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Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous
disease that requires personalized clinical treatment. To assign patients into different risk
categories, cytogenetic abnormalities and genetic mutations have been widely applied
to the prognostic stratification of DLBCL. Increasing evidence has demonstrated that
deregulated epigenetic modifications and long noncoding RNAs (lncRNAs) contribute to
the initiation and progression of DLBCL. However, specific lncRNAs that affect
epigenetic regulation and their value in predicting prognosis and therapy response
remain uncertain. Here, 2,025 epigenetic-related genes were selected, and 9 lncRNAs
(PRKCQ-AS1, C22orf34, HCP5, AC007389.3, APTR, SNHG19, ELFN1-AS1, LINC00487,
and LINC00877) were tested and validated to establish an lncRNA-regulating epigenetic
event signature (ELncSig). ELncSig, which was established based on independent
lymphoma datasets, could distinguish different survival outcomes. Functional
characterization of ELncSig showed that it could be an indicator of the immune
microenvironment and is correlated with distinctive mutational characteristics. Univariate
and multivariate analyses showed that ELncSig was independent of traditional prognostic
factors. The novel immune-related ELncSig exhibits promising clinical prognostic value
for DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in adults.
Through cell-of-origin (COO) classification, DLBCL can be identified as activated B-cell-like
(ABC), germinal center B-cell-like (GCB), and unclassified subtypes (1). The heterogeneity of
DLBCL is reflected in the genetic differences among all subtypes (2). Accumulating evidence
org July 2022 | Volume 13 | Article 8130311
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indicates that epigenetic regulation plays an important role in
DLBCL pathogenesis (3, 4). However, studies of the epigenetic
typing of DLBCL are limited. Since epigenetic regulation affects
cellular immunity (5), the epigenetic signature of DLBCL is
particularly significant.

The tumor microenvironment is important for the growth,
invasion, and spread of DLBCL (6–8). The tumor
microenvironment is a local pathological environment
composed of a variety of cells and biomolecules. Epigenetic
regulators play critical roles in DLBCL (9). LncRNAs act in cis
or trans to regulate transcription. Recent studies have shown that
lncRNAs regulate the interaction between tumor cells and the
microenvironment (10), thereby affecting tumor occurrence,
development, and metastasis (11). However, research on the
role of lncRNAs in lymphoma is not sufficient.

In this study, we developed a novel scoring signature based on
lncRNAs to predict the survival outcomes of DLBCL patients.
The 9-lncRNA signature provides an improved risk stratification
option for patients with DLBCL and sheds new light on potential
targeted therapeutic strategies, especially in immunotherapy.
MATERIALS AND METHODS

Patients
Collection and Preprocessing of Public Cohort Data
The gene expression data and clinical features of DLBCL samples
were collected from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/) according to the following selection criteria: (1) basic
clinical information on age, gender, IPI score, ECOG-PS, lactate
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dehydrogenase (LDH) concentration, Ann Anbor stage,
extranodal sites, treatment regimen, OS, and survival status;
and (2) a large sample size (>300). The GSE10846 (12) and
GSE31312 (13) microarray datasets were downloaded.

TMUCIH Cohort
The TMUCIH validation cohort enrolled DLBCL patients (n = 188)
at Tianjin Medical University Cancer Institute and Hospital
(TMUCIH; Tianjin, China) from 2008 to 2018. All patients were
diagnosed and further confirmed centrally by two experienced
pathologists independently (based on the 2008 WHO
classification). Patients with complete clinicopathological and
follow-up data were included. The major exclusion criteria were
as follows: (1) insufficient biopsy material or samples with less
than 80% tumor cells, DNA content < 1 mg, and RNA < 5 ng/L;
and (2) patients did not have de novo DLBCL. The study
protocol was approved by the Institutional Review Board of
TMUCIH, and all patients provided written informed consent.
The reference number of the ethical approval of the current
study is bc2021032.

Data Integration for the Three Cohorts
The microarray data of 305 (GSE10846) and 404 (GSE31312)
samples from DLBCL datasets and TMUCIH (n = 160) were
used in this study. Samples with high grade B-cell lymphoma
with MYC and BCL2 and/or BCL6 rearrangements were
excluded. The combat function from the “sva” R package was
used to remove the batch effects among different cohorts. A total
of 869 patients were eligible, and the clinical information of the
patients from the three datasets is shown in Table 1.
TABLE 1 | Demographic and baseline characteristics of patients enrolled to construct and validate the epigenetic risk score.

