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SUMMARY

Extracellular vesicles (EVs) play a critical role in various physiological and pathological processes. EVs have
gained recognition in regenerative medicine due to their biocompatibility and low immunogenicity. How-
ever, the practical application of EVs faces challenges such as limited targeting ability, low yield, and inad-
equate therapeutic effects. To overcome these limitations, engineered EVs have emerged. This review
aims to comprehensively analyze the engineering methods utilized for modifying donor cells and EVs,
with a focus on comparing the therapeutic potential between engineered and natural EVs. Additionally,
it aims to investigate the specific cell effects that play a crucial role in promoting repair and regeneration,
while also exploring the underlying mechanisms involved in the field of regenerative medicine.

INTRODUCTION

Extracellular vesicles (EVs) are membrane-bound vesicles released by cells that plays a pivotal role in intercellular communication by trans-

porting important signaling molecules from parental cells to recipient cells.1,2 EVs can be classified into four subclasses because of their

different diameters and modes of occurrence: exosomes, apoptotic bodies, microvesicles and oncosomes.1 In this review, we mainly focus

on exosomes, which are generated through the endosomal pathway. The formation of exosomes begins with the invagination of the cyto-

plasmic membrane to form endosomes. Subsequently, the endosomal membrane further buds inward, leading to the formation of multive-

sicular bodies (MVBs). During this process, cytoplasmic components and transmembrane proteins are incorporated into the vesicles.2 When

MVBs fuse with the cell membrane, the vesicles inside theMVBs are released as exosomes into the extracellular environment through internal

budding (Figure 1).

EVs are derived from various types of cells, and their cargomainly includes proteins, nucleotides, lipids andmetabolites. The differences in

EV composition have different biological effects due to the active components inherited from their source cells. These components give EVs

the characteristics of homologous targeting, immune escape and physiological regulation,3 which also provides inspiration for our engineer-

ing strategies.4–6 EVs can enter recipient cells through direct fusion, receptor targeting, or endocytosis (Figure 1) and activate related

signaling pathways to exert their effects. Compared with other nanomedicines, such as liposomal nanoparticles, EVs exhibit several distinct

advantages. First, EVs possess enhancedbiocompatibility due to their natural origin as vesicles releasedby cells.7 This feature reduces the risk

of immune reactions and cellular toxicity, making EVs suitable for therapeutic applications. Second, EVs demonstrate superior cycle stability,

which enables them to withstand the harsh extracellular environment and enhances their efficacy in delivering therapeutic payloads. More-

over, EVs have inherent abilities to capture pathogens,8 allowing them to neutralize pathogens and making them potential candidates for

treating infectious diseases. One of the most significant advantages of EVs is their ability to transport cargo across biological barriers. The

presence of specific membrane proteins and receptors on EVs enables targeted delivery to specific cell types or tissues, thereby reducing

off-target effects and enhancing therapeutic efficacy. However, the direct use of EVs faces challenges, such as insufficient targeting, efficacy,

and dosage. To overcome these limitations, various engineering strategies are being used to optimize EVs for therapeutic purposes. These

strategies include surface modification of EVs to enhance targeting capabilities, the loading of specific therapeutic agents, and genetic en-

gineering to enhance therapeutic efficacy.

As a promising next-generation nanoplatform, engineering EVs allows them to carry specific types of cargo to cells. In this review, we first

summarize the applications of engineered EVs in various repair and regeneration processes in recent years (Table 1). Next, we review the

available strategies for engineered EVs in regenerative medicine and divide them into two categories: engineered EVs produced by donor

cells and directly engineered EVs. In addition, we explore the potential mechanism of the biological effects at the cellular level. Finally, we

discuss the advantages and limitations of engineering in preclinical applications and summarize the key opportunities and challenges

currently faced by engineered EVs.
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Figure 1. Engineering strategy of EVs: Divided into modifying donor cells (left) and modifying EVs (right)

Treatments of donor cells include stress induction、3D cell culture、gene engineering and endocytosis. Treatments of EVs include direct loading andmembrane

surface strategy. Exosomes are released into the extracellular environment by budding within MVBs. Recipient cells receive exosome mainly through three ways:

A. uptake of exosome via direct fusion B. uptake of exosome via receptor ligand interaction C. uptake of exosome via endocytosis.
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STRATEGIES FOR EXTRACELLULAR VESICLE ENGINEERING

Due to a lack of natural EVs or the limitations of inefficient cell targeting, on-demand delivery and treatment feedback, many methods have

been developed to improve the performance of EVs.9,10 EV engineering methods are mainly divided into two categories. One method can

regulate the generated EVs by modifying the donor cells,11 and the other can directly modify EVs to obtain optimized performance.12 Modi-

fying donor cells indirectly produces engineered EVs by changing the cell culture environment (such as stress induction or 3D cell culture) or

changing the cell contents (such as genetic engineering or endocytosis). The direct engineering method can be divided into direct loading

and membrane surface strategies according to the specific operation mode.

Modifying donor cells

Stress induction

In response to stress induction (ischemia, hypoxia, inflammation, and so forth) and treatment with exogenous compounds, donor cells can

secrete EVs with different properties.13 The yield of donor cell-derived EVs increases in response to low pH treatment.14 Additionally, Gong’s

study15 demonstrated that low pH reprogramming of EVs significantly enhanced cell targeting specificity. This effect may be attributed to

alterations in the proportion of lipid components on the surface of EVs induced by low pH culture conditions, and the distinct composition

of lipids could explain the observed differences in the uptake properties of EVs. Compared to cells cultured under normal oxygen conditions,

a range of components are encapsulated in EVs and transferred to recipient cells to exert protective effects,16 such as promoting wound heal-

ing17 and angiogenesis,18 regulating the extracellular matrix (ECM),19 and inhibiting inflammation.20,21 Furthermore, the oxygen-glucose

deprivation (OGD) environment changes the expression profile of donor cells.22 Accumulating evidence suggests that EVs generated under
2 iScience 26, 108282, November 17, 2023



Table 1. Application of engineered extracellular vesicles in injury

Cell

source Tissue

Specific

components

Modification

methods Biological effects

publication

date Reference

USCs cartilage miR-140–5p gene engineering Overexpression of miR-140-5p and alleviation

of OA progression by down-regulating VEGFA.

