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Ginseng, which is the root of Panax ginseng (Araliaceae), has been used in Oriental medicine as a
stimulant and dietary supplement for more than 7,000 years. Older ginseng plants are substantially
more medically potent, but ginseng age can be simulated using unscrupulous cultivation practices.
Telomeres progressively shorten with each cell division until they reach a critical length, at which point
cells enter replicative senescence. However, in some cells, telomerase maintains telomere length. In this
study, to determine whether telomere length reflects ginseng age and which tissue is best for such an
analysis, we examined telomerase activity in the main roots, leaves, stems, secondary roots and seeds of
ginseng plants of known age. Telomere length in the main root (approximately 1 cm below the rhizome)
was found to be the best indicator of age. Telomeric terminal restriction fragment (TRF) lengths, which
are indicators of telomere length, were determined for the main roots of plants of different ages through
Southern hybridization analysis. Telomere length was shown to be positively correlated with plant age,
and a simple mathematical model was formulated to describe the relationship between telomere length
and age for P. ginseng.

G
inseng, which is the root of Panax ginseng C.A. Meyer (Araliaceae), has been used in Chinese medicine
for thousands of years as a stimulant and dietary supplement1. In European and American countries,
ginseng phytomedicines have been used to increase physical and mental performance, provide resistance

to stress and disease, and prevent exhaustion for decades2. Ginseng plants begin flowering in their fourth year, and
the roots can live for hundreds of years after maturing at 4–6 years of age. The older the root, the higher its
medicinal value because of the higher concentration of ginsenosides, which are the active chemical compounds in
ginseng3,4. However, chemical analyses often require gram quantities of dried ginseng material, and it is difficult to
extract such quantities while leaving the ginseng intact; thus, chemical analysis greatly decreases the ginseng’s
value. Therefore, effective methods for identifying the age of ginseng roots are urgently needed to improve quality
control and protect the interests of ginseng consumers.

Telomeres, which are specialized structures at the physical ends of eukaryotic chromosomes that consist of
highly conserved, repeated DNA sequences5,6, shorten with each round of DNA replication7–10 because DNA
polymerases cannot completely replicate linear DNA molecules. In gymnosperms, telomere length can be used to
predict the future replicative capacity of cells11,12. Highly significant correlations between telomere length and age
have been observed in humans8,13, Australian sea lions14, martins and dunlins15 and different stages of barley16.
Therefore, telomere shortening can be used as a marker of cell replication and aging. Telomerase activity has been
detected in plants using a polymerase chain reaction (PCR)-based telomerase repeat amplification protocol
(TRAP) assay17. Telomerase appears to be developmentally regulated in plants, which is similar to what occurs
in humans18. These reports indicate biological correlations between telomere length and age. However, plant
telomeres are maintained by telomerase. Telomere lengths remain stable in tomato leaves19, whereas they change
cyclically, lengthening and shortening with age, in the needles of Pinus longaeva20. After the first plant telomere
sequence was cloned from Arabidopsis21, nearly all plant telomeres were found to consist of the heptanucleotide
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repeat (TTTAGGG)n22,23. Arabidopsis-type repeats have also been
found in P. ginseng24. However, researchers have not yet ascertained
whether Arabidopsis-type repeats are located in telomeres or their
relationship with age.

In this study, we combined traditional identification methods and
measurements of telomere length in ginseng plants of known age.
Preliminary investigations indicated that telomere length was slightly
positively correlated with the age of the ginseng plant. Analysis of
telomerase activity in different parts of the plant further revealed that
the main root was the most active meristematic region. Therefore, we
used this tissue to evaluate telomere length. Determination of telo-
mere terminal restriction fragment (TRF) lengths in P. ginseng speci-
mens of different ages demonstrated that the telomeres in the main
roots showed a significant increase in TRF length with plant age that
could be used for age estimation for 2–8 years.