GEO training cohort (GSE10846) TMUCIH validation cohort GEO training cohort (GSE31312)
n = 305 n = 160 n = 404

Age (years), n (%)
>60 159 (52.13) 79 (49.38) 238 (58.91)
≤60 146 (47.87) 81 (50.62) 166 (41.09)
Gender, n (%)
Male 171 (56.07) 97 (60.62) 235 (58.17)
Female 134 (43.93) 63 (39.38) 169 (41.83)
ECOG-PS, n (%)
<2 230 (75.41) 137 (85.63) 342 (84.65)
≥2 75 (24.59) 23 (14.38) 62 (15.35)
LDH concentration, n (%)
Normal 157 (51.48) 70 (43.75) 141 (34.90)
Elevated 148 (48.52) 90 (56.25) 263 (65.10)
Ann Anbor stage, n (%)
I–II 144 (47.21) 95 (59.38) 193 (47.78)
III–IV 161 (52.79) 65 (40.62) 211 (52.22)
IPI score, n (%)
0–2 – 116 (72.5) 258 (63.86)
3–5 – 44 (27.5) 146 (36.14)
Extranodal sites, n (%)
<2 140 (45.90) 124 (77.5) 315 (77.97)
≥2 165 (54.10) 36 (22.5) 89 (22.03)
Treatment, n (%)
CHOP-like 142 (46.56) 93 (58.13) –

R-CHOP-like 163 (53.44) 67 (41.87) 404 (100)
July
Elevated LDH, >245 U/L; ECOG-PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase.
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All of the samples from the 160 TMUCIH patients were
subjected to targeted deep resequencing using 307 lymphoma-
related gene panels (Supplementary Table S1) with a total of
26,372 probes and a total probe coverage of 1.666 Mbp.
Mutations were identified in 154 of the 160 patients in the
TMUCIH cohort (Supplementary Table S2).

Generating the lncRNA-Based
Prognostic Signature
For the database samples, we obtained sequencing data from
GEO, and we annotated by conversion to the corresponding
probe platform ID. Then, a list of epigenetic regulatory genes was
generated from GeneCards (https://www.genecards.org /), with a
criterion of relevance score >0.5 (n = 2,025, Supplementary
Table S3). To demonstrate that these 2,025 genes have
epigenetically related biological functions, functional
enrichment was performed by Metascape (14) (https://
metascape.org/gp/index.html#/main/step1).

To assess the association between lncRNA expression and OS,
we identified lncRNAs regulating epigenetic events (ELncRNAs)
by correlation analysis (|r| > 0.4, p < 0.01, n = 380)
(Supplementary Table S4). In the GSE10846 cohort, 305
patients were included in a training cohort to generate the
prognostic signature. To construct a predictive model, we
performed linear regression based on the modified LASSO
algorithm using the “glmnet” R package. The ELncSig risk
score associated with OS was calculated using the sum of
values weighted by the coefficients from the LASSO Cox
regression model. The ELncSig score was calculated as follows:
(−0.28824 × PRKCQ-AS1 expression) + (0.24206 × C22orf34
expression) − (0.18161 × HCP5 expression) + (0.20887 ×
AC007389.3 expression) + (0.19686 × APTR expression) +
(0.23126 × SNHG19 expression) + (0.33924 × ELFN1-AS1
expression) − (0.13390 × LINC00487 expression) − (0.09065 ×
LINC00877 expression). Patients were ranked according to the
9-lncRNA signature and dichotomized into high- and low-
risk groups.

Overall Survival Probability Prediction
Receiver operating characteristic (ROC) analysis provides tools
to select possibly optimal models and to discard suboptimal ones
independently from (and prior to specifying) the cost context or
the class distribution. In the case of a balanced diagonal, ROC
analysis will tend to the point (0.5, 0.5). Points above the
diagonal represent good classification results (better than
random); points below the line represent bad results (worse
than random). The greater the area under the curve (AUC), the
better the survival probability prediction of the model. We also
selected clinical characteristics that can be used as independent
prognostic factors in multivariate analysis to establish the
nomogram (15). The scores corresponding to clinical
characteristics can be used to predict patient survival at 1, 3,
and 5 years. Model calibration is evaluated by calibration plots of
the predicted probability of death at 5 years versus the observed
probability. The nomogram-predicted overall survival is plotted
on the x-axis, with observed overall survival on the y-axis.
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Dashed lines along the diagonal line through the origin point
represent perfect calibration models in which the predicted
probabilities are identical to the observed probabilities (16).

Screening for DEGs and
Pathway Enrichment
DEGs were identified between the high-risk and low-risk ELncSig
groups. The “limma” R package (17) was used in the standard
comparison mode. DEG cutoffs were |log2FoldChange (log2FC)| >
1 and p < 0.05. GO functional enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of the DEGs were performed using the “clusterProfiler”
package in R (p < 0.05).

Determination of Immune Cell Infiltration
Immune infiltration was estimated using single-sample gene set
enrichment analysis (ssGSEA) (18), and the abundance of 28
immune cell types in the tumor microenvironment was
quantified in a range from 0 to 1. The Cell Type Identification
by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT) algorithm (https://cibersort.stanford.edu/) was
used to quantify the relative abundance of 22 immune cell
types. After 100 permutations, the gene expression data were
quantile normalized.