2022 Liu et al.51

ADSCs cartilage curcumin incubation Reduce oxidative stress and protect chondrocytes. 2022 Xu et al.142

BMSCs cartilage miR-216a-5p hypoxia Cartilage repair in osteoarthritis via delivery of

miR-216a-5p.

2021 143

BMSCs cartilage circRNA_0001236 gene engineering Up-regulate circRNA _0001236 and inhibit

cartilage degradation through miR-3677-3p/Sox9

2021 Mao et al.144

M1

macrophage

bone miR-21a-5p gene engineering The osteogenic differentiation of MC3T3-E1

was accelerated by directly targeting GATA2

with miR-21a-5p.

2023 Luo et al.145

M2

macrophages

bone H2S incubation H2S induced the polarization of M2 macrophages

and modified the protein profile of exosomes,

with a significant enrichment of the moesin protein.

2023 Zhou et al.146

BMSCs bone miR-26a gene engineering Promoting bone regeneration by suppressing

genes associated with osteoclast differentiation

instead of causing harm to osteoclasts.

2023 Kuang et al.147

U937 bone Cathelicidin/LL-37 gene engineering Engineered exosomes possess enhanced

antimicrobial and angiogenic activities, and

more effectively promote proliferation and

migration of skin cells.

2022 Su et al.148

BMSCs bone RGD incubation Synergistic effects of EVs and RGD enhance

osteogenic differentiation and mineralization

of BMSCs in vitro.

2022 Ma et al.108

BMSCs bone miR-935 gene engineering Targeting STAT1 by delivery of miR-935 promotes

osteoblast proliferation and differentiation.

2021 Zhang et al.109

BMSCs muscle IL6ST incubation Selective inhibition of IL6 signaling pathway,

thereby inhibiting STAT3 phosphorylation.

2021 Conceição

et al.149

PMSCs muscle collagen-binding

peptide SILY

click chemistry Enhanced adhesion of EVs to collagen surface. 2022 Hao et al.150

C2C12 muscle miR-29b gene engineering Prevent muscle atrophy induced by

dexamethasone, angiotensin II and tumor

necrosis factor alpha.

2022 Chen et al.151

BMSCs muscle TGF-b1 incubation Targeting FABP3 by delivery of miR-29a. 2022 Xu et al.152

Fibroblasts nerve TFAP2C COS Incubation COS induce fibroblasts to produce

TFAP2C-enriched exosomes, which are then

transferred into axons to promote axon

regeneration via miR-132-5p/CAMKK1.

2023 Zhao et al.153

BMSCs nerve SIRPa gene engineering Accelerating hematoma clearance and

improving secondary white matter injury following

intracerebral hemorrhage.

2023 Gao et al.154

UCMSCs nerve miR-146a-5p gene engineering Promoting neurological recovery in rats with

acute spinal cord injury by targeting neurotoxic

astrocytes.

2022 Lai et al.155

HEK293 nerve Tom40 gene engineering Protect cells reduce oxidative stress. 2022 Sayeed et al.52

ADSCs nerve miR-25 Oxygen-glucose

deprivation

Promoting differentiation, maturation and

migration of oligodendrocyte precursor cells.

2021 Zhai et al.53

VSC4.1 nerve miR-126-3p Oxygen-glucose

deprivation

The up-regulated miR-126-3p may have a

protective effect by regulating PI3K/Akt and

NF-kB signaling pathways mediated by PIK3R2.

2021 Wang et al.156

(Continued on next page)
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Table 1. Continued

Cell

source Tissue

Specific

components

Modification

methods Biological effects

publication

date Reference

ADSCs vascular circ-Snhg11 hypoxia Circ-Snhg11 regulates the migration, proliferation,

and vascular regeneration potential of vascular

endothelial cells through the miR-144-3p/NFE2L2/

HIF1a pathway.

2023 Hu et al.157

ADSCs vascular FPG3 electrostatic and

hydrophobic

interaction

Enhancing the biological function of extracellular

vesicles in cell migration and angiogenesis

2023 Ma et al.158

BMSCs vascular islet-1 gene engineering Increased retention of extracellular vesicles in

endothelial cells and enhanced resistance to

apoptosis, proliferation and angiogenesis.

2022 Hu et al.54

DPSCs vascular LOXL2 hypoxia Up - regulated LOXL2 may be involved in

angiogenesis mediated by engineered

extracellular vesicles.

2022 Li et al.17

UCMSCs liver HSTP1 gene engineering Precise treatment of hepatic stellate cells in

complex liver tissues.

2022 Lin et al.159

A549 lung ACE2 gene engineering Surface protein receptors mediate host defense

by binding and inhibiting pore-forming toxins

secreted by bacterial pathogens.

2022 Ching et al.160

PSCs lung siRNA electroporation Specific targeting of lung tissue and inhibition of

SARS-CoV-2 pseudovirus infection in vivo.

2022 Fu et al.161

plasma colon siRNA gene engineering Rapidly alleviates intestinal inflammation by

inhibiting pro-inflammatory responses in colon

macrophages and T cells.

