations at 72 h between the simula-
tion for the lowest and average CL, and lowest and highest CL were calculated (Figure 13).
For the simulations customized to represent the patients with the lowest CL, the differences
between the Cpeak of the last and Cpeak of the first administrations were also determined
(Figure 14). As aforementioned, renal function has a major impact on the plasma concen-
tration profile of antibiotic vancomycin. As such, it is particularly important to closely
observe patients receiving this antibiotic, monitoring their drug’s plasma concentration and
changes in their renal function. Vancomycin can easily accumulate and rapidly reach toxic
levels in plasma, which can lead to severe adverse effects and cause permanent damage to
the kidneys.
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Figure 11. Tobramycin plasma concentration–time profile showing the influence of renal function (for a 420 mg q24h dose,
considering a male individual with the average characteristics of the study population: 15 years old, 33.0 kg, 146 cm).
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Figure 13. Influence of renal function on the accumulation of the antibiotics in plasma throughout
treatment: difference in the plasma concentration at 72 h.
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Figure 14. Influence of renal function on the accumulation of the antibiotics in plasma throughout
treatment: difference between the Cpeak of the last and Cpeak of the first simulated administration.

4. Conclusions

In this work, clinical data from inpatients with severe systemic infections were an-
alyzed and PBPK simulations were performed to study the pharmacokinetic profile of
four clinically used antibiotics: amikacin, gentamicin, tobramycin, and vancomycin. The
importance of therapeutic drug monitoring and regimen adjustment was further demon-
strated, by highlighting the influence of parameters such as a patient’s total body weight
and the significant impact of renal function on antibiotic plasma concentrations. It was
made evident that patients with low body weight and especially those with impaired renal
function, whether preexisting or due to kidney deterioration throughout treatment, must
be closely monitored and their therapeutic regimens frequently revised to adjust to their
plasma antibiotic concentrations and PK profile. We also found that renal function is the
parameter that has the greatest impact on the Cp-time profile of these antibiotics, especially
vancomycin, but that there are certainly other factors affecting PK and more optimizations
to be made to these PBPK models, since the values obtained in the simulations may come
even closer to those observed clinically. In particular, it is known that hospitalized and
critically ill patients have altered PK and the fact that in this project it was not possible,
due to software limitation, to insert the observed concentrations into the models, refining,
optimizing, and then validating them, also contributed to the slight differences between
the simulated and clinical results.

The results presented here deepen the knowledge on the impact and influence of
these parameters on the biodistribution of these antibiotics. This is crucial not only to
ensure a successful clinical outcome, but also to prevent serious side effects, and, as such,
can assist clinicians in the process of adjusting therapeutic regimens. In this context, the
helpfulness of in silico tools, such as PBPK modeling and software such as GastroPlus™,
was also verified.
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