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Background: Blood-based protein biomarkers can be a useful tool as pre-treatment prognostic markers,
as they can reflect both variations in the tumor microenvironment and the host immune response. We
investigated the influence of a panel of plasma proteins for the development of any failure defined as
recurrent disease in the T-, N-, or M-site in HNSCC.
Methods: We used a multiplex bead-based approach to analyze 19 proteins in 86 HNSCC patients and 15
healthy controls. We evaluated the associations between the biomarkers, loco-regional failure, failure in
the T-, N-, or M-site, overall survival (OS), p16 status, and hypoxia.
Results: In 41 p16 positive oropharynx cancer patients we identified a profile of biomarkers consisting of
upregulation of IL-2, IL-4, IL-6, IL-8, eotaxin, GRO-a, and VEGF and downregulation of VEGFR-1 and
VEGFR-2 with a significantly reduced risk of failure (p < 0.01). None of the individual proteins were asso-
ciated with outcome.
Conclusion: The identified plasma profile potentially reflects an activated immune response in a subgroup
of the p16 positive patients.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Traditionally, the predominant etiological factors for head and
neck squamous cell carcinoma (HNSCC) have been tobacco smok-
ing and alcohol consumption [1]. In the past 20 years, it has
become increasingly clear that there is an etiological linkage to
human papilloma virus (HPV) infections, and a subgroup of HPV-
positive HNSCC has been established [2]. Overall, HPV-positive
HNSCC constitute an entity of patients with a different molecular
biology [3], a different clinical profile, and a more favorable
prognosis [4].

Besides HPV status, a number of other prognostic factors are
relevant for HNSCC, including tumor stage, nodal stage, a history
of tobacco smoking [5], as well as hypoxia [6]. Furthermore,
biopsy-based biologically distinct subtypes that are independent
of HPV status have been introduced, and the subtype with the most
advantageous prognosis shows a prominent immune and mes-
enchymal phenotype [7].

Blood-based biomarkers can be useful as pre-treatment
prognostic markers, as they can reflect variations in tumor
microenvironment and host immune response and can comple-
ment biopsy-based biomarkers that evaluate tumor cells directly.
Although several studies have investigated the prognostic value
of various circulating proteins in HNSCC [8–16], there is no consen-
sus as to which are the most promising prognostic biomarkers, or
whether biomarkers should be analyzed individually or combined
into profiles. We hypothesize that a panel of circulating endoge-
nous markers in HNSCC is associated with outcome after primary
radiotherapy and that these markers are influenced by HPV-
status and tumor hypoxia.

In this study, we aimed to investigate the influence of a panel of
proteins in the blood for the development of failure defined as
recurrent disease in the T-, N-, or M-site in HNSCC. We used a mul-
tiplex bead-based approach to analyze 19 previously described
proteins (cytokines, chemokines, angiogenic factors, and receptors)
[8–16]. We evaluated the associations between the circulating
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biomarkers, HPV status, smoking history, and hypoxia evaluated by
a 15-gene hypoxia profile [17].

Materials and methods

Patients and samples

The prospectively collected study-population comprised of 86
previously untreated HNSCC patients treated at the Department
of Oncology at Aarhus University Hospital, Denmark, between July
2005 and September 2011 (treated according to the DAHANCA 18
protocol) [18,19]. Additionally, 15 healthy controls from the Dan-
ish blood bank at Aarhus University Hospital were enrolled
between March 2012 and November 2014. The patients received
primary radiotherapy (RT) according to the DAHANCA guidelines
(http://www.dahanca.dk). The prescribed dose was 66–68 Gy,
two Gy/fraction, six fractions per week. All patients were pre-
scribed orally administered hypoxic radiosensitizer, with Nimora-
zole 1200 mg/m2, 90 min before each fraction of RT. Patients
with locally advanced disease were given Cisplatin intravenously
concomitant with RT once a week for a maximum of six cycles
Table 1
Patient, tumor and control characteristics.