Results
Fluorescence in situ hybridization to determine telomere sequences.
The telomeres of most higher plant species are composed of the
repeated sequence (TTTAGGG)n. To investigate P. ginseng telomeres
comprising the same repeat, we using the complementary end
digoxigenin-labeled, telomere-specific oligonucleotide (CCCTAAA)3

as a probe to perform in situ hybridization. Hybridization signals
visualized as green fluorescence demonstrated that Arabidopsis-type
telomeric sequence repeats, (TTTAGGG)n, were located in the chro-
mosomes of P. ginseng (Fig. 1).

Growth rings in the roots of P. ginseng from Ji’an. The paraffin
sections of P. ginseng rhizomes of different ages collected from Ji’an
revealed distinct growth rings in the xylem of secondary roots, and the
number of growth rings in the main root was consistent with an age of
1–6 years (Fig. 2). However, microscopy analysis showed that the growth
rings of the ginseng specimens did not precisely reflect age after 6 years.

Telomeric activity of different ginseng tissues. A representative
TRAP analysis image that was used to quantify telomerase activity
is shown in Fig. 3. Average telomerase activities in various tissues and

different stages of plant development were assayed using TRAP, and
the results indicated that the main root showed the highest average
telomerase activities of all of the examined tissues. Because
telomerase can lengthen telomeres, and the activity of telomerase

Figure 1 | In Situ Localization of TTTAGGG Telomeric Motifs on P.
ginseng Chromosomes. The the digoxigenin–dUTP nick tag sequence

(CCCTAAA)5 telomeric probe was hybridized with adventitious root of P.

ginseng metaphase chromosomes and counterstained with propidium

iodide.

Figure 2 | The growth rings in the ginseng root of 1 , 6 years.
(A), (B), (C): 1 year ginseng root, 2 year ginseng root, 3 year ginseng root,

Bar 5 1000 mm; (D), (E), (F): 4 year ginseng root, 5 year ginseng root, 6

year ginseng root, Bar 5 500 mm.

Figure 3 | Developmental Regulation of Telomerase Expression in 5
years P. ginseng. Telomerase activities in various tissues and different

stages of plant development were assayed by TRAP, using 47F as the

forward primer and PTelC3 as reverse primers. Lane1: tap root; Lane2:

leaves; Lane3: stems; Lane4: root tips; Lane5: seeds.
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may be correlated with age, the main roots were used for further
analyses.

Tangential cryo-sectioning of 400 mm sections of samples from 5-
year-old P. ginseng tissues, followed by densitometric quantitation of
telomerase activity (in relative units), revealed the highest telomerase
activity in the cambium and adjacent zones of differentiating sec-
ondary xylem (Fig. 4).

Analysis of TRF lengths in ginseng of different ages. DNA
fragments were analyzed through DNA gel blot hybridization
using the (CCCTAAA)3 oligonucleotide as a probe. A representative
Southern blot image that was used to quantify TRFs is shown in
Fig. 5a, b, where the hybridization signals represent telomeric
regions. The autoradiograph was scanned and imported as a TIFF-
format image to measure TRF length. The location of the peak
intensity could not be accurately determined by eye. Therefore, an
easy-to-use system that was able to determine the distributions of
telomeric regions based on copy number and calculate statistics was
employed. The unbiased TRF measure software Telotool25 was used
to measure the TRF lengths of ginseng roots. A plot of the relative
telomere copy number versus molecular weight was created, which
provided the user with a realistic picture of the actual distribution of
telomeric lengths. The measurements of TRF length for each sample
using Southern hybridization was repeated three times.

We investigated the correlation between TRF length and plant age
using P. ginseng samples of known age from Ji’an and Fusong. First,
DNA fragments were analyzed through Southern hybridization

using the (CCCTAAA)3 oligonucleotide as a probe for telomeric
DNA (Fig. 5a). Although observations made by eye are not precisely
accurate, this easy-to-use method is convenient and allowed rapid
analysis of the telomeres of ginseng roots by determining copy num-
ber26. A general model for age-related TRF length in ginseng was
introduced. Eleven models were simulated using SPSS 20.0 software,
and the most suitable linear fitting curve was determined. The
obtained results satisfied the 83% confidence limits (R2 5 0.832, F
5 79.029, Sig. 5 0.000), and it was found that TRF length was
significantly positively correlated with age after 3 years (Fig. 5b),
which indicated that TRF length could be maintained via telomerase
activity as tissues developed. Based on these results, we propose a
mathematical model through which telomere length can be used to
predict P. ginseng age:

y~0:827xz8:231,

where, x is age, and y is TRF length.