Significantly Mutated Genes in Important
DLBCL Pathways
The accurate diagnosis of lymphoma relies on gene mutation
analysis (19). Considering that each DLBCL patient had different
mutation types, we chose 307 lymphoma-related genes and
performed targeted gene deep sequencing to determine the
genetic compositions of the two ELncSig groups. To determine
the differences in important mutated genes, the “maftools” (20) R
package was used. The lists of critical pathways and genes in
DLBCL were obtained from Young et al. (9).

Identification of Epigenetic mRNAs
Related to ELncSig
A co-expression network of ELncSig including lncRNAs and
mRNAs was constructed and visualized using Cytoscape (https://
cytoscape.org/). A Sankey diagram showing the associations
between the prognostic ELncSig and lncRNAs, mRNAs, and
risk type was constructed by the “ggalluvial” R package. The
correlations of each ELncRNA with mRNAs are listed in
Supplementary Table S5.

Immunohistochemistry Analysis
and Evaluation
The use of human remnant DLBCL samples for this study from
TMUCIH was approved by the TMUCIH Institutional Review
Board (bc2021032). Each biopsy was reviewed by two
experienced hematopathologists for diagnostic confirmation.
Sections (5 mm thick) of formalin-fixed and paraffin-embedded
(FFPE) lymph nodes were dewaxed, hydrated, and heated for
antigen retrieval. The cells were blocked with hydrogen peroxide
and normal goat serum, incubated overnight with PIM1
July 2022 | Volume 13 | Article 813031
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(Abcepta, cat# AP7932d, 1:100) and stained with 3,3′-diamino-
benzidinetetra hydrochloride (DAB). The PIM1 intensity score
was determined as follows: 0—no staining, 1—definite but weak
staining, 2—moderate staining, and 3—strong staining. Stained
tissue scores were blindly reviewed by two pathologists.

Statistical Analysis
All statistical and computational analyses were performed with R
version 4.0.3 (https://www.r-project.org/). The unpaired Student’s
t-test was used to compare two clusters with normally distributed
variables. Survival outcomes were estimated with the Kaplan–
Meier method, and the differences between survival distributions
were evaluated by log-rank analysis with the “survival” package in
R software. The Wilcoxon test was used to compare two clusters
with nonnormally distributed variables. Contingency table
variable analysis was completed by two-sided Fisher’s exact tests.
We used the ELncSig risk score and clinical characteristic
covariates to construct a nomogram to estimate survival. The
accuracy of the nomogram was measured using the calibration
curve. Univariate and multivariate analyses of prognosis were
evaluated using a Cox proportional hazards regression model. The
statistical significance cutoff was set at p < 0.05.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Construction of an Epigenetic-Related
lncRNA Risk Signature
After removing the clinical samples meeting the exclusion
criteria, a total of 869 samples were included as the subjects of
this study. The study flowchart is shown in Figure 1A.
Metascape analyses showed the diverse biological processes of
2,025 genes (Figure 1B).

Through Pearson correlation analysis, we identified 380
ELncRNAs (|r| > 0.4, p < 0.01), which were then subjected to
univariate analysis. After modified LASSO regression analysis
with tenfold cross-validation, repeated 1,000 times (p < 0.05)
with random simulation 13 ELncRNAs were extracted
(Figures 2A, B). After multivariate analysis, 9 lncRNAs were
tested and validated to establish ELncSig (Figure 2C,
Supplementary Table S6). A heatmap of the expression levels
of the 9 identified lncRNAs and a scatterplot of OS with relevant
risk scores are presented in Figure 2D. Among the 9 lncRNAs, 5
lncRNAs were identified as poor prognostic factors
(Supplementary Figure S1A), while another 4 were identified
as favorable prognostic factors (Supplementary Figure S1B).
B

A

FIGURE 1 | Study flowchart and epigenetic-related gene enrichment pathways. (A) The workflow of the study. (B) Different colors indicate the 2,025 epigenetic-
related gene annotations and biological processes provided by Metascape.
July 2022 | Volume 13 | Article 813031
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Evaluation of ELncSig as an Independent
Prognostic Factor for DLBCL
To identify the efficacy of ELncSig for DLBCL survival prediction,
the training cohort samples were divided into a low-risk group
(n = 152) and a high-risk group (n = 153) using the median risk
score as a cutoff point. Low-risk patients had significantly better OS
than high-risk patients (Figure 3A). Kaplan–Meier analysis in the
internal validation cohort also indicated that ELncSig could be a
good prognostic factor (Figure 3B). This association remained
markedly significant in the multivariate Cox model in the training
and validation cohorts (Table 2). Data from another external
validation cohort from GSE98588 are shown in Supplementary
Figure S2. One external validation cohort (GSE31312) only
contained patients treated with an R-CHOP-like regimen, and
their survival could be acceptably stratified by the ELncSig risk
score (Figure 3C). Because the risk score model was developed
based on all patients, to verify its reliability, we tested the model in
patients who were only treated with an R-CHOP-like regimen in the
training cohort (GSE10846) and the external validation cohort
(GSE98588). The ELncSig model was effective in these patient
populations treated with R-CHOP (Supplementary Figure S3).