All patients (n = 86)

n

Age (years)
Median 58

Range (34–77)
660 years 51
>60 years 35

Sex
Female 16
Male 70

Smoking status
>10 pack years 56
610 pack years 30

Tumor site
Sinonasal carcinoma 3
Rhinopharynx 5
Oral cavity 5
Oropharynx 56
Hypopharynx 5
Supraglottic larynx 8
Glottis 2
Subglottis 2

Tumor stage
T1-2 58
T3-4 28

Nodal stage
N0 8
N1-3 78

Disease stage
I-II 4
III-VI 81
Unknown 1

HPV/p16 status
Positive and oropharynx 41
Negative or non-oropharynx 42
Unknown 3

Hypoxia by gene classifier
More hypoxic 25
Less hypoxic 57
Unknown 4

Chemotherapy
Yes 79
No 7
(40 mg/m2, maximum dose 70 mg). The patient, tumor and control
characteristics are presented in Table 1.

Blood sample processing and multiplex analysis of circulating proteins

Plasma samples were obtained by venipuncture and taken in
lithium heparin vials, kept on ice until separation within three
hours of collection, and stored at �80 �C until further processing.
Procedures on sample processing and analyses have previously
been described in detail [20]. Briefly, multiplex analysis was per-
formed of 19 proteins (Table 2), in three different pre-mixed
bead-based antibody assays (Bio-Plex ProTM human Reagent Kit,
Bio-Rad), according to the manufacturer’s protocol using the Lumi-
nex 100 (BIO-PLEX 200 SYSTEM) and Bio-Plex manager software
(version 6.1). For measured values out of range (OOR) the values
above the upper limit of quantification were replaced by the high-
est recorded value of the standard curve. For values below the
lower limit of quantification the OOR values were replaced by
the lowest recorded value of the standard curve divided by two.
For two patients the amount of available plasma was insufficient
to perform the analysis in 14 of the investigated proteins.
Blood bank controls (n = 15)

(%) n (%)

55

(51–63)
59 13 87
41 2 13

19 7 47
81 8 53

65
35

3
6
6
65
6
9
2
2

67
33

9
91

5
94
1

48
49
3

29
66
5

92
8

http://www.dahanca.dk


Table 2
Associations between baseline levels of proteins and any failure and hazard ratios for any failure from univariate and multivariate Cox analysis. All expression values are log2
transformations of absolute levels in ng/L.

Protein/Cat.# Any failure Hazard ratio (HR) univariate Hazard ratio (HR) multivariate1

Yes (n = 23)
Median (min, max)

No (n = 63)
Median (min, max)