2022 Zhou e al.162

ADSCs corneal miRNA 24-3p gene engineering Accelerate corneal epithelial defect healing and

epithelial maturation

2023 Sun et al.163

ACE2, angiotensin-converting enzyme 2; ADSCs, adipose-derived mesenchymal stem cells; Akt, protein kinase B; A549, adenocarcinomic human alveolar basal

epithelial cells; BMSCs, bone marrow mesenchymal stem cells; C2C12, mouse myoblast cell line; COS, chitosan oligosaccharides; FPG3, fluorinated peptide

dendrimers; HIF1a, hypoxia inducible factor-1a; HSTP1, HSTP1 peptide; IL6ST, interleukin 6 cytokine family signal transducer; LOXL2, lysyl oxidase homolog

2; NFE2L2: nuclear factor, erythroid 2 like 2; NF-kB, nuclear Factor kappa B; OA, osteoarthritis; PI3K, phosphatidylinositol 3-kinase; PIK3R2, phosphoinosi-

tide-3-kinase regulatory subunit 2; PSCs, pluripotent stem cells; RGD, Arg-Gly-Asp; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SIRPa, signal

regulatory protein a; STAT1, signal transducer and activator of transcription 1; TFAP2C, transcription factor AP-2 gamma; Tom40, mitochondrial membrane pro-

tein; UCMSCs, umbilical cord mesenchymal stem; USCs, urine-derived stem cells; U937, human macrophage cell line; VSC4.1, spinal cord anterior horn motor

neuron tumor cells.
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OGD conditions contribute to neuroprotection and facilitate neuronal functional recovery in a cerebral ischemia model by modulating auto-

phagy.22–24 Electrical stimulation therapy also exerts significant therapeutic effects on neurological damage. After being subjected to elec-

trical stimulation, Schwann cells increase their secretion of EVs and upregulate the expression of neurotrophic factors.25 This effect is attrib-

uted to the ability of electrical stimulation to induce dorsal root ganglion cells to secrete glutamate, which binds to glutamate receptors on

oligodendrocytes and promotes calcium influx.26 Studies have shown that the increase in intracellular calcium levels in various cell types trig-

gers the fusion of lysosomes and cell membranes, thereby inducing exocytosis and increasing the release of EVs.27 Additionally, employing

3D culture systems, incorporating growth factors, reducing passage number, and co-culturing with certain cell types are all potential ap-

proaches that can enhance cellular state and result in the secretion of EVs with distinct regenerative capabilities.28,29

Mesenchymal stem cells (MSCs) are often used as donor cells due to the large number of EVs secreted and the absence of any toxicity or

immunogenicity in vivo or in vitro.1 Inflammatory stimuli such as TNF-a, IFN-g, LPS, and thrombin30,31 enhance the therapeutic potential of

MSCs. In vitro, TNF-a-pretreated MSC-EVs inhibited proinflammatory M1 markers (such as IL-1b and iNOS) and increased reparative M2

markers (such as Arg1 and CD206), and enhanced immunomodulatory properties. In vivo experiments showed more bone regeneration

than in the control group.32 TNF-a stimulation not only increased the number of EVs but also enhanced the expression of CD73 on the surface

of EVs.33,34 Zhang showed that the rapid proliferation and migration of cells during repair were attributed to the adenosine activation of AKT

and ERK signal transductionmediated by CD73 on the surface of EVs,35 but the precise molecular mechanismmediated by exogenous CD73

has not been verified. After LPS pretreatment, the expression of glutathione reductase (GSR) and superoxide dismutase (SOD1) in EVs

secreted by MSCs was upregulated. These proteins can consume ROS and reduce oxidative damage. In addition, engineered EVs promote

the polarization of macrophages to the M2 phenotype through ROS/ERK signaling and inhibit the inflammatory response.36
4 iScience 26, 108282, November 17, 2023



Figure 2. Characteristics of 2D culture and 3D culture: In 2D culture, cells grow on the plastic surface of the culture bottle or dish (left)

3D culture is mainly divided into hydrogel, cell aggregation and attachment scaffold culture (right).
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Various studies have shown that pretreatment methods can enhance the regenerative potential of EVs, the efficacy of these strategies is

contingent upon the specific exogenous compounds used and their concentrations, as well as the way these factors interact with donor cells.

To improve the effect of engineering, we often need higher concentrations of compounds and longer exposure times. However, exceeding a

certain limit may damage cell viability or even change the phenotype of the donor cells. Therefore, exploring more suitable compound con-

centrations and exposure times to maximize the effect of engineering may be a future research direction.

3D cell culture

The cellular microenvironment is regulated by many factors, and the ECM surrounding the cell provides necessary biochemical and mechan-

ical signals.37 Some scholars have noted that the traditional 2D in vitro culture system cannot faithfully imitate the characteristics of cells in the

physiological state.28 2D culture affects not only cell movement but also gene expression and the secretion of paracrine factors.38 Compared

with 2D culture, 3D culture allows cells to grow in a physiological topology, and the most prominent manifestation is a significant increase in

EV secretion39 (Figure 2). Evidence shows higher yields of MSC-derived EVs cultured from 3D bioreactors, and these cells secrete more in-

terleukins and cytokines thanMSCs cultured in 2D.40,41 Some scholars hypothesize that the differential expression of genes in spherical culture

is partly due to the neutral hypoxic environment of the sphere. Hypoxia-related genes such as vascular endothelial growth factor (VEGF),

platelet-derived growth factor (PDGF), stromal cell-derived factor 1 (SDF-1) and Transforming growth factor b (TGF-b) are overexpressed

in the spheres.42,43 There is evidence that EVs produced in a 3D culture system promote the transformation of macrophages from a proin-

flammatory phenotype to an anti-inflammatory phenotype in the periodontal tissue of mice with periodontitis, and the mechanism may

be related to miR-1246 in EVs.44 Studies have shown that EVs in a 3D culture system restore the Th17 cell/Treg balance through the miR-

1246/Nfat5 axis, providing a basis for the EV treatment of periodontitis and inflammatory bowel disease.45

Further research shows that imaging, analysis, and optimization of 3D culture systems have become key challenges.40 Moreover, various

3D culture methods are needed to determine the optimal 3D culture conditions for different cell lines.46 Overall, existing studies have shown

that dynamic 3D culture systems have great potential in increasing the yield and bioactivity of the secretome (Table 2). 3D culture is expected

to become a popular trend in cell culture.

