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Abstract

Background: In order to study the dynamics of evolutionary change, 12 populations of E. coli B
were serially propagated for 20,000 generations in minimal glucose medium at constant 37°C.
Correlated changes in various other traits have been previously associated with the improvement
in competitive fitness in the selective environment. This study examines whether these evolved
lines changed in their ability to tolerate the stresses of prolonged freezing and repeated freeze-thaw
cycles during adaptation to a benign environment.

Results: All 12 lines that evolved in the benign environment for 20,000 generations are more
sensitive to freeze-thaw cycles than their ancestor. The evolved lines have an average mortality rate
of 54% per daily cycle, compared to the ancestral rate of 34%. By contrast, there was no significant
difference between the evolved lines and their ancestor in mortality during prolonged freezing.
There was also some variability among the evolved lines in susceptibility to repeated freeze-thaw
cycles. Those lines that had evolved higher competitive fitness in the minimal glucose medium at
37°C also had higher mortality during freeze-thaw cycles. This variability was not associated,
however, with differences among lines in DNA repair functionality and mutability.

Conclusion: The consistency of the evolutionary declines in freeze-thaw tolerance, the
correlation between fitness in glucose medium at 37°C and mortality during freeze-thaw cycles,
and the absence of greater declines in freeze-thaw survival among the hypermutable lines all
indicate a trade-off between performance in minimal glucose medium at 37°C and the capacity to
tolerate this stress. Analyses of the mutations that enhance fitness at 37°C may shed light on the
physiological basis of this trade-off.

Background more direct examination of the past [2], but fossil data are
Most research in evolution pursues the comparative  limited in certain respects, including the inability to meas-
method, in which the present-day patterns of organismal  ure the performance abilities of organisms. A third
diversity are examined in order to infer historical proc-  approach for studying evolution is to perform long-term
esses of change [1]. Research in paleontology allows a  studies, either observational [3] or experimental [4], that
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allow one to observe evolution in action across many gen-
erations. In recent years, bacteria and viruses have become
especially popular for experimental evolution, owing to
their rapid generations that allow studies to run for hun-
dreds or even thousands of generations [5-10].

In a long-term experiment, Lenski and colleagues have
propagated 12 populations of E. coli for more than 20,000
generations at 37°C in a minimal-salts medium supple-
mented with glucose [5,11,12]. The dynamics of both
phenotypic [13-19] and genomic [20-26] evolution have
been characterized in a variety of ways. During the 20,000
generations, the bacteria have genetically adapted to their
selective environment, such that their mean fitness rela-
tive to the ancestor increased by about 70%, based on
direct competitions [15]. Interestingly, four of the 12 pop-
ulations evolved defects in their DNA repair mechanisms,
which caused them to become hypermutable [13,15]. The
evolving bacteria also increasingly became ecological spe-
cialists, in the sense that their performance in some, but
not all, other test environments tended to decline
[14,15,17,26]. The parallel trajectories between increasing
fitness in the selective environment and declining per-
formance in other environments suggest that most of the
decline in other environments is the result of pleiotropic
side-effects of the same mutations that produce adapta-
tion in the selective environment [15]. The fact that the
four populations that became mutators do not show
much more specialization is also consistent with this
interpretation [15].

Stressful environments, such as prolonged freezing or
repeated freeze-thaw cycles, may reveal other performance
tradeoffs in the evolved lines. In fact, freezing and thawing
impose several interconnected stresses including dehydra-
tion, hyperosmotic stress, ice formation, oxidative stress,
and low temperature [27-29]. The acute responses of bac-
terial cells to freezing and thawing, including the effects of
prior exposure to cold and other stresses on survival [30-
36], are reasonably well understood. Many other variables
also contribute to whether bacteria survive freezing and
thawing, including their nutritional status and growth
phase as well as the cooling rate employed [28,29,37].
Freezing and thawing E. coli cells without an exogenously
supplied cryoprotective agent, such as glycerol, severely
decreases their viability [38,39]. Loss of viability is pro-
portional to the number of freeze-thaw cycles that cells
experience [37,40,41]. Therefore, the elapsed time that
cells are frozen generally influences viability less than the
processes of freezing and thawing.