p-Value HR 95% CI p-Value HR 95% CI p-Value

EGFR/171BC501M 15.7 (14.0; 19.1) 15.8 (4.2; 19.1) 0.78 1.12 (0.89–1.41) 0.34 1.17 (0.89–1.53) 0.26
Leptin/171BC508M 12.7 (8.1; 16.0) 13.5 (8.3; 16.0) 0.23 0.89 (0.70–1.13) 0.34 1.05 (0.78–1.41) 0.74
OPN/171BC509M 19.6 (14.8; 19.6) 17.4 (7.8; 19.6) 0.25 1.20 (0.88–1.65) 0.25 1.12 (0.79–1.59) 0.51
VEGFR-1/171BC515M 8.3 (5.3; 9.9) 8.2 (1.3; 10.7) 0.81 1.11 (0.87–1.43) 0.40 1.04 (0.81–1.34) 0.74
VEGFR-2/171BC516 15.2 (13.5; 16.6) 14.8 (6.0; 16.7) 0.22 1.44 (0.91–2.16) 0.13 1.51 (0.89–2.54) 0.12
IL-2/171B5003M 1.8 (�1.7; 7.0) 1.7 (�1.7; 6.1) 0.88 1.02 (0.85–1.22) 0.86 1.03 (0.86–1.24) 0.76
IL-13/171B5012M 1.2 (�2.4; 2.7) 0.6 (�2.4; 4.0) 0.11 1.24 (0.94–1.64) 0.12 1.13 (0.85–1.51) 0.40
PDGF-bb/171B5024M 8.1 (5.2; 10.5) 7.8 (4.9; 13.2) 0.60 1.03 (0.80–1.35) 0.82 0.84 (0.61–1.16) 0.29
TNF/171B5026M 1.1 (�1.2; 6.4) 1.1 (�1.2; 8.4) 0.37 1.05 (0.86–1.27) 0.64 1.01 (0.84–1.22) 0.92
PAI-1/171B7010M 14 (12.2; 15.4) 14 (11.8; 16.1) 0.78 1.02 (0.62–1.68) 0.94 0.73 (0.41–1.30) 0.29
SDF-1a/171B6019M 7.3 (4.8; 9.7) 7.4 (4.8; 11.0) 0.94 0.96 (0.58–1.59) 0.88 0.73 (0.44–1.22) 0.23
IL-4/Z50005SADE �1.7 (�4.1; 1.8) �1.7 (�4.1; 4.8) 0.93 0.86 (0.61–1.20) 0.37 0.83 (0.59–1.18) 0.31
IL-6/Z50005SADE 2.9 (�1.3; 6.7) 3.2 (�1.3; 6.9) 0.34 0.91 (0.76–1.10) 0.33 0.91 (0.75–1.10) 0.34
IL-8/Z50005SADE 3.2 (0.9; 6.3) 3.3 (0.7; 9.0) 0.74 0.94 (0.74–1.20) 0.63 0.95 (0.74–1.24) 0.73
Eotaxin/Z50005SADE 5.6 (2.7; 8.2) 5.7 (0.5; 7.8) 0.37 0.95 (0.73–1.23) 0.69 0.92 (0.71–1.18) 0.52
G-CSF/Z50005SADE 5.9 (3.0; 8.4) 6.1 (3.4; 9.9) 0.31 0.86 (0.63–1.18) 0.35 0.91 (0.63–1.30) 0.60
VEGF/Z50005SADE 5.3 (�0.3; 6.9) 5.5 (2.6; 9.3) 0.08 0.78 (0.62–0.99) 0.04* 0.71 (0.55–0.91) 0.01
GRO-a/171B6007M 3.7 (3.6; 8.3) 5.3 (3.6; 10.0) 0.32 0.86 (0.65–1.14) 0.29 0.82 (0.60–1.11) 0.19
HGF/171B6008M 8.1 (4.7; 9.2) 8.1 (4.0; 9.8) 0.90 0.95 (0.59: 1.53) 0.84 0.73 (0.47–1.12) 0.15

* Significant.
1 Adjusted for smoking history and HPV/p16 status.
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Tumor characteristics

Previously published data on tumor hypoxia were obtained
from a study on a 15-gene hypoxia profile [21]. HPV status was
assessed by immunohistochemical detection of p16 as a surrogate
marker for HPV infection in FFPE tumor biopsies [4,22,23].

Evaluation of treatment response and follow-up

According to the DAHANCA guidelines the follow-up program
comprised of a clinical examination two months after completion
of RT followed by examination every 3 months during the first
2 years and every 6 months for the next 3 years. Suspected recur-
rences were evaluated by clinical examination, CT or MRI scans,
and eventually confirming biopsies. The median follow-up time
was 50 months (range 6–98). Time was calculated from the first
date the patient was seen in the center to the last recorded status
visit, the date of a confirmed recurrence or to the date of death. The
primary endpoint was any failure defined as time from the first
visit to the center to the first event i.e. recurrence in the T-, N-,
or M-site. Secondary endpoints were loco-regional failure defined
as recurrent or residual tumor in the T- and N-site, and overall
survival (OS) defined as death from any cause.