Genetic engineering

EV cargo enter and reprogram target cells, and these methods are increasingly popular EV engineering strategies.47 During EV engineer-

ing, the target peptide or ligand48 is first fused with the transmembrane protein expressed on the EV surface. Subsequently, the plasmid

encoding the fusion protein is transfected into donor cells, and the donor cells secrete engineered EVs with targeted ligands on their sur-

face.48 Among them, LAMP-2B is the most widely used exosome surface protein.2,11,48 The N-terminus of LAMP-2B is expressed on the

surface of EVs and can be attached to a targeting sequence. LAMP-2B can also be genetically fused with targeting proteins or antibody

fragments to result in targeting proteins on exosomes.49 However, the targeting portion introduced into the EV membrane may affect the

normal function of the membrane protein. In addition, engineered EVs may require improved isolation and purification methods compared

to unmodified EVs.

In addition, lentivirus transfection technology is often used to make donor cells obtain specific gene sequences.11,50 Lentiviral vectors are

gene therapy vectors based on HIV-1 and have been widely used for EV cargo loading.51–54 Compared to the passive introduction of exog-

enous DNA plasmids through transfection,55 lentiviruses can actively integrate exogenous DNA into host cells, and the transfection efficiency

is high.56,57 For some cells that are difficult to transfect or even unable to be transfected by conventional methods, the virus can also achieve

efficient transient expression of the target gene and achieve efficient and stable transduction of cells and animals.11
iScience 26, 108282, November 17, 2023 5



Table 2. 3D culture

MSCs source 3days Formation method EVs efficiency Reference

ADSCs Cellhesion VP With the increase of EVs production, the expression levels of

OCT4, NANOG and SSEA4 were significantly increased, and

the wound healing ability was improved.

Kim et al.164

BMSCs spheroids Increased EVs production and decreased expression of F-actin

may provide a favorable environment for the synthesis and

secretion of EVs.

Kim et al.165

AMSCs spheroids With increased EVs production, hAMSC cells remain viable and

pluripotent, promoting angiogenesis and immunosuppression.

Miceli et al.43

UMSCs hollow-fiber bioreactor A 7.5-fold increase in EVs production and activation of

transforming growth factor b1 and Smad2/3 signaling promote

cartilage regeneration.

Yan et al.166

DPSCs ultra-low-attachment culture dish Increased EVs production restores Th17/Treg balance through

the miR-1246/Nfat5 axis

Zhang et al.45

BMSCs Vertical-Wheel bioreactor Increased EVs production, significantly enhanced axon growth,

elongation and complexity

Jalilian et al.39

BMSCs 3D aggregates The expression of neuroprotective and anti-apoptotic miRNAs

increased significantly with the increase of EVs production.

Yuan et al.167

Cellhesion VP, an insoluble fiber composed of chitin-based polysaccharides; ADSCs, adipose-derived stem cells; AMSCs, amniotic mesenchymal stem cells;

NANOG, nanog homeobox; OCT4, octamer-binding transcription factor 4; SSEA4, stage specific embryonic antigen 4; UMSCs, umbilical cord mesenchymal

stem cells.
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Endocytosis

Endocytosis refers to the process in which extracellular substances enter cells through membrane invagination and internalization. This is an

important way for cells to obtain macromolecules and granular substances from the extracellular space.58 Donor cells can internalize a variety

of exogenous particles and produce a relatively high yield of engineered EVs containing nanoparticles.59 Engineered EVs are internalized by

cancer cells after coincubation to achieve effective cancer cell targeting and killing.59,60 Studies by Kim61 and Zhang62 showed that MSCs and

neutrophils that were pretreated with superparamagnetic iron oxide nanoparticles (SPIONs) produced magnetic EVs. SPIONs can move the

drug to the designated area in the body in response to an external magnetic field with good targeting. However, the interaction between

SPIONs and the magnetic field is complex. The parameters should be continuously adjusted according to the position of SPIONs in different

organs and the exposure time of the magnetic field.63 In addition, themagnetic field intensity generated by a single magnet decreases expo-

nentially with the distance from the magnet, and magnetic targeting of SPIONs is typically limited to the surface area. The use of SPIONs is a

challenge that requires a trade-off between immunotoxicity, magnetic responsiveness and increased deep tissue permeability.
Directly modifying extracellular vesicles

Direct loading

Direct EV loading methods generally include mixed incubation, electroporation, ultrasound, saponin treatment, freeze‒thaw cycles and

extrusion.1,9,64 The advantage of electroporation is that not only can conventional small molecule drugs be loaded, but macromolecular

DNA and nanoparticles can also be included.65 This technique omits the inconvenience of designing and constructing miscellaneous vectors

by directly inserting cargo into EVs via nanoscale channels.9 However, the process of electroporation can also affect the zeta potential and

colloidal stability of EVs and lead to RNA aggregation, resulting in low drug loading.66 This method exhibits great potential for loading small

RNAs, such as miRNAs and siRNAs, but remains technically challenging for loading lncRNAs, mRNAs, or other large nucleic acid drugs.67

Compared with room temperature incubation and electroporation, mild ultrasound has the greatest loading capacity for the anticancer

drug paclitaxel.68 However, these EVs did not show encouraging therapeutic effects in vivo, which may be due to the mechanical shear force

generated by the ultrasonic probe, which destroys the integrity of the phospholipid bilayer of the EVs, potentially allowing the loaded cargo

to spread out when themembrane deforms.69 The direct loading of EVs has some limitations, such as low loading efficiency,70 EV aggregation

and destroying EV membrane integrity, which affects EV activity in vivo.