Discussion
Scientific identification of the potency of traditional Chinese medi-
cines is crucial to ensure their authenticity and effectiveness.
Authenticity can be assured based on several factors: the geographic
origin or cultivation source of the species; proper harvesting and
processing methods; and growth stage27. These factors are all import-
ant for the quality of Chinese herbal medicines. Because bioactive
secondary compounds accumulate as medicinal plants such as P.
ginseng, Salvia miltiorrhiza and Coptis chinensis age, older plants

Figure 4 | Anatomical observation of 5 years P. ginseng by tangential cryosectioning. Aseries of 400-um-thick tangential cryosections (A) , (J) was

taken for each sample: tissues at different stages were isolated by tangential cryosectioning; (B): Telomerase activities in various tissues and different stages

of plant development were assayed by TRAP, using 47F as the forward primer and PTelC3 as reverse primers; (C): Densitometric quantization revealed

higher relative telomerase activity (relative units) in cambiums.
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usually serve as better medicinal herbs. However, in the pursuit of
economic efficiency, a number of inappropriate strategies, including
the use of growth hormones and swelling agents as well as continual
transplantation, have been employed to simulate age. Therefore, the
quality of Chinese herbal medicines is difficult to determine. This
study aimed to establish a reliable and effective method for identify-
ing the age of ginseng that complements traditional methods of age
determination.

Gymnosperms and dicotyledonous angiosperms generally
undergo primary and secondary growth, whereas monocots usually
lack secondary growth. The retention of stem-cell-like meristematic
cells plays a critical role in perennial longevity28. Stem-cell-like mer-
istematic cells are located in the cambium. Accordingly, when envir-
onmental conditions change periodically, associated with different
growing seasons, the cambium cell cycle is activated, and the tissue
layers form rings (termed growth rings) during each individual per-
iod of growth. Arx, Schweingruber and Dietz29,30 indicated that
growth rings could be an effective biomarker for estimating age in
the roots of dicotyledonous perennial herbs. In the present study,
growth-ring characteristics were clearly present in 1- to 6-year-old
ginseng top roots. However, when the ginseng specimens were older
than 6 years, dry, decayed channels emerged within the cambium
rings, making the growth rings difficult to distinguish and influence
age estimation. Therefore, this method can only be applied over a
minimum age range, and a new marker was required for estimation
of the age of older ginseng samples.

Telomere length and telomerase activity are useful biomarkers for
age prediction in animals and plants31–33 due to their close association
with cell proliferation. However, it was unclear whether telomerase
activity is related to the mechanisms maintaining stem cells in mer-
istems. Our analyses of several P. ginseng tissues showed that telo-
merase activity was highest in the cambium. Telomerase expression
in plants is very similar to that in humans. In plants, telomerase
activity is highest in the meristem and reproductive organs, whereas
there is little or no activity in the endosperm, leaves and stems17. In
Ginkgo biloba, tissues with a high percentage of dividing cells also
exhibit high levels of telomerase activity, which is consistent with our
results31,34. We found that the sampled tissue had a substantial impact
on the age estimation in P. ginseng. The main root samples contained
most of the organized cambium and annual growth rings. We found
that telomere length in the main roots was positively correlated with
plant age. However, due to sampling limitations, ginseng plants of

older ages were difficult to sample. Therefore, our mathematical
model is only suitable for a certain range of ginseng ages.