By contrast, much less is known about how and why dif-
ferent bacterial strains and species vary in their capacity to
survive these stresses [28,35,42,43]. In this study, we
examine how evolutionary adaptation by populations of
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E. coli to serial propagation on a minimal glucose medium
at a constant temperature of 37 °C affected survival during
prolonged freezing and repeated freeze-thaw cycles in the
absence of cryoprotectant. In particular, we test whether
there was an evolutionary trade-off such that adaptation
to this benign environment led to correlated losses in sur-
vival capacity under these stresses. We also evaluate
whether replicate lines that evolved under the same
regime show heterogeneous changes in their stress
responses. One of our motivating interests in this research
is to identify strains and conditions suitable for a future
experiment that will investigate evolutionary adaptation
to repeated freeze-thaw-growth cycles. We want to identify
conditions in which some survival is possible, but where
there is sufficient mortality to impose strong selection.
Also, evidence for heritable variation among lines in sur-
vival under these extreme conditions would indicate the
potential, at least, for evolutionary adaptation in that
future experiment.

Results and Discussion

Effects of freeze-only and freeze-thaw regimes on survival
of the ancestor

Figure 1 shows the survival trajectories for the E. coli B
ancestral strain under the -80°C freeze-only and freeze-
thaw regimes over the course of 28 days. With daily freeze-
thaw cycles, the density of viable cells declined by about
five orders of magnitude. As evidenced by the log-linear
trajectory (r2=0.97, p < 0.0001), the bacteria experienced
a nearly constant mortality rate of 34.4% killed per freeze-
thaw cycle.

It is quite clear that most of this mortality was caused by
the repeated bouts of freezing and thawing, as opposed to
the time that cells spent frozen, because the cumulative
mortality under the freeze-only regime was far less. In fact,
over the entire 28 days at -80°C, with one thaw, the viable
population size declined by only 35.2%. This decline
almost exactly matches the cell death observed after one
day in the freeze-thaw regime (Fig. 1), implying that no
further death occurred during the other 27 days at con-
stant -80°C. In fact, the slope of the cell-survival trajectory
from day 1 to day 28 under the freeze-only regime was not
significantly different from zero (p = 0.3483). Thus, there
was little or no mortality, even over several weeks, beyond
that caused by the single freeze-thaw cycle that was a nec-
essary part of the survival assay procedures for all samples,
regardless of how long they had spent at -80°C.

Therefore, the ancestral strain used for the long-term evo-
lution experiment at 37°C is quite hardy with respect to
prolonged freezing at -80°C. However, it is much more
sensitive to repeated cycles of freezing and thawing. In the
next section, we examine whether the lines that previously
evolved for 20,000 generations in a benign environment
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Figure |

Survival of ancestral E. coli strain under the freeze-only (prolonged freezing) and repeated freeze-thaw cycle
regimes. Each point is the log,,-transformed viable cell density (CFU/mL) averaged over six replicates. Closed circles show
the repeated freeze-thaw regime, and open circles show the prolonged freeze-only regime. Error bars are 95% confidence
intervals and, when not visible, are smaller than the corresponding symbol.

became less tolerant of either prolonged freezing or
repeated freeze-thaw cycles.

Effects of freeze-only and freeze-thaw regimes on survival
of the evolved lines in comparison with the ancestor

We performed 10-day experiments under both freeze-only
and freeze-thaw regimes using the 12 lines that evolved by
serial propagation on a minimal glucose medium at con-
stant 37°C for 20,000 generations and their ancestor.
Each evolved line had three replicates, while the ancestor
was replicated six-fold (three each for the Ara- and Ara*
marker variants). Figure 2 compares the average mortality
rates of the evolved lines and their ancestor under the
freeze-thaw regime. The ancestor experienced a mortality
rate of 34.0% per day under the freeze-thaw regime, a
value almost identical to our first experiment. By contrast,
all 12 evolved lines experienced greater mortality, with an
average rate of 53.7% per day. The difference in freeze-
thaw mortality rates between ancestral and evolved rates

is highly significant (two-tailed t-test with unequal vari-
ances, p < 0.0001).

However, we observed no significant difference between
the evolved lines and their ancestor in mortality rates dur-
ing prolonged freezing at -80°C (Fig. 3; two-tailed t-test
with unequal variances, p = 0.7689). Mortality rates under
this regime were calculated, as described in the Materials
and Methods, such that they correct for the effect of one
cycle of freezing and thawing. The average mortality rates
estimated for the ancestor and evolved lines under the
freeze-only regime were 5.8% and 6.6% per day, respec-
tively. The ancestral value is somewhat higher than esti-
mated in the first experiment, but it is still much lower
than the mortality rates measured during repeated freeze-
thaw cycles in either experiment.