Next, we calculated the AUCs for each ROC curve to assess
the predictive accuracy of the model. The AUC value is often
used as the evaluation criterion for a model (21). In time-
dependent ROC analysis at 1, 3, and 5 years, the AUC values
were 0.765, 0.780, and 0.760, respectively (Figure 3D). For the
validation cohorts, higher AUC values were obtained for 5-year
survival (Figures 3E, F).
Frontiers in Immunology | www.frontiersin.org 5
The tumor-related clinicopathological features of the two ELncSig
groups were evaluated in the training cohort. We found that the
patient age (p = 0.003), plasma lactate dehydrogenase (LDH) levels
(p =0.007), Eastern Cooperative Oncology Group performance status
(ECOG-PS, p = 0.002), COO classification (p = 0.018), and
extranodal sites (p = 0.038) were significantly correlated with
ELncSig (Figure 3G, Supplementary Table S7). The tumor-related
clinicopathological features in these datasets were inferior to
ELncSig (Figure 3H) in the training cohort. A nomogram for
1-, 3-, and 5-year mortality was constructed (Figure 3I), and the
calibration for 5 years indicated that the mortality estimated by the
nomogram was close to the actual mortality (Figure 3J). Hence,
ELncSig predicts 5-year survival better. The validation cohort
results are shown in Supplementary Figure S4.

Identification of DEGs Between the
ELncSig Groups
To uncover the biological distinction between the two ELncSig
groups, we performed DEG analysis in the GSE10846 and
TMUCIH cohorts combined. The heatmap of the DEGs
between the high-risk and low-risk ELncSig groups is shown in
Figure 4A (|fold change| >1.5, adjusted p < 0.01). After
comparing the high-risk group with the low-risk group, 172
upregulated and 154 downregulated genes were identified
(Supplementary Table S8). We found that the primary central
nervous system DLBCL-related protein HPDL, the tumor
necrosis factor receptor superfamily member TNFRSF13B, and
the serine/threonine protein kinase family members PIM1 and
TABLE 2 | Univariate and multivariate Cox regression analysis of predictors of survival outcomes in the training and validation cohorts.

Univariate Analysis Multivariate Analysis

Variable p HR (95% CI) p HR (95% CI)

GSE10846 training cohort
Age (>60 vs. ≤60) <0.001 0.48 (0.330–0.697) 0.003 0.56 (0.38–0.82)
Gender (Female vs. Male) 0.659 0.92 (0.646–1.318) 0.908 1.02 (0.71–1.47)
COO class (GCB vs. nonGCB) <0.001 2.57 (1.724–3.839) 0.018 1.65 (1.09–2.50)
LDH concentration
(Elevated vs. Normal)

<0.001 0.41 (0.280–0.591) 0.007 0.57 (0.38–0.86)

ECOG-PS (≤1 vs. ≥2) <0.001 2.77 (1.916–4.004) 0.002 1.86 (1.24–2.78)
Rituximab (No vs. Yes) 0.001 0.54 (0.366–0.787) 0.956 1.01 (0.62–1.65)
Extranodal sites (<2 vs. ≥2) 0.053 1.86 (0.993–3.471) 0.038 2.13 (1.04–4.35)
ELncSig (high risk vs. low risk) <0.001 0.24 (0.155–0.364) <0.001 0.26 (0.16–0.43)
TMUCIH validation cohort
Age (>60 vs. ≤60) 0.028 0.56 (0.329–0.937) 0.036 0.53 (0.29–0.96)
Gender (Female vs. Male) 0.445 1.23 (0.722–2.099) 0.748 0.91 (0.51–1.62
ECOG-PS (≤1 vs. ≥2) 0.407 1.33 (0.675–2.634) 0.267 1.53 (0.72–3.26)
LDH concentration
(Elevated vs. Normal)

0.002 0.43 (0.257–0.726) 0.274 0.68 (0.34–1.36)

COO class (GCB vs. nonGCB) 0.073 1.61 (0.956–2.727) 0.002 2.44 (1.21–4.21)
IPI score (0–2 vs. 3–5) <0.001 2.91 (1.741–4.868) 0.795 0.88 (0.35–2.25)
Rituximab (No vs. Yes) 0.176 0.69 (0.402–1.181) 0.093 0.62 (0.35–1.08)
Ann Anbor stage
(I–II vs. III–IV)

0.012 1.93 (1.156–3.215) 0.540 1.24 (0.62–2.49)

Extranodal sites (<2 vs. ≥2) <0.001 2.88 (1.691–4.912) 0.011 2.26 (1.21–4.21)
ELncSig (high risk vs. low risk) <0.001 0.28 (0.153–0.495) <0.001 0.28 (0.14–0.54)
July 2022 | Volume 13
HR, hazard ratio; CI, confidence interval; ECOG-PS, Eastern Cooperative Oncology Group performance status; RCHOP, rituximab plus cyclophosphamide, vincristine, doxorubicin, and
prednisone; LDH, lactate dehydrogenase; COO, cell of origin; GCB, germinal center B-cell like.
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PIM2 were upregulated in the high-risk group, while the histone
gene HIST1H1B and protective lncRNAs in ELncSig, such as
LINC00487 and LINC00877, were downregulated in the high-
risk group (Figure 4B).