A study that examined TRF branch length in detail suggested that
telomere branch lengths increase with age to some extent in G.
biloba31,35, in accord with the results of the present study. Our ana-
lyses indicate that ginseng telomere length increases significantly
with age; however, in contrast to the progressive shortening of
TRFs observed in somatic cells as animals aging, telomere length
and telomerase activity change in different patterns during plant
development. Telomere lengths have been observed to be stable in
tomato leaves in four-week-old to six-month-old plants19, and they
do not significantly change during plant ontogenesis or leaf sen-
escence in Melandrium album18 and Arabidopsis thaliana36 or during
cyclical changes of lengthening and shortening in size associated with
age in Pinus longaeva20. Furthermore, telomeres do not shorten dur-
ing increased tissue differentiation from embryonic to adult stages in
Hordeum vulgare16 and Pinus sylvestris37, whereas they show
decreased lengths during Betula pendula tissue culture38, while
increased lengths are observed with age in G. biloba31. These results
suggest that the relationship between telomere length and plant
development is complex and may be affected by the species and lines
involved as well as environmental stress and telomerase and stem cell
activities. The present study indicates that telomere length in the top
roots of P. ginseng increases with age, as observed in the leaves and
calli of G. biloba31,35. Interestingly, many studies show that ginseno-
side Rg1, which is one of the main biologically active components of
ginseng, can decrease telomere shortening and reinforce telomerase
activity in delayed hematopoietic stem cells and reduce senescence in
human somatic cells39–41. Similar results were found for a G. biloba
extract, which significantly augmented endothelial progenitor cell
telomerase activity to prevent the cells from entering senescence42.
These results imply that the increase in telomere length with age

Figure 5 | Southern hybridization images used for measurement and quantization of TRF length. Lane M: DNA Molecular Weight Marker III,

Digoxigenin-labeled (Roche). Numbers 2, 3, 4, 5, 6, 8 means different years of P. gensing samples collected from the city of Ji’an, Jilin province, China. B:

Data fitting results and the trend of variation of TRF length with different ages. Overall, average TRF length increased with ages in main root (The

following 1 cm of ‘‘ginseng lutou’’).

Table 1 | The Ginseng samples collected from two different districts

Age (year) 2 3 4 5 6 8

Fusong ! ! ! ! !
Ji’an ! ! ! ! ! !

Ginseng samples of known age were collected from the Ji’an and Fusong districts of Jilin Province,
China, in mid-August, 2010 and 2013. The samples were taxonomically identified by Prof.
Shiquan Xu, Institute of special animal and plant science, Chinese Academy of Agricultural
Sciences. All samples consist of 3 individuals every year.
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observed in ginseng and ginkgo may be related to the bioactive
components of these plants, which may maintain telomere length
by the telomerase mechanism or/and the ALT mechanism. The cor-
relation between telomere length and telomerase activity in P. gin-
seng that was demonstrated here suggests that telomere length and
telomerase activity might play essential roles in directly or indirectly
regulating the life span of P. ginseng.

Methods
Sample collection. Ginseng samples of known age were collected from the Ji’an and
Fusong districts of Jilin Province, China, in mid-August, 2010 and 2013 (Table 1).
Samples of the main root (1 cm below the rhizome, known as ‘‘ginseng lutou’’ in
China), leaf, stem, secondary root and seeds were frozen in liquid nitrogen and stored
at 280uC until use.

Chromosome preparation and in situ hybridization. Adventitious roots was
induced from calli of P. ginseng by cultured in the MS rooting medium for 14 d.
Adventitious root tips were used as a source of metaphase chromosomes, and the
digoxigenin–dUTP nick (Roche, Penzberg, Germany) tag sequence (CCCTAAA)5
was used as a chromosome probe, as previously described43. Slides were removed
immediately after immersion in 1 3 PBS (containing 0.2% Tween) and dipped in 1 3

blocking buffer (Boehringer, Ingelheim, Germany) at 37uC for 30 min. After drying,
each slide was placed in 50 3 blocking buffer containing 2 ml of a FITC-conjugated
anti-digoxin antibody (anti-Dig FITC, Boehringer, Ingelheim, Germany), covered
with a 22 3 22 mm coverslip, and incubated in a dark, wet box at 37uC for 60 min.
The slides were then washed three times (5 min each) in 1 3 PBS (containing 0.2%
Tween) at room temperature. After the slides were dried, 12 ml of the anti-fading
agent VECTASHIELDH (Vector Lab, California, USA) containing 1 mg/ml
propidium iodide (Life Technologies, California, USA) was added slowly to cover the
coverslips. Different filters in a DMRXA fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) were then used to observe the red chromosomes
and yellow-green hybridization signals. An air-cooled digital (CCD) camera was
employed, and the input of images into a computer was performed using Leica QFISH
software to adjust the contrast and brightness.