Thus, the 37°C-evolved lines as a group remained about

as robust as their ancestor to the effects of prolonged
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Comparison of mortality rates between the evolved
E. coli and their ancestor under the repeated freeze-
thaw regime. The height of each bar shows the mean mor-
tality rate per day for the evolved lines or their ancestor,
measured over ten daily freeze-thaw cycles. For the evolved
bacteria, the mean is calculated over all 12 lines, with three
assays for each line. For the ancestor, the mean is calculated
over two marked variants (Ara* and Ara’), again with three
assays for each one. See the Materials and Methods section
for the mortality rate calculation. Error bars are 95% confi-
dence intervals based on the number of lines (evolved) or
total assays (ancestor).

freezing at -80°C. However, the evolved lines are much
more sensitive than their ancestor to the effects of
repeated freeze-thaw cycles, with the average mortality
rate increasing from 34.0% to 53.6% per daily cycle. In the
section that follows, we examine variation among the
evolved lines in their freeze-thaw sensitivity.

Heterogeneity among the evolved lines in freeze-thaw
survival

Figure 4 shows the mortality rate per daily freeze-thaw
cycle for each of the 12 lines that independently evolved
at 37°C. The 95% confidence intervals were calculated by
using the three replicate assays performed for each line.
Estimated mortality rates vary from 40.2% to 78.0% per
day. An analysis of variance confirms that variation
among the evolved lines is highly significant (Table 1, p <
0.0001). Moreover, Figure 5 shows there is a significant
correlation between competitive fitness measured in the
benign selective environment [15] and mortality rates
measured in the freeze-thaw regime (r = 0.5882, n = 12,
two-tailed p = 0.0442). This correlation provides further
support for the trade-off between fitness in the benign
environment of serial propagation on glucose minimal
medium at constant 37°C and survival during repeated
freeze-thaw cycles.

The four lines that evolved defects in DNA repair, and
which have much higher mutation rates (A-2, A-4, A+3,
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Figure 3

Comparison of mortality rates between the evolved
E. coli and their ancestor under the prolonged freeze-
only regime. The height of each bar shows the mean mor-
tality rate per day for the evolved lines or their ancestor,
measured over ten days at -80°C. For the evolved bacteria,
the mean is calculated over all 12 lines, with three assays for
each line. For the ancestor, the mean is calculated over two
marked variants (Ara* and Ara’), with three assays for each
one. See the Materials and Methods section for the mortality
rate calculation, which includes an adjustment for the mortal-
ity caused by thawing in the final day. Error bars are 95%
confidence intervals based on the number of lines (evolved)
or total assays (ancestor).

and A+6; refs. 13, 15), do not have consistently higher
mortality rates, as a group, than do the other evolved
lines. Also, there is no significant correlation between
competitive fitness in the benign environment and sur-
vival under the freeze-only treatment (r = 0.0756, n = 12,
two-tailed p = 0.8154), consistent with the absence of any
significant difference between the ancestor and evolved
lines as a group in this stress-related capacity.

The variation among lines that evolved in the benign
selective environment indicate that they acquired differ-
ent sets of mutations that differentially affect their sensi-
tivity to freeze-thaw cycles. The differences between lines
are not associated with variation in DNA repair function
and mutability, which implies that pleiotropic effects of
the mutations that were selected for their beneficial effects
during the evolution experiment in minimal glucose
medium at 37°C are responsible for the increased suscep-
tibility to freezing and thawing. If, alternatively, muta-
tions that harmed freeze-thaw survival had accumulated
by neutral drift, then we would expect significantly higher
susceptibility among the four lines with defective DNA
repair functions [15,44].