While natural vesicles possess some inherent targeting functions, they aremostly limited to passive targeting, and their capabilities for on-

demand drug release and treatment feedback are restricted.12 However, in recent years, extensive research has been carried out on external

engineering strategies.
6 iScience 26, 108282, November 17, 2023
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Membrane surface strategies

The EV membrane or cell membrane surface strategy is an important engineering method that gives EVs specific functional ligands or high

loading efficiency.71 Direct EV membrane modification mainly involves the functionalization of EVs by covalent or noncovalent methods.72

Typically, covalent methods such as biological coupling, aldehyde amine condensation and click chemistry are used to bind the targeting

portion to the EVmembrane through covalent bonds, while noncovalent methods are used to bind the targeting portion to the EVmembrane

through hydrophobic insertion, fusion, receptor‒ligand binding andmultivalent electrostatic interactions.73 Conjugation reactions covalently

and stably modify EV surface proteins,74,75 and lipids or amphiphilic molecules can be inserted into the lipid bilayer of EVs, allowing their hy-

drophilic portions to be displayed externally.

The emergence of click chemistry, which is rooted in oligosaccharide engineering, has revolutionized the approach tomodifying EVmem-

branes. This innovative technique has resulted in a wide array of click reactions that can be used to effectively modify the surface of EVs.76–79

For example, the amine groups on the surface of EVs can be easily modified with alkynyl groups,12,78 and alkyne-labeled exosomes can be

coupled with azide-containing reagents through a copper-catalyzed azide-alkynyl cycloaddition (CuAAC) click reaction. These clickable EVs

can bind to specific targeting ligands on the cell surface under pathological conditions and achieve efficient and specific drug delivery

through click chemistry.80–82 Furthermore, biorthogonal engineering has garneredwidespread attention as a one-step biological conjugation

technique that replies on site-specific copper-free click chemistry.77,80,83,84 This approach offers a rapid, biocompatible, and specific reaction

within biological systems. Based on bioorthogonal reactions, biomacromolecules can be specifically labeled, allowing real-time observation

of their dynamic behavior and functional changes within living cells.77,80 This approach also aids in determining the suitability of EVs as site-

specific delivery vehicles for therapeutic purposes.84,85Moreover, chemical strategies rely on the biological conjugation of targeted ligands to

surface proteins, but the complexity of EV surface can lead to the inactivation of surface proteins or the aggregation of EVs.73

Research on noncovalent EV modification strategies is increasing.86 The lipid bilayer membrane of EVs can spontaneously fuse with other

types ofmembrane structures.87 As a common drug carrier, liposomes can bemixedwith EVs.Mixed nanovesicles typically have the beneficial

characteristics of both EVs and liposomes.88 Sun designed a fibroblast-derived EV and clodronate-loaded liposomemixed drug delivery sys-

tem. This mixed vesicle preferentially accumulated in the fibrotic lung and had significantly increased penetration within fibrotic pulmonary

tissue through targeted delivery, further enhancing the inhibitory effect of clodronate on fibrosis.89 Apart from drugs, large nucleic acids,

including CRISPR/Cas9 expression vectors, can be encapsulated in mixed EVs, providing a new strategy for gene manipulation. While there

is a possibility that lipid self-assembly could increase exosome toxicity,64 it cannot be denied that mixed nanovesicles are an efficient

approach to engineering EVs.90 By avoiding mechanical methods such as electroporation and extrusion, this strategy prevents vesicle dam-

age and enhances assembly efficiency.

In order to track EVs in vivo, various strategies have been developed to effectively label EVs. Molecular imaging techniques, such as fluo-

rescence imaging, bioluminescence imaging, radioactive isotopes, andmagnetic resonance imaging, can non-invasively monitor the absorp-

tion, distribution, metabolism, and excretion of EVs, providing valuable data for regenerative therapies.

EV membranes typically have negative potentials.91 Scholars have fixed EVs on the surface of cationic materials through electrostatic in-

teractions to improve the targeting of engineered EVs.66 Recent studies have shown that protein coronas can spontaneously form around EVs

in plasma in some cases.92 Previous studies have regarded proteins in EV preparations as pollutants, but an increasing number of studies have

shown that EVs can associate with specific molecules in the blood.93 This leads us to hypothesize that the formation of this corona is common

in biofluids and that the mechanisms may also involve protein aggregation and electrostatic interactions. Furthermore, this finding suggests

that we should further explore the interaction and mechanism between EV membranes and matrix components. The formation of coronas

provides a new perspective for engineering EVs.

The shortcomings of traditional drug delivery systems lie in their inability to precisely deliver drugs to specific disease sites, resulting in

poor treatment outcomes. Additionally, synthetic nanocarriers cannot match EVs in terms of biological distribution and bioavailability.80,94

In contrast, EVs, which are natural drug carriers, have the potential to becomeprimary drug delivery vehicles because they can avoid the nega-

tive effects of systemic drug delivery. Although EVs generally have the ability to cross the blood‒brain barrier, after systemic administration,

EVs tend to accumulate in the liver49 and then distribute to the spleen, gastrointestinal tract, and lungs.94,95 Apart from intravenous injection,

other routes of administration, such as local injection (intramuscular, subcutaneous, intraperitoneal), inhalation,96 and implantation,97 can bet-

ter facilitate the accumulation of EVs around the injection site. Furthermore, direct targeting of EVs can avoid complex cell engineering pro-

cedures and reduce the relative dose, thereby enhancing the effectiveness of intravenous EV delivery.49,85

The incorporation of targeted molecules into EVs not only enhances their binding affinity to target cells but also reduces the uptake of

therapeutic drugs by nontarget cells during delivery. One effective approach is to modify EVs to allow them to evade macrophage-mediated

clearance. A relatively novel method to prolong circulation time and reduce the clearance of nanomedicines by the mononuclear phagocyte

system (MPS) is achieved by depleting macrophages using EVs modified with cationized mannan. This cationized dextran modification en-

hances the targeting of EVs to macrophages, leading to MPS saturation and minimizing the clearance of subsequently administered nano-

medicines. By incorporating or expressing different molecules, such as CD24, CD3, CD44, and CD47, on the surface of EVs, it is possible to

prolong their circulation time, reduce the frequency and dose of administration, minimize off-target interactions, and enhance the ability of