Paraffin sectioning. Fresh roots of P. ginseng were harvested, and samples were
collected 1 cm from the root tip and fixed with FAA solution (70% 905555 ethanol:
formaldehyde: acetic acid), then vacuum infiltrated and dehydrated through
increasing alcohol concentrations. Next, the sections were embedded in paraffin, and
the preparations were baked on an HI1220 flattening table and sectioned using an
RM2265 rotary microtome (Leica Biosystems, Nussloch, Germany) to a thickness of
10–15 mm. The samples were subsequently baked for more than 24 h, then
deparaffinized, stained with a safranin–fast green or phloroglucinol–HCl reagent,
mounted with neutral gum and observed and photographed using BH-2 optical and
LG-PS2 stereo microscopes (Olympus, Tokyo, Japan).

Hand sectioning. One-centimeter samples from the tips of fresh P. ginseng roots were
sectioned at a thickness of approximately 1 mm. One drop of phloroglucinol-HCl
was used to develop color, and a scanner was employed to image the samples.

Tangential cryo-sectioning. A series of 40 mm-thick tangential sections were
obtained for each sampled section as described by Uggla & Sundberg44, with some
modifications. Regenerated tissues at different stages were isolated through tangential
cryo-sectioning at 220uC with a Leica CM1850 Cryostat (Leica Biosystems,
Nussloch, Germany). Cryosections of regenerated tissues from the same root and
stage were collected in a 1.5 ml microfuge tubes, immediately frozen in liquid
nitrogen and stored at 270uC.

Determination of telomerase activity. Total protein was harvested from
approximately 5.0 mg of freshly ground, fine powder from each sample. Telomerase
activity was measured as previously described45 using the TRAP assay. Plant extracts
containing telomerase were prepared according to Fitzgerald17, and the total protein
content in the extracts was determined46. The oligonucleotides 47F (59-
CGCGGTAGTGATGTGGTTGTGTT-39) and PTelC3 (59-
CCCTAAACCCTAAACCCTAAA-39) were used as forward and reverse primers,
respectively, in the TRAP analysis18.

DNA extraction and Southern hybridization analysis. The TRF length, which is the
gold standard for telomere length, was determined through Southern hybridization
analysis47. Root samples were placed in a mortar and ground to a fine powder using a
pestle and liquid nitrogen. Then, genomic DNA was prepared from each sample using
the hot CTAB method48 and subsequently purified by treated with RNase (New
England Biolabs, Massachusetts, USA) and Proteinase K (Merck, Darmstadt,
Germany). The concentration of the isolated DNA and the ratio of the absorbance at
260 nm to 280 nm (A260/A280 ratio) were measured using a NanoDrop ND-1000
spectrophotometer (Gene, Hong Kong, China). Approximately 20 mg of each DNA
sample was then digested for 12 h with TaqaI, and the digestion products were loaded
into the lanes of a horizontal, 6.5 3 10 cm, 1% agarose gel and electrophoresed in 1 3

TAE buffer for approximately 6 h at 90 V at room temperature with buffer
recirculation. To measure and quantify the TRFs, Southern hybridizations were

performed with the DIG High PrimeDNA Labeling and Detection Starter kit II
(Roche, Penzberg, Germany) as previously described49,50 using an end digoxigenin-
labeled complementary telomere-specific oligonucleotide probe (CCCTAAA)3.
Measurements were repeated three times, and TRF lengths are reported as the mean
6 standard deviation.
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