Cluster analysis

For outcome driven analysis, the Cutoff Finder web application
(molpath.charite.de) was used to find the optimal cut point for
each protein by survival analysis using the log-rank test [24]. The
patient cohort was divided into a test (n = 56) and a validation
(n = 28) cohort by randomization and stratified for HPV/p16,
DAHANCA protocol and sex. In the test cohort, proteins for which
an optimal cut point could be defined resulting in a log-rank test
with a p-value <0.05 were identified. The identified cut points were
used as cut off values for dichotomizing each marker, and a com-
bined profile which most significantly separated the groups was
tested in the validation cohort. For the non-outcome driven
analysis, unsupervised hierarchical clustering was done on log2-
transformed baseline protein levels using the SPSS statistics
software version 22 implementation (two-step function) of the
Balanced Iterative Reducing and Clustering using Hierarchies
method (BIRCH) [25,26] to identify subsets of patients with similar
baseline protein profiles. The proteins with the least influence on
the cluster formation were removed systematically until no further
changes in the cluster formation was observed. OPN and leptin
were left out of the analysis due to a large number of missing
values. Expression data were visualised as heat-maps using
TreeView (Version 1.1.6r2, jtreeview.sourceforge.net). Data were
centred on the mean of the cluster means for patients. As no clus-
ters could be identified for the controls, these were median
centred. Both patients and controls were randomly ordered.

Statistical analysis

The difference between the log2 transformed protein expres-
sion in regards to failure, p16 status, the hypoxia gene profile,
and patients versus controls was evaluated by Wilcoxon rank
sum test. Correlations between groups of patients were evaluated
by chi-squared test. Failure rates were estimated based on cumu-
lative incidence rates [27]. Significance was evaluated by the risk
difference at 60 months based on the pseudo-values approach
[28]. Overall survival was estimated with the Kaplan–Meier
method. Hazard ratios were estimated using the Cox proportional
hazards model and the proportional hazard assumption was tested
using log-minus-log plots and corroborated with Schoenfeld’s
residuals.

The protein levels were treated as continuous variables. Smok-
ing history was dichotomized in more than ten pack years and less
than or equal to ten pack years. Smoking history, chemotherapy,
and p16 status were included as covariates in multivariate Cox
analysis. Bonferroni correction was performed in case of multiple
comparisons. All reported p-values were two-sided with a 0.05 sig-
nificance level. All analyses, excluding the unsupervised hierarchi-
cal clustering analysis, were performed using Stata version 12
(StataCorp, College Station, TX, USA).

Ethics

Blood samples were used with permission from the Danish
Research Ethics Committee (case number 1-10-72-519-12). The
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procedures were in accordance with the Helsinki Declaration of
1975 (revised in 1983). Data handling procedures were approved
by the Danish Data Protection Agency (case number 2014-41-
3510). The Danish registry for use of tissue was consulted before
the use of patient material.

Results

Clinical outcome

84 of the 86 patients had complete response to therapy. Two
patients had persistent disease by the end of treatment. Twenty-
five patients died during the follow-up period; nineteen patients
died of their primary cancer, two died of primary cancer of the air-
ways, three died of other cancer, and one died of other disease than
cancer.

The overall 5-year mortality rate was 27% (95% CI: 19–38%).
Twenty-three patients (27%) experienced a failure defined as
recurrence in the T-, N-, or M-site (eleven in T-site, seven in the
N-site, three in the M-site, one in both the T- and M-site and one
in both the T-, N-, and M-site). The cumulative incidence of any
failure was 27% (18–36%) and the 5-year loco-regional failure rate
was 24% (15–33%). HPV/p16 status was available for 83/86
patients. Of the 44 HPV/p16 positive patients 41 were oropharynx
cancers. Six out of 41 HPV/p16 positive oropharynx cancer patients
and 17/42 of the remaining patients experienced an event in the T-,
N-, or M-site (p = 0.01). The cumulative incidence of any failure for
the HPV/p16 positive oropharynx cancer patients was 15% (4–25%)
and 42% (27–57%) for the remaining patients (p = 0.005).

Baseline plasma levels and recurrent disease

The baseline log2 transformed protein levels were compared
between patients who experienced a failure (n = 23) and patients
who did not (n = 63) (Table 2). None of the baseline protein levels
were associated with experiencing a failure. In univariate Cox anal-
ysis, only VEGF was associated with risk of failure, as higher base-
line VEGF levels were significantly associated with lower risk of
failure (HR = 0.78, 95% CI: 0.62–0.99; p = 0.04). After adjusting for
Table 3
Associations between baseline levels of proteins in patients and controls and hazard
transformations of absolute levels in ng/L.