EVs to reach the required concentration levels for desired biological effects in target tissues/organs. These targeting molecules are inspired

by mechanisms used by tumor cells to evade the immune system. These engineering strategies provide opportunities for research and the

application of EVs as potential nanocarriers for drug delivery (Figure 3).
iScience 26, 108282, November 17, 2023 7



Figure 3. The mechanism of modified EVs avoiding phagocytosis and promoting repair and regeneration: After being administered systemically, EVs

tend to accumulate in the liver and subsequently disperse to organs such as the spleen and lungs

To enhance the bioavailability and extend the circulation duration of EVs, various molecules such as CD24, CD44, and CD47 can be integrated onto the EVs’

surface (left). Modified EVs have become potential regenerative therapies of great concern by promoting the proliferation, migration, and differentiation of

receptor cells, reducing inflammation levels, and regulating the surrounding extracellular matrix to promote regeneration (right).
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MECHANISMS BY WHICH EXTRACELLULAR VESICLES PROMOTE REPAIR AND REGENERATION

Promoting cell proliferation and migration and regulating differentiation

In previous studies, a variety of cell-derived EVswere associatedwith promoting proliferation anddifferentiation, including the proliferation of

damaged tissue cells and the proliferation,9 migration,98 and tube formation of endothelial cells.19,99,100 Engineered EVs secreted by hypoxic

preconditioned cells have been shown to promote the proliferation of a variety of cell types.101,102 Jagged1 (a Notch ligand) is upregulated in

hypoxia-pretreated MSC-derived EVs. Coculture of these EVs with hematopoietic stem cells (HSCs) can enhance the self-renewal, prolifera-

tion and clonal formation of HSCs.103 In a wound healing model, hypoxic preconditioning enhanced EV-mediated paracrine functions of

UCMSCs, promoted the proliferation and migration of endothelial cells by upregulating miR-125b targeting of tumor protein p53 inducible

nuclear protein 1 (TP53INP1), inhibited apoptosis, and obtained better results than EVs obtained from normal oxygen culture conditions.104 In

a study of fracture healing, hypoxic preconditioning enhanced the production of miR-126 in EVs by activating HIF-1a. MiR-126 activates the

Ras/Erk pathway by inhibiting the expression of SPRED1, thereby causing proliferation, migration and angiogenesis in human umbilical vein

endothelial cells (HUVECs) in vitro. In vivo experiments showed that hypoxic exosome administration promoted fracture healing through exo-

somal miR-126 transfer.101

Gene overexpression or silencing can also magnify repair. Genetic engineering can explicitly overexpress or silence the target gene, but

this is limited to regeneration projects in which some specific mechanisms are known.11,47,58,105 The level of miR-21 was increased in in EVs

released by ADSCs overexpressing miR-21. In addition, in vitro experiments revealed that the expression levels of HIF-1a, SDF-1, VEGF,

Collagen I, Collagen-III, p-Akt and p-ERK1/2 were upregulated in miR-21-overexpressing engineered EVs.47,58 Experiments showed that

the enrichment of miR-21 significantly enhanced the proliferation and migration of HUVECs and induced angiogenesis through Akt and

ERK activation and the upregulation of HIF-1a and SDF-1 expression.47 Adipsin-overexpressing EVs can be taken up by cardiacmicrovascular

endothelial cells (CMECs), thereby increasing CMEC proliferation, inhibiting CMEC apoptosis, mitigating cell migration defects and accel-

erating wound healing.105 These results pave the way for EV treatment, demonstrating that engineered EVs can mediate distant communi-

cation between different cells through the differential expression of RNA, thereby reducing cell damage, promoting cell proliferation and

migration, and improving wound healing.

Cell differentiation in tissue regeneration is closely related to culture conditions.98 The 3D culture systemcan activate themechanical trans-

ducer and transcription factor YAP, which may be one of the mechanisms by which 3D-EVs stimulate osteogenesis.106 Compared with that in

traditional 2D culture, the expression of Runt-related transcription factor 2 (Runx2), osteopontin, collagen type I alpha 1 and alkaline phos-

phatase was significantly increased after treatment with EVs secreted by 3D culture, and the osteogenic ability of BMSCs was enhanced.107

The use of EVs to deliver osteogenic-related peptides108 and coding RNAs53,109,110 to promote cell differentiation and regeneration is also a

useful strategy.
Reducing inflammatory injury

Inhibiting the release of inflammatory cytokines is the most direct way to reduce inflammation. Gupta111 used genetic engineering to add the

cytokine binding domains of TNFR1 and IL-6ST to the surface of EVs as bait for TNF-a and IL-6, respectively, which significantly increased the

survival rate of mice by inhibiting the level of inflammatory cytokines. In addition to binding to inflammatory factors, EVs engineered with

specific proteins on the surface can bind to autoantibodies, cytokines or bacterial toxins to protect against invasion. In response to bacterial

DNA, human and mouse cells can secrete EVs carrying ADAM10.112 ADAM10 binds to pore-forming toxins as bait to protect the body from

bacterial toxins. Scientists have suggested that circulating miR-21-5p levels may be associated with inflammation and the cell senescence
8 iScience 26, 108282, November 17, 2023
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factors known as inflammatory miRNAs, and inhibiting this expression can promote tissue regeneration.113 Recent studies have reported that

miR-21-5p overexpression in EVs promotes the fibrotic process of tendon-to-osseointegration.114 Additionally, some studies have shown that

miR-21-5p in EVs promotes injury repair by enhancing autophagy to promote cell proliferation115 and inhibit osteoclast differentiation.116

MiR-21-5p does not play a negative role. We have reason to believe that miR-21-5p may be a double-edged sword for signal regulation.

Its function may vary depending on the cell state and the specific molecular network involved.