Conclusion
E. coli B cells experience little mortality during prolonged
freezing at -80°C, even in the absence of added cryopro-
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Figure 4

Heterogeneity of mortality rates among the 12 evolved lines under the repeated freeze-thaw regime. The
height of each bar shows the mean mortality rate per day for one of the evolved lines, measured over ten daily freeze-thaw
cycles, calculated from three assays for each line. The x-axis value (34%) is the estimated mortality rate of the ancestor; the
dashed line shows the average mortality rate for the 12 evolved lines. Error bars are 95% confidence intervals calculated using
the replicate assays for each line. See Table | for the statistical analysis testing for variation among the evolved lines.

tectant. However, they are much more susceptible to
repeated freezing and thawing, consistent with earlier
studies [37,40,41]. Twelve lines that previously evolved
for 20,000 generations in a benign environment, consist-
ing of serial transfer in a minimal glucose medium at con-
stant 37°C, all became more susceptible to freeze-thaw
mortality than was their ancestor. Moreover, those
evolved lines with higher fitness gains in the benign selec-
tive environment also tended to have greater susceptibility
to freeze-thaw cycles, further supporting the trade-off in
performance between these environments. However, the
variation among the evolved lines was not associated with
differences in DNA repair function and mutability that
arose during the evolution experiment [13,15]. Therefore,
increased susceptibility to freeze-thaw cycles in the
evolved lines probably reflects pleiotropic effects of muta-
tions that were beneficial to the bacteria during evolution
in the benign environment with minimal glucose
medium and constant 37°C. In any case, significant vari-
ation among the lines in their freeze-thaw survival implies

that there is genetic variation for this trait, such that it can
be selected, which will be a focus of our future research.

Future research directions include evolving E. coli popula-
tions under freeze-thaw-growth cycles. The growth phase
will allow populations to recover from mortality caused
by freezing and thawing; selection should favour a reduc-
tion in freeze-thaw mortality, a faster transition to growth
after thawing, or both. Another future direction includes

Table I: ANOVA testing for heterogeneity among the evolved
lines in mortality rates under the repeated freeze-thaw regime.

Source df SS MS F P
Line I 0.3906 0.03551 88.67 <0.0001
Error 24 0.0096 0.00040

Mortality rates were estimated with three-fold replication for each of
the 12 evolved lines. The very low p-value indicates significant
heritable variation among these lines in their survival capacity under
the freeze-thaw regime.
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Figure 5

Correlation between freeze-thaw mortality and fitness in the benign environment. Each point shows the mortality
rate per freeze-thaw cycle measured in this study, and the relative fitness measured previously [15] in the benign environment,

for one of the 12 evolved lines.

identifying individual mutations responsible for
increased susceptibility to freezing and thawing in the
lines evolved in the benign environment of constant
37°C, or increased resistance in lines evolved under the
freeze-thaw-growth regime. Finally, phenotypic and
genetic analyses of freeze-thaw resistance could be
extended to natural isolates of E. coli. Comparisons
between food-borne pathogens and commensals would
be of particular interest because the ability to survive and
recover from freezing and thawing might be an important
adaptation of some food-borne pathogens.

Methods

Long-term evolution experiment and bacterial strains
The long-term evolution experiment is described in detail
elsewhere [5,12]. In brief, 12 populations were founded
using an E. coli B ancestor and then propagated at 37°C
for 20,000 generations (3,000 days) in Davis minimal
medium supplemented with glucose at 25 mg/L (DM25).
The populations were diluted 100-fold daily into fresh
medium, and their re-growth allowed about 6.6 (= log,

100) generations per day. The source strain, REL606, can-
not grow on arabinose (Ara-), and it was used to start six
populations; the other six were started with a spontaneous
Ara+ mutant, REL607, of the source strain. The Ara marker
is selectively neutral in the experimental environment [5].
The 12 evolved lines used in this study were isolated as
single clones at generation 20,000, after which they have
been stored in glycerol at -80°C.

Methods for measuring survival under freeze-only and
freeze-thaw regimes

Culture media and experimental pre-conditioning

Bacteria used for testing were removed from storage in the
freezer, inoculated into LB (Luria-Bertani) medium, and
incubated for 24 h at 37°C. A culture was then diluted
1:10,000 into DM25 and incubated for 24 h at 37°C. A
final 1:100 dilution was made into fresh DM25 and incu-
bated for 24 h at 37°C, at which time cells were well into
stationary phase, having exhausted the glucose in the first
8 h or so. Hence, all cells in the experiments were physio-
logically acclimated to the same environmental condi-
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tions before their survival was measured during repeated
freeze-thaw cycles or during prolonged freezing.