Protein Patients vs controls Hazard ratio
Abnormal vs norma

Patients (n = 86)
Median (min, max)

Controls (n = 15)
Median (min, max)

p-Value Group size (n/n)

EGFR 15.7 (4.2; 19.1) 15.1 (13.8; 15.9) 0.03* 41/45
Leptin 13.4 (8.1; 16.0) 13.4 (10.7; 16.0) 0.49 –
OPN 18.5 (7.8; 19.6) 17.1 (14.6; 17.8) 0.04* 26/24
VEGFR-1 8.2 (1.3; 10.7) 6.9 (6.2; 9.3) <0.01* 28/58
VEGFR-2 14.9 (6.0; 16.7) 13.7 (12.4; 14.8) <0.001* 58/28
IL-2 1.8 (�1.7; 7.0) 3.8 (2.6; 6.7) <0.001* 28/56
IL-13 0.8 (�2.4; 4.0) 0.5 (�3.6; 2.9) 0.94 –
PDGF-bb 8.0 (4.9; 13.2) 7.6 (6.1; 9.7) 0.56 –
TNF 1.1 (�1.2; 8.4) 0.3 (0.3; 5.0) 0.17 –
PAI-1 14 (11.8; 16.1) 13.8 (12.7; 15.1) 0.37 –
SDF-1a 7.3 (4.8; 11.0) 7.4 (6.5; 7.7) 0.80 –
IL-4 �1.7 (�4.1; 4.8) �1.7 (�1.7; 0.8) <0.001* 17/67
IL-6 3.1 (�1.3; 6.9) 2.9 (0.0; 4.7) 0.67 –
IL-8 3.3 (0.7; 9.0) 3.3 (1.9; 5.4) 0.97 –
Eotaxin 5.7 (0.5; 8.2) 5.2 (3.8; 6.1) 0.14 –
G-CSF 6.0 (3.0; 9.9) 5.6 (3.2; 7.5) 0.08 –
VEGF 5.4 (�0.3; 9.3) 3.1 (�0.7; 5.6) <0.001* 45/39
GRO-a 5.3 (3.6; 10.0) 6.8 (5.5; 7.9) <0.001* 40/44
HGF 8.1 (4.0; 9.8) 8.0 (7.2; 8.5) 0.60

* Significant.
smoking history, chemotherapy, and HPV/p16 status in a multi-
variate Cox analysis, high baseline VEGF remains significantly asso-
ciated with lower risk of failure (HR = 0.71, 95% CI: 0.55–0.91).
VEGF was not associated with failure when using Bonferroni
correction for multiple testing. None of the other proteins were
associated with failure in uni- and multivariate analysis (Table 2).
High levels of VEGF was significantly associated with prolonged OS
in multi- but not in univariate Cox analysis (HR = 0.73, 95% CI:
0.57–0.93). None of the baseline protein levels were associated
with loco-regional failure.

Baseline plasma levels and HPV/p16 status, hypoxia, and smoking

The baseline protein levels were compared with HPV/p16
status, hypoxia, and smoking history (data not shown). HGF,
SDF-1a, PAI-1, VEGF, and PDGF-bb were significantly higher in
the HPV/p16 negative patients. When patients were classified as
‘more’ or ‘less’ hypoxic based on a 15-gene hypoxia classifier
[17,29], IL-4 levels were slightly higher in the more hypoxic group.
When patients were divided by a smoking history of more or less
than or equal 10 pack years, the levels of PAI-1, SDF-1a, and Il-6
were significantly higher in patients having smoked more than
10 pack years. None of the associations were significant when
using Bonferroni correction for multiple testing.