Inflammation is the body’s defense response to stimuli such as injury and infection, and immune regulation plays an important role in each

stage of inflammation.32 Macrophages have three major phenotypes: the nonpolarized state M0, the activated inflammatory M1 phenotype

(induced by bacterial LPS, IFN-g, or TNF-a) and the activated anti-inflammatory M2 phenotype (induced by IL-4 and IL-13).30 As immune-

related factors, M1 macrophages exhibit increased secretion of proinflammatory mediators, while M2-like macrophages have an anti-inflam-

matory phenotype.33 A variety of MSC-derived EVs can change macrophage polarization from proinflammatory (M1) to anti-inflammatory

(M2) in vitro and in vivo, and some pretreatment methods can amplify this effect.21 In many diseases, macrophages cannot convert to the

M2 phenotype. A continuous M1 proinflammatory state can hinder the healing process.117,118 However, M2 macrophages are not the only

cell type that is beneficial to repair. On the one hand, the role of M1 macrophages in antibacterial activity and promoting the secretion of

angiogenic factors in the early stage of inflammation is often underestimated.34 On the other hand, excessive accumulation of M2 macro-

phages at the site of injury can become unfavorable for tissue repair.31 In fact, so-called M1 and M2 macrophage markers can be simulta-

neously expressed by a single cell, indicating the diversity of polarization states.36 To make the comparisons of studies more transparent,

some scholars suggest adding a description of the stimulation parameters to the naming of macrophages, such as M(LPS) rather than

M1.119 Understanding the behavior of macrophages is critical to deciphering the etiology of a disease. We need to reconsider the definition

and standardization of macrophage phenotypes.
Regulating the extracellular matrix

Inflammation and remodeling are the results of profibrotic factor activation.120 Tissue fibrosis is an irreversible lesion. Fibrotic tissues lose their

normal function and can be life-threatening in severe cases.121 Hepatic fibrosis is a common pathological process in various chronic liver dis-

eases.2,67,122,123 Hepatic stellate cells play an important role in liver injury. After being activated, these cells becomemyofibroblasts, which are

themain effector cells of liver fibrosis and respond to liver injury by producing excessive amounts of ECM.123 Comparedwith that in normal 2D

culture, miRNA array data showed that miR-6766-3p expression was upregulated in EVs secreted by 3D cultured stem cells. Engineered EVs

deliver miR-6766-3p to activated human hepatic stellate cells and inactivate SMAD signaling by inhibiting TGF-b receptor (TGFbRII) expres-

sion to inhibit cell proliferation and promote fibrosis, thereby ameliorating liver injury.122 Relaxin (RLN) is an antifibrotic peptide hormone.

Studies have shown that there is a correlation between the reversal of activated hepatic stellate cells in vivo and the endogenous peptide

hormone RLN.2 In a mouse model of CCl4-induced liver fibrosis, RLN-pretreated macrophage-derived EVs showed higher levels of miR-

30a-5p than natural macrophage-derived EVs, delaying the progression of liver fibrosis by reducing serum alanine aminotransferase and

aspartate aminotransferase and reducing the expression of fibrosis-related genes.123

Glial cell line-derived neurotrophic factor (GDNF) is a tissue morphogen that affects stem cells and can reduce renal fibrosis.124 In a model

of unilateral ureteral obstruction (UUO), GDNF-overexpressing EVs showed increased SIRT1 expression and eNOS activation, which seems to

be a mechanism to reduce peritubular capillary loss and prevent renal fibrosis.50 A recent study showed that engineered mouse satellite cell-

derived EVs with Lamp2b fused with rabies virus glycoprotein peptide (RVG) had increased renal targeting efficacy. In the UUOmodel, these

modified EVs deliveredmiR-29 and had higher antifibrotic effects (reducing renal alpha-smooth muscle actin, collagen protein, wave protein,

and fibronectin levels) than unmodified EVs.125 Electroporation can facilitate the introduction of various cargoes into cells, including genes,8

proteins,10 viruses and othermacromolecules. After being loadedwithmiR-29bmimics via electroporation, EVs can be effectively internalized

by cardiac fibroblasts. In a mouse model of myocardial infarction, EVs loaded with miR-29b mimics were shown to upregulate the expression

of miR-29b and downregulate the expression of fibrosis-associated proteins, thereby inhibiting myocardial fibrosis and improving cardiac

function.126

Since fibrosis is a highly dynamic process, the use of this type of treatment is important for treating fibrosis.127 Although there is still a gap

between the identification of antifibrotic targets and translating research into effective treatments, there is increasing evidence that EVs,

which are emerging antifibrotic agents, can reduce or reverse tissue fibrosis, providing a new perspective for effective antifibrotic treatment

in the future.
INFORMED CONSENT STATEMENT

This article has obtained written informed consent from all authors. All co-authors agree to add Yanhong Zhao as a corresponding author.

Written consent, named "Written Consent," has been uploaded as a JPG file.
DISCUSSION

In recent years, there has been a significant surge in research on EVs, and the study of exosomes has gradually transitioned from basic science

to clinical applications.128 There have been some clinical applications of engineered EVs documented on ClinicalTrials.gov. A clinical study

reported beneficial effects of EVs overexpressing CD24, which underwent a biosafety review and targeted patients with moderate-to-severe
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COVID-19 infections. Furthermore, several clinical projects involving the targeted delivery of exosomes and their use as mRNA drug delivery

vehicles for gene therapy are expected to be completed in the coming years.

Despite these advancements, there remain several challenges thatmust be addressed for the successful clinical application of EVs.129 Dur-

ing clinical translation, there is a close connection between the production process and the quality of the final product. The quality of the

product, including yield, composition, and biological activity, can be significantly influenced by factors such as upstream and downstream

processing choices. The culture conditions in the upstream process, including cell passaging, cell density, and EV harvesting frequency,

are all crucial factors. Currently, there is no uniform standard for engineering methods, such as hypoxia induction, exposure time and other

parameters that affect the experimental results.101,130 Furthermore, the tolerance of different cell types to hypoxia varies.17 Hypoxia may lead

to the secretion of differently engineered EVs by cells, and we cannot determine whether there is a correlation between cell death and EV

release levels.