Subsequently, KEGG enrichment analysis of the DEGs
indicated enrichment of primary immunodeficiency, the T-cell
receptor signaling pathway, cytokine–cytokine receptor
interaction, the PI3K-Akt signaling pathway, and Th17-cell
differentiation (Figure 4C, Supplementary Table S9). GO
enrichment analysis indicated enrichment of genes involved in
positive regulation of leukocyte cell–cell adhesion, regulation of
T-cell activation, and T-cell co-stimulation (Figure 4D,
Supplementary Table S10). After GSEA of the high-risk and
low-risk groups, similar results were found, as shown in
Supplementary Figure S5.

Estimation of the Tumor-Infiltrating
Immune Cells of the Two ELncSig Groups
The pathway enrichment results indicated that the different
prognoses of ELncSig are closely associated with immune
infiltration. We assessed the composition of tumor-infiltrating
immune cells in DLBCL samples by the CIBERSORT algorithm
(22). The histogram showed that memory B cells, M0 macrophages,
and T cells were obviously highly abundant in DLBCL samples
Frontiers in Immunology | www.frontiersin.org 6
(Figure 5A), and they might play essential roles in the initiation and
development of DLBCL (23, 24). Using ssGSEA to show the different
immune components between the two ELncSig groups, we found that
compared with the high-risk group, CD8+ T cells, T helper cells,
macrophages, Th1 and Th2 cells, CCR, and T-cell co-stimulatory cells
were enriched in the low-risk ELncSig group (p < 0.05, Figure 5B).
We further compared the ESTIMATE score, stromal score, immune
score, and tumor purity (25). As shown in Figure 5C, the low-risk
ELncSig group had significantly higher ESTIMATE scores, stromal
scores, and immune scores and a lower tumor purity (p < 0.001).

Potential of ELncSig as an Indicator of
Immunotherapy Response in
DLBCL Patients
Immunogenic cell death (ICD) and immune checkpoints (ICPs)
play important roles in the tumor immune microenvironment
(26–28). As shown in Figure 6A, the expression levels of various
ICD genes, such as CXCL10, IFNAR2, P2RX7, TLR4, EIF2A,
HMGB1, and TLR3, were significantly upregulated in the low-
risk ELncSig group. Similar to ICD genes, ICPs can also reflect
the immune status of the tumor microenvironment. The PD-1
and PD-L1 checkpoints were highly expressed in the high-risk
ELncSig group (Figure 6B). The survival distribution of the two
patient groups stratified by ELncSig and high/low ICP gene
B

C D

A

FIGURE 2 | Construction of the epigenetic-related lncRNA signature (ELncSig). (A) Thirteen epigenetic-related lncRNAs were selected by LASSO Cox regression
analysis. (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) A forest map showing 9 lncRNAs identified by the stepwise
method. (D) Risk score distribution, survival status, and lncRNA expression of DLBCL patients in high- and low-risk groups classified by the 9-ELncRNA signature in
the training cohort.
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expression was compared. As shown in Figures 6C, D, patients
with low ELncSig and high PD-1/PD-L1 had significantly better
survival than those with high ELncSig and high PD-1/PD-L1
(log-rank p < 0.0001), and patients with low ELncSig and low
PD-1 also had prolonged survival relative to those with high
ELncSig and low PD-1 (log-rank p < 0.0001). Similar results for
two other important checkpoints, TNFRSF4 and IDO1, are
shown in Supplementary Figure S6.

Differences In Important Gene Mutations
Between the Two ELncSig Groups
The use of cytogenetic abnormalities and genetic mutations for
the prognostic stratification of DLBCL and assignment of
patients into different risk categories has been widely studied
Frontiers in Immunology | www.frontiersin.org 7
(2, 29). We investigated whether critical differences in pathways
related to somatic mutation frequencies exist between the two
groups. Because the online databases lack sufficient mutation
information, we further analyzed significantly mutated genes in
the TMUCIH validation cohort by performing targeted deep
resequencing of 307 lymphoma-related gene panels. Based on the
results of previous studies, we established a mutational landscape
of the important genes in DLBCL (Figure 7A, Supplementary
Table S11).