Baseline plasma levels in patients versus controls

For eight of the proteins there was a significant difference
between the baseline levels of the patient group and the control
group (Table 3). EGFR, OPN, VEGFR-1, VEGFR-2, and VEGF levels
were higher in the patient group, and IL-2, IL-4, and GRO were
lower. For each of the eight proteins, patients were identified as
having abnormal levels if they were above the 90% percentile of
the control samples for the first 5 proteins or below 10% percentile
for the last three. There was no association between the groups
with abnormal levels and any failure for any of the proteins. We
have previously estimated a measurement uncertainty for evaluat-
ing the expression levels of proteins [20]. Based on this, intermedi-
ate groups of patients centred on the 90% percentiles and the 10%
ratios for any failure from univariate Cox analysis. All expression values are log2

l levels
Hazard ratio
Abnormal vs normal levels
Excluding intermediates

HR 95% CI p-Value Group size (n/n) HR 95% CI p-Value

0.81 (0.35;1.84) 0.61 28/31 1.03 (0.62; 1.71) 0.92
– – – – – – –
1.43 (0.53; 3.84) 0.48 26/17 0.75 (0.41; 1.38) 0.35
0.84 (0.35; 2.05) 0.71 10/41 0.97 (0.51; 1.84) 0.93
0.91 (0.39; 2.16) 0.84 36/14 0.60 (0.28; 1.27) 0.18
0.83 (0.36; 1.93) 0.67 19/45 0.82 (0.53; 1.29) 0.39
– – – – – – –
– – – – – – –
– – – – – – –
– – – – – – –
– – – – – – –
0.83 (0.33; 2.11) 0.70 14/14 1.13 (0.57; 2.27) 0.72
– – – – – – –
– – – – – – –
– – – – – – –
– – – – – – –
0.87 (0.38; 1.97) 0.74 31/39 0.59 (0.33; 1.07) 0.08
1.42 (0.62; 3.24) 0.41 29/37 1.19 (0.78; 1.82) 0.42

– – – –
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percentiles of the control samples were identified. After exclusion
of the intermediate groups of samples the groups with abnormal
protein levels remain un-associated with failure.

Outcome driven high risk signature

After randomly dividing patients into a test (n = 56) and a vali-
dation (n = 28) cohort (stratified by HPV/p16, DAHANCA protocol
and sex), optimal cut points were identified for each protein by
comparing the survivor functions. Two patients were not included
due to a large fraction of missing values. Seven proteins were iden-
tified as ‘high risk’ proteins. For IL-2, IL-4, IL-6, eotaxin, G-CSF and
GRO, values below the cut point were associated with an increased
risk of failure, and for HGF values above the cut point were associ-
ated with an increased risk of failure. In the test cohort, the best
Events All
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Low risk 22%
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83%
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separation of patients (p < 0.001) was obtained by identifying a
group with values of 5 –6 of the proteins within the ‘high risk’
expression levels (Fig. 1A). The identification of ‘high risk’ patients
could not be confirmed in the validation cohort, as the ‘high risk’
patients in the validation cohort had a significantly lower risk of
failure than the proposed ‘low risk’ patients (Fig. 1B).
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Cox analysis showed a non-significant increased risk of any failures
in cluster B versus cluster A (HR: 1.45, 95% CI: 0.57–3.67). When
correcting for smoking, chemotherapy, and HPV/p16 status HR
was 1.31 (95% CI: 0.51–3.38). Comparing the cumulative incidence
of any failure, there was a significant increased risk in cluster B for
the p16 positive oropharynx cancer patients (p < 0.01) (Fig. 2C).
There was no increased risk in cluster B in HPV/p16 negative
patients or non-oropharynx cancer patients (p = 0.54) (Fig. 2D).
Cluster B was characterized by lower levels of IL-2, IL-4, IL-6 IL-8,
eotaxin, GRO-a, and VEGF and higher levels of VEGFR-1 and
VEGFR-2. There was no difference in the sex, smoking, site, tumor
stage, nodal stage, disease stage, hypoxia, and HPV/p16 distribu-
tion in the two clusters. The patients in cluster A were slightly
younger (median age 54.7 versus 58.8 years).
Discussion