Although urine,131 milk,132 and plant-derived EVs133 have relatively high yields, their targeting ability and cargo efficiency are relatively

poor, posing challenges for their use as clinical therapeutic drugs. Bioreactors can be used to increase the yield of EVs, and 3D culture

allows for affinity interactions between cells and provides more diffusion space. In a dynamic 3D microcarrier-based system, MSCs

expanded more than 13 times in 5–6 days.134 By using a scaffold-perfusion bioreactor system, the yield of EVs increased by more than

100-fold compared to that in traditional 2D flask culture.135 Cell culture bioreactors with industrial-grade volumes are already available,

and airlift bioreactors and stirred tanks are the most commonly used types.134 However, one drawback of traditional bioreactors is that

due to enhanced cell metabolism, the culture medium needs to be frequently replaced, which increases the risk of contamination during

the opening process.

Technical difficulties in the isolation and characterization of pure populations of specific subtypes are a key limitation to the precise char-

acterization of EVs.1,136 Currently, commonly usedmethods for isolating EVs include differential ultracentrifugation (UC), tangential flow filtra-

tion (TFF), density gradient centrifugation, size exclusion chromatography (SEC), polymer-based precipitation, and immunomagnetic bead

capture. Each method has its own advantages and disadvantages. Among them, differential ultracentrifugation is considered the gold stan-

dard for EV isolation.137 This large-scale production technique typically only allows for separation based on EV size, but the product may

contain small EVs and non-EVs.1,138,139 Therefore, unless their multivesicular body origin has been determined, these factors are collectively

referred to as EVs.138 To achieve large-scale and efficient recovery of EVs without compromising purity, multiple methods are needed. The

International Society for Extracellular Vesicles (ISEV) proposed the Minimal Information for Studies of Extracellular Vesicles (MISEV) in 2014 to

define EVs and their functions. In 2018, an updated version was released to promote the establishment of unified standards for the isolation,

identification, quantification, and quality control of EVs.137

Overall, the field of engineered EVs regenerative medicine shows great potential. To enhance treatment efficacy, it is imperative to delve

deeper into the specificmechanism and develop engineered EVs with increased targeting precision and precise cargo loading. Some studies

have not significantly reduced the accumulation of EVs in clearance systems such as the liver,140 even if they are specifically targeted. Attempts

to fully understand the effective targeting of EVs, the required therapeutic dose,141 the effect on targeted tissues, and long-term safety

depend on further studies. With the rapid accumulation of preclinical data,128 research on EVs should focus on improving production and

purification techniques and developing more standardized guidelines. In summary, standardized EV production, separation, and character-

ization methods will improve the effectiveness of engineered EVs in regenerative medicine.
LIMITATION

While this review aims to provide a comprehensive overview of EVs, it is important to acknowledge its limitations. The field of EVs research is

rapidly evolving, and new discoveries are made frequently. Therefore, this review may not include all the latest findings. Additionally, due to

the vast number of studies on EVs, we have focused on specific aspects related to exosomes, excluding other EVs such as apoptotic bodies.

The heterogeneity of EV populations, isolation methods, and characterization techniques pose challenges in comparing and interpreting re-

sults across studies. Limited space prevents extensive discussions. Although EVs show great potential in biomedical applications, further

research is needed to fully understand their mechanisms and clinical implications. Future studies should address these limitations and fill

the gaps in our knowledge.
ACKNOWLEDGMENTS

Thanks to all those who helped in data preparation and article writing. This work was financially supported by the National Natural Science

Foundation of China (Nos. 81871782 and 81800931), the Youth Innovation Promotion Association CAS (No. 2019031), the Tianjin Science Fund

for Distinguished Young Scholars (No. 18JCJQJC47900), the Research Foundation of the Tianjin Health Bureau (No. KJ20052), and the Tianjin

Science and Technology Project (Nos. 21JCYBJC01760 and 20JCYBJC01440). Additionally, Wen Cheng would like to express her heartfelt

appreciation to Chuanliang Cheng for his contribution in creating the Graphical abstract and his invaluable assistance in revising the article.
AUTHOR CONTRIBUTIONS

W.C. and YH.Z. were responsible for conceptualizing the article. YR.S. andC.X. were involved in the initial drafting of the article. YQ.S. and Y.L.

contributed to the design and preparation of the figures. W.C. and YM.Z. conducted a critical review and revision of the article. Q.Y. played a

role in acquiring funding for the project. All authors have read and approved the final version of the article for publication.
10 iScience 26, 108282, November 17, 2023



ll
OPEN ACCESS

iScience
Review
DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.
REFERENCES

1. Wu, P., Zhang, B., Ocansey, D.K.W., Xu, W.,

and Qian, H. (2021). Extracellular vesicles: A
bright star of nanomedicine. Biomaterials
269, 120467. https://doi.org/10.1016/j.
biomaterials.2020.120467.

2. Hu, M., Wang, Y., Xu, L., An, S., Tang, Y.,
Zhou, X., Li, J., Liu, R., and Huang, L. (2019).
Relaxin gene delivery mitigates liver
metastasis and synergizes with check point
therapy. Nat. Commun. 10, 2993. https://
doi.org/10.1038/s41467-019-10893-8.

3. Fu, P., Zhang, J., Li, H., Mak, M., Xu, W., and
Tao, Z. (2021). Extracellular vesicles as
delivery systems at nano-/micro-scale. Adv.
Drug Deliv. Rev. 179, 113910. https://doi.
org/10.1016/j.addr.2021.113910.

4. Garcia-Martin, R., Wang, G., Brandão, B.B.,
Zanotto, T.M., Shah, S., Kumar Patel, S.,
Schilling, B., and Kahn, C.R. (2022).
MicroRNA sequence codes for small
extracellular vesicle release and cellular
retention. Nature 601, 446–451. https://doi.
org/10.1038/s41586-021-04234-3.

5. Mathieu, M., Martin-Jaular, L., Lavieu, G.,
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