Measuring cell density

Colony forming units (CFU) were used to estimate viable
cell densities. A pilot study was performed to find a range
of serial dilutions that would allow accurate cell counts as
populations declined during repeated freeze-thaw cycles.
For the evolved lines that were most sensitive, no dilution
was made on the final day of the freeze-thaw experiment,
so that no line fell below the detection limit of ~10 cells/
mL. Diluted or undiluted cell cultures were plated on
tetrazolium-arabinose (TA) indicator agar [5] and incu-
bated at 37°C for 24 h before counting.

Freeze-thaw regime

After pre-conditioning, 1 mL of a stationary-phase culture
was transferred into each of three replicate vials, which
were then immediately placed in a -80°C freezer. Each day
the tubes were kept frozen for 22.5 h and allowed to thaw
at room temperature (about 22°C) for 1.5 h. Viable cell
density was measured after the desired number of freeze-
thaw cycles. For example, in order to measure survival
after 1 day, the vials were frozen for 22.5 h and thawed for
1.5 h before measuring cell density. To measure survival
after 7 days, the vials were subjected to seven freeze-thaw
cycles and the cell density was measured after the last
thaw.

Freeze-only regime

After pre-conditioning, 1 mL of a stationary-phase culture
was transferred into each of three replicate vials and
placed in a -80°C freezer. After the desired duration, a vial
was thawed for 1.5 h and viable cell density measured. For
example, to measure the freeze-only survival after 1 day,
vials were frozen for 22.5 h and thawed for 1.5 h before
measuring cell density. To measure the freeze-only sur-
vival after 7 days, vials were frozen for 166.5 h (= 7 days
minus 1.5 h) and thawed for 1.5 h. Thus, the elapsed time
at -80°C is varied experimentally, and only a single thaw
occurs regardless of duration under this regime.

Calculations and statistical methods

The first experiment was performed to measure and com-
pare the survival of the ancestral strain under two different
28-day regimes, one with daily freeze-thaw cycles and the
other representing the freeze-only regime. In each case,
linear regression was performed on the log, ,-transformed
viable cell densities to estimate the daily mortality rate
and determine whether it differed significantly from zero.
Data from all 28 days, including day 0, were used to cal-
culate the mortality rate under the freeze-thaw regime,
whereas that initial value was excluded when calculating
the mortality rate during the freeze-only regime in order

http://www.biomedcentral.com/1471-2148/6/104

to adjust for effect of the single episode of thawing that
was experienced in all subsequent days.

The second experiment compared the survival of the
ancestral and evolved lines under the freeze-only and
freeze-thaw regimes. It also allowed us to test for hetero-
geneity in survival rates among the 12 independently
evolved lines. This experiment lasted 10 days; given the
temporal constancy of the mortality rates observed in the
first experiment, we estimated viable cell densities on days
0 and 10 only. For each assay, we calculated the percent-
age survival as s = n,,/n,, where n, and n,, denote initial
and final densities, respectively. For the freeze-thaw
regime, we then computed the mortality rate per day as
mpp= 1 - s1/10, For the freeze-only regime, we took into
account that there were nine days of sustained freezing
and one freeze-thaw cycle. Therefore, the freeze-only mor-
tality rate was calculated as mpp =1 - (s/(1 - mpp))1/°. For
example, if the mortality rate per freeze-thaw cycle were
30%, then one would expect s = 0.7 under the freeze-only
regime even with perfect survival during the other nine
days. If there were also 2% daily mortality during the con-
stant freezing, then one would expect overall survival
under the freeze-only regime to be s = 0.7 x (0.98)°= 0.58.
Also, to preserve the statistical independence of the repli-
cate mp, estimates, each one was calculated using a
unique paired estimate of m;.

For each mortality rate parameter, mpy Or My, we com-
pared the evolved lines with the ancestral strain as fol-
lows. We first computed the mean of the three replicate
assays for each evolved line, and then we computed the
grand mean and standard deviation from the individual
means of the 12 independently evolved lines. For the
ancestor, we computed the mean and standard deviation
over the six assays (three each for the two marker states).
We performed a two-tailed t-test with unequal variances,
which allows for the fact that the evolved lines may have
diverged from one another as well from their common
ancestor. For the freeze-thaw mortality rates, we also
tested for heterogeneity among the evolved lines by per-
forming a one-way analysis of variance (ANOVA), with
the three replicate assays per line providing statistical rep-
lication.
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