Several studies have reported associations between circulating
biomarkers and outcome for HNSCC. However, there is no consen-
sus on how the biomarkers should be analyzed; individually or
combined in profiles, which cut points should be used or which
proteins are of importance [8,9,30–32]. In this study, we
approached the analysis with three different strategies. Firstly,
we evaluated the relationship between the individual proteins
and failure. Secondly, we used two different cut point approaches
using a healthy control cohort and an outcome driven method
for cut point determination. Finally, we applied a data driven
approach using unsupervised hierarchical clustering analysis.
Although limited by small numbers in some of the subgroups, we
did not find any associations with the first two methods. The data
driven approach using unsupervised hierarchical clustering analy-
sis, identified a profile that potentially reflects an activated
immune response. In the HPV/p16 positive patients, none of the
recurrences were found in patients with this profile.

In the outcome driven cut point analysis, we used the training
cohort to identify optimal cut points for the proteins based on a
minimum p-value approach [24]. The optimal profile identified in
the training cohort could not be confirmed in the validation cohort.
This highlights the potential for inflation in the type I error rate
when using the minimum p-value approach [33] and the necessity
of a validation cohort.

Finally, we performed unsupervised hierarchical clustering
analysis using BIRCH. Two clusters based on 9 proteins were iden-
tified. Overall, the clusters were not associated with patient out-
come. However, in the HPV/p16 positive oropharynx cancer
patients one cluster contained 14 patients with no recurrences
and the other contained 27 patients with all six recurrences. In
the cluster with no recurrences, IL-2, IL-4, IL-6, IL-8, eotaxin,
GRO-a, and VEGF levels were higher and VEGFR-1 and VEGFR-2
levels were lower. As this method is not outcome driven, we did
not divide the dataset into a test and a validation cohort, in order
to maintain more power for the cluster analysis. The finding that
the HPV/p16 positive patients could comprise two distinct entities
is in accordance with a recent study suggesting two HPV-positive
subtypes, based on gene expression clustering and copy number
profiling [7]. The two HPV-positive subgroups were classified as
a classical subtype and an inflamed mesenchymal subtype. A dis-
tinct feature of the second subtype was reported to be expression
of immune response genes related to the infiltration of CD8+ T cells
in tumors and this subtype had a trend towards a more favorable
prognosis [7]. As IL-2/IL-2 receptor interaction is a co-stimulatory
signal for activating CD8 cells into cytotoxic killer T-cells it could
be hypothesized that IL-2 levels are of importance in the immune
elimination of cancer cells. However, the regulatory mechanisms
are complex and further investigations into the regulation and
importance of the immune system in HPV/p16 positive and HPV/
p16 negative head and neck cancer are warranted.

In a previous study on circulating biomarkers in HNSCC,
patients were also separated in two clusters by unsupervised hier-
archical clustering analysis [9]. Some of the proteins used to iden-
tify the patient clusters were described as a ‘hypoxia’ signature and
these were the proteins that were upregulated in one of the patient
clusters. Several of these proteins were also found in our profile. In
the previous study, no recurrences were observed in any of the 12
HPV/p16 positive patients, and could therefore not be linked to any
of the clusters. In the HPV/p16 negative patients, recurrences were
associated with high expression of the described ‘hypoxia’
signature. No association with outcome in our cohort of HPV/p16
negative patients was found. In our cohort all patients were admin-
istered treatment with the hypoxic radiosensitizer nimorazole
which has been demonstrated to improve loco-regional control
in HNSCC [34]. Thus, the lack of association with outcome in our
cohort might be expected if the signature is a marker of hypoxia.

In conclusion, while none of the biomarkers showed strong
associations individually, we have identified a profile of circulating
pre-treatment biomarkers, which is associated with improved out-
come in HPV/p16 positive HNSCC. This profile potentially reflects
an activated immune response in a subgroup of the HPV/p16 pos-
itive patients. Future studies are needed to validate this profile in
an independent cohort, as well as further studies are needed to
clarify if and how this profile reflects an activated immune
response, or whether it also might be associated with hypoxia.
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