Abundant genetic alterations in various critical pathways, such as
the epigenetic regulator pathway (KMT2D, p = 0.034), the BCR and
TLR signaling pathway (MYD88, p = 0.003), B-cell development and
differentiation (BCL11A, p = 0.02308), and the cell cycle pathway
(BTG1, p = 0.009), were significantly enriched in the high-risk
B C

D E F

G H

I J

A

FIGURE 3 | Prognostic value of the risk model including 9 epigenetic-related lncRNAs. (A–F) Kaplan–Meier survival curves of the high- and low-risk groups and
time-dependent receiver operating characteristic (ROC) curves at 1-, 3-, and 5-year overall survival (OS) in the training (GSE10846) and validation (TMUCIH and
GSE31312) cohorts. (G) Heatmap showing the comparison of the clinicopathological characteristics of DLBCL patients in the high- and low-risk GSE10846 groups.
(H) Time-dependent ROC curve analyses for predicting OS at 5 years with clinicopathological characteristics. (I) The nomogram was constructed using high and low
ELncSig scores, age, LDH, GCB vs. non-GCB, ECOG, and extranodal sites to predict 1-, 3-, and 5-year survival. (J) Calibration plots for the probability of 5-year
survival in the training cohort.
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B

C D

A

FIGURE 4 | Gene expression differences and relevant biological pathways between the high- and low-risk ELncSig groups. (A) Heatmap of differentially expressed genes
between the high- and low-risk ELncSig groups and their clinicopathological characteristics. (B) The volcano plot showing upregulated and downregulated genes between the
two groups (|log2FC| > 1, adjusted p < 0.05). (C) Heatmap showing the KEGG pathways enriched in the high- and low-risk ELncSig groups. (D) Circle map showing the
immune-related pathways regulated by DEGs between the two groups and the genes included in the pathways.
B

C

A

FIGURE 5 | Differences in immune infiltration between the high- and low-risk ELncSig groups. (A) The composition of immune cells assessed by the Cell Type
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm in the training cohort. (B) Heatmap showing the relative abundances of 28
infiltrating immune cell subpopulations between the high- and low-risk ELncSig groups according to single-sample gene set enrichment analysis (ssGSEA). (C) The
ESTIMATE score, stromal score, immune score, and tumor purity of EC1 and EC2 according to the CIBERSORT algorithm.
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ELncSig group. Interestingly, SPEN (p = 0.027) in the NOTCH
pathway wasmutatedmore frequently in the low-risk ELncSig group.

KMT2D (lysine methyltransferase 2D, MLL2), a chromatin
epigenetic modifier, plays a vital role in modulating ICP blockade
(30). MYD88 mutation is one of the most remarkable drivers in
the development of DLBCL (31), and the L265P mutation is now
thought to be common to virtually all NHLs and occurs in
between 4% and 90% of cases, depending on the entity (32).
Frontiers in Immunology | www.frontiersin.org 9
PIM1, as a DEG and a high-frequency gene in DLBCL, also
affects the prognosis of patients (33) and has a trend of
mutational differences between the two groups. Hence, we
selected these three genes to analyze their specific mutation
sites. It was obvious that in the high-risk group, PIM1 had
more vital mutation sites in S97T, E135Q, and K183-L184del,
and it has already been reported that mutated PIM1 may lead to
a poor prognosis (34) (Figures 7B–D).
B
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FIGURE 6 | Impact of immunogenic cell death (ICD) modulators and immune checkpoint gene expression on clinical outcome. (A) Differential expression of ICD
modulators between the high- and low-risk ELncSig groups. (B) Immune checkpoint expression of PD-1 and PD-L1. (C, D) Kaplan–Meier survival curves of overall
survival among the four patient groups stratified by ELncSig and PD-1 and PD-L1. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7 | Differences in somatic mutations between the high- and low-risk ELncSig groups in the TMUCIH validation cohort. (A) Oncoplot analysis of critical
mutated genes and pathways in DLBCL between the high- and low-risk ELncSig groups (two-sided Fisher’s exact test). (B–D) Specific mutated site analysis of
KMT2D, MYD88, and PIM1.
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Verification of ELncSig-Influenced mRNAs
We built a ceRNA network on the basis of the expression profiles
of miRNAs and ELncSig-included lncRNAs and mRNAs in
patients with DLBCL. In total, 3 lncRNA nodes, 15 miRNA
nodes, and 31 mRNA nodes were identified as differentially
expressed profiles (|fold change| >1.5, p < 0.05, Figure 8A). In
the present study, a ceRNA network containing 2,025 genes
affecting epigenetic regulation was constructed (Supplementary
Figure S7A). Once again, the 2,025 epigenetic regulatory genes
affected by these lncRNAs and their corresponding risk groups
were identified. We observed that TET2, E2F1, KDM1A,
HDAC7, and KMT2A were regulated by ELncSig lncRNAs
(Figure 8B, Supplementary Figure S7B). PIM1, PIM2, and
PIK3R1 were also affected, which means that ELncSig could
not only regulate epigenetic-related genes but also affect genes
related to other pathways.

PIM1 is a gene regulated by ELncSig and has significantly
different mRNA levels between the high- and low-risk groups.
Strikingly, high PIM1 expression was significantly correlated
with the high-risk ELncSig group (Figures 8C, D).
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DISCUSSION

Most studies have focused on establishing a new signature of
protein-coding genes in DLBCL (35). Based on the 7 subtypes
constructed by Wright et al., a probabilistic classification tool for
DLBCL genotypes (LymphGen algorithm) was proposed, and
63.1% of tumors can be identified by their genotypes (29).
Establishing these signatures mostly relies on quantifying gene
transcript levels. We were inspired to show that epigenetic genes
play an important role in lymphoma and affect immunity
through immune-related gene pairing and attempted to
construct a reasonable prognostic model using 9 lncRNAs that
are closely correlated with epigenetic-related gene combinations
(10, 11). We did not use their expression values at the beginning
of signature construction.

In general, high-abundance lncRNAs possess significant
biological functions (36). Our findings suggest that ELncSig
can be used to identify epigenetic-related genes and predict
patient prognosis. In addition, lncRNAs can efficiently pair
with protein-coding genes. Our model can distinguish between
B

C

D

A

FIGURE 8 | Co-expression network and validation of prognostic ELncSig lncRNAs and the associated genes. (A) A co-expression network of ELncSig lncRNAs and mRNAs
was constructed and visualized using Cytoscape. The red hexagons indicate prognostic lncRNAs, and the green rectangles indicate ELncSig mRNAs. (B) Sankey diagram
showing the associations between prognostic ELncSig lncRNAs, mRNAs, and risk type. (C, D) Immunohistochemical images and differential analysis of PIM1 in high- and low-
risk ELncSig (***p < 0.001, by Student's t-test).
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high- and low-clinical risk patients with the advantage of clinical
practicability. Because lncRNAs are associated with immune
infiltration, it is reasonable for them to affect the immune
microenvironment and the activation of immune cells and to
be predictable of the response to immune therapy. In fact, studies
have already found that PRKCQ-AS1 and HCP5, which are
included in our ELncSig, play important roles in the process of
lymphoma (37, 38), while other lncRNAs were revealed in
DLBCL for the first time. Blandino et al. reported that
C22orf34 expression gradually decreased from gallstones to
gallbladder cancer (39). Guan et al. showed that APTR
contributes to osteosarcoma progression through repression of
miR-132-3p and upregulation of YAP1 (40), and Zhou et al.
reported that APTR promotes uterine leiomyoma cell
proliferation by targeting ERa to activate the Wnt/b-Catenin
pathway (41). SNHG19 and ELFN1-AS1 have been used to
predict the survival of triple-negative breast cancer and non-
small cell lung cancer, respectively (42, 43). LINC00487 was
shown to be a protective factor in hepatocellular carcinoma (44),
and LINC00877 was found to have lower expression in bone
marrow samples (45). Some of the roles of these 9 ELncRNAs in
solid tumors are similar to those in DLBCL, while others are
different. In summary, these lncRNAs are associated with the
occurrence and development of tumors; hence, the proposed
model can identify novel biomarkers for further research
in DLBCL.

We referred to the modified LASSO model used by Sveen et al.
(46) to construct the initial signature system. In the process of
inclusion in the Cox regression model, the factors were ranked
according to their frequency, which suggests the impact of the
factor on the model. We assessed the ELncSig risk model using a
QQ test and found a normal distribution. Thus, we used the
median value to separate patients into high- and low-risk groups.
Subsequently, we performed univariate and multivariate analyses
of clinicopathological characteristics, calculated AUC values,
constructed a nomogram, and assessed its calibration to evaluate
the robustness of this model. After analyzing survival outcomes,
clinical features, tumor immune infiltration, biomarkers related to
checkpoint inhibitors, immune therapy predictions, mutations,
the constructed ceRNA network, and immunohistochemical
confirmation, the results implied that this ELncSig model
worked well in the training and validation cohorts.

Mutations in the gene encoding the KMT2D (or MLL2)
methyltransferase are highly recurrent and occur early during
tumorigenesis in DLBCL. DLBCL-associated KMT2D mutations
impair KMT2D enzymatic activity, leading to diminished global
H3K4 methylation in GCB cells and DLBCL cells (47), and
KMT2D could be a modulator of ICP blockade (30). For
MYD88, L265P is a gain-of-function driver mutation. The
L265P mutant promotes cell survival by spontaneously
assembling a protein complex containing IRAK1 and IRAK4
(48). PIM1 belongs to the PIM kinase family and has been
proven to exhibit ABC-associated mutations (49). We also
explored the specific mutation sites of these important
molecules in DLBCL and further clarified the reason why the
high-risk group had a poor prognosis.
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In recent years, immunotherapies based on checkpoint
inhibitors have shown promising results in the treatment of
aggressive malignancies, including Hodgkin’s lymphoma (27).
PD-L1 overexpression has also been observed in the aggressive
ABC/non-GCB subtype of DLBCL (50). To explore the
relationship between ELncSig and tumor-infiltrating immune
cells, we used three common methods to estimate immune-
infiltrating cells: ESTIMATE, CIBERSORT, and ssGSEA. We
found that the low-risk ELncSig group was more positively
related to tumor-infiltrating immune cells, such as CD8+ T
cells, macrophages, Th2 cells, and major histocompatibility
complex (MHC) class I. Subsequent immune-related scores
also showed that the low-risk ELncSig group had a better
immune microenvironment. When tumor ICD is induced, the
ratio of cytotoxic T lymphocytes (CTLs) to Tregs in the tumor
increases, indicating good patient prognosis. In contrast, a
decrease in this ratio may suggest a poor prognosis (51).
Similar to ICDs, ICPs can also reflect the immune status of
tumor microenvironments. In the present study, significantly
prolonged survival was observed for patients with low ELncSig
and low ICP gene expression, implying that these patients with
low ELncSig may have a better response to ICP therapy.
CONCLUSION

We constructed an lncRNA signature based on epigenetic-
related genes to predict the prognosis of DLBCL. We also
proved that this new signature could affect other coding
proteins in addition to epigenetic genes. Importantly, ELncSig
might be associated with immune infiltration levels and even the
efficacy of tumor immunotherapy.
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Supplementary Figure 1 | Kaplan–Meier analysis of 9 prognosis-related
lncRNAs.

Supplementary Figure 2 | Validation of ELncSig in the GSE98588 cohort. (A) A
forest plot showing the 9 lncRNAs identified by the stepwise method in the external
validation cohort. (B) Risk score distribution, survival status and lncRNA expression
of DLBCL patients in the high- and low-risk groups classified by the 9-ELncRNA
signature in the external validation cohort. (C) Kaplan-Meier analysis of the different
risk groups. (D) Time-dependent receiver operating characteristic (ROC) curves for
1-, 3-, and 5-year overall survival (OS) in the external validation cohorts.

Supplementary Figure 3 | Validation of ELncSig performance in two external
cohorts treated with R-CHOP-like regimens. (A) ELncSig performance for samples from
patients treated with R-CHOP-like regimens in the GSE10846 dataset. (B) ELncSig
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performance for samples from patients treated with R-CHOP-like regimens in the
GSE98588 dataset.

Supplementary Figure 4 | Validation of ELncSig in the TMUCIH cohort. (A) Risk
score distribution, survival status and lncRNA expression of DLBCL patients in the
high- and low-risk groups classified by the 9-ELncRNA signature in the TMUCIH
validation cohort. (B) A nomogram was constructed using high and low ELncSig
scores, age, LDH, GCB vs. non-GCB, ECOG and extranodal sites to predict 1-, 3-
and 5-year survival. (C) Calibration plots for the probability of five-year survival in the
training cohort. (D) Time-dependent ROC curve analyses for predicting OS at 5
years with clinicopathological characteristics.

Supplementary Figure 5 | GSEA of the DEGs in the training cohort.

Supplementary Figure 6 | Immune checkpoint genes related to clinical outcome.
(A, B) Kaplan–Meier survival curves of overall survival among four patient groups
stratified by ELncSig and TNFRSF4 and IDO1.

Supplementary Figure 7 | Coexpression network and validation of prognostic
ELncSig lncRNAs and the associated epigenetic-related genes. (A) A coexpression
network of ELncSig lncRNAs and mRNAs (only epigenetic-related genes) was
constructed and visualized using Cytoscape. Red hexagons indicate prognostic
lncRNAs, and green rectangles indicate ELncSig mRNAs. (B) Sankey diagram
showing the associations among prognostic ELncSig lncRNAs, mRNAs (only
epigenetic-related genes), and risk type.

Supplementary Table 1 | The 307 gene panel design.

Supplementary Table 2 | Targeted gene deep sequencing of the TMUCIH
validation cohort.

Supplementary Table 3 | Epigenetic related genes from GeneCards with
relevance scores >0.5.

Supplementary Table 4 | The 380 epigenetic related lncRNAs list.

Supplementary Table 5 | The correlation between epigenetic genes and
lncRNAs.

Supplementary Table 6 | The 9 epigenetic-related genes used for multivariate
Cox regression in the training and validation cohorts.

Supplementary Table 7 | Multivariate Cox regression of tumor-related
clinicopathological features.

Supplementary Table 8 | Differentially expressed gene results.

Supplementary Table 9 | KEGG enrichment of DEGs for two merged cohorts.

Supplementary Table 10 | GO enrichment of DEGs for two merged cohorts.

Supplementary Table 11 | Gene alterations in the TMUCIH validation cohort.
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