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Abstract

As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes
of noisy and complex biological data, it has become evident that available methods for deriving meaningful information
from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that
consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move
towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of
highly structured and high-throughput data such as human variation or expression data from very large cohorts, is
especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries
using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that
the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply
distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and
technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data
structures and data models are best mapped to the proper computational framework.
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Introduction

Ever since the original protein and nucleic acid database

versions were supplied in book form and later distributed as a

series of floppy disks, the biological sciences field has recognized a

need for databases to store information. For many years, different

types of biological data have been represented in standard

relational databases, which form the basis of numerous searchable

online databases spanning multiple biomedical domains [1,2].

Most of these databases are available for download as tab delimited

files. To accommodate these diverse data sources within the defined

schemas required for a relational framework, various data normal-

ization approaches that force the data to fit into the designated

structures have been utilized. In order to maintain relations and allow

knowledge mining, some of the popular biological databases have

also become available in XML format (eXtensible Markup

Language) (http://www.uniprot.org/docs/uniprot.xsd, http://

www.nlm.nih.gov/bsd/licensee/elements_descriptions.html) and

other tag-based hierarchical formats like ASN.1 (Abstract Syntax

Notation One) (http://www.ncbi.nlm.nih.gov/Sitemap/Summary

/asn1.html). More recently, large databases like UniProt have

made their databases available for download in the RDF (Re-

source Description Framework) format (ftp://ftp.uniprot.org/pub/

databases/uniprot/current_release/rdf/), which is more suitable for

knowledge representation.

The accessibility and usability of these powerful resources has

been further increased through the adoption of programmatic APIs,

web services and direct access language packages (http://www.ncbi.

nlm.nih.gov/entrez/query/static/esoap_help.html, http://www.

rcsb.org/pdb/software/soap.do, http://useast.ensembl.org/info/

docs/api/index.html, http://www.biomart.org). Consequently, it is

now possible to dynamically combine the results from varied queries

in different databases stored in an in-house data warehouse [3] or

across the internet [4,5] into a single result report in an automated

manner.
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In addition to these biological annotation databases, vast

amounts of information is currently available through the very

large and complex data sets produced by many research projects,

including TCGA (http://cancergenome.nih.gov/), ICGC (http://

icgc.org/), and 1000 genomes (http://www.1000genomes.org/).

Large unstructured data sources, including the traditional sources

such as published literature and new big data sources such as social

media and electronic health records, are also now becoming part

of the biomedical data domain.

The availability of these unstructured and structured data

sources makes it highly desirable and feasible to query and

integrate known biological information with patient-specific

information. The importance of mining information from

literature and combining with patient related gene expression or

proteomics data has long been realized [6]. More recently,

however, new unstructured data sources and new query methods

are creating new biomedical insights, such as the ability to detect

Flu outbreaks by mining ‘Google searches [7,8].

Many different ways to amass, store and represent the variable

data sources exist, and the intended application of the particular

biomedical data store will dictate its content and structure.

However, the success of any of these approaches requires a set of

best practices that experimentally address both scale and

performance for this type of querying. Because of the nature of

the data, the appropriate choices will likely involve a combination

of relational tables in conjunction with unstructured data

representations. Additional application of semantics, ontologies

and Natural Language Processing (NLP), to improve language

interpretation and other utilities, will also be required.

As a part of a 3-month summer project, we evaluated one

possible configuration for these data, using Apache Hadoop

(Hadoop) (http://hadoop.apache.org/), for obtaining high perfor-

mance and flexibility in querying and integrating biomedical big

data. Hadoop is a widely used open source implementation of

distributed computing and is being increasingly adopted in

bioinformatics [9]. The project was designed to demonstrate a

possible application of distributed computing technologies with

two major objectives:

1. Concept/theme discovery: Searching concepts/themes in

unstructured data sources such as medical literature by using

standard lexicons to identify search terms through semantic

expansion and perform distributed queries on the published

literature to identify articles containing single terms or pairs of

terms.

2. Scalability of Differentially Expressed Gene (DEG) lists to

disease association: Demonstrating scalability for a huge

number of structured data sets such as the gene expression or

miRNA expression data sets from TCGA. Given an input set of

microarray expression (or miRNA expression) data, identify a

DEG list of a subset of samples against a very large set of

background samples. Use the programs developed in objective

(1) to create DEG to disease associations from the medical

literature.

In order to accomplish the objectives, they were sub-divided

into several related tasks.

The concept/theme discovery objective was sub-divided into:

a. Literature counts of genes.

b. Literature counts of disease terms.

c. Gene – disease co-occurrence.

The scalability and DEG to disease association objective was

sub-divided into:

a. Identifying filtered genes from terabytes of omics data.

b. Literature counts of filtered genes.

c. Co-occurrence of filtered genes and disease terms.

The results of the project were graphical representations of the

gene to disease and miRNA to disease networks useful to

researchers attempting to understand gene-disease associations.

These results form the basis for subsequent expansion to include

more diverse queries in future developments.

Results

The test cases were intentionally engineered to align objectives

with the ability to easily parallelize queries while still meeting the

12-week project timeline. All tasks were completed with high

performance and tabular results were generated. All cancer terms,

gene terms, miRNA terms and their corresponding PubMed ID’s

are listed in tables S1, S2 and S3 respectively. The bar chart

representation of the cancer term counts in literature obtained

through task 1b is illustrated in Figure 1 and the gene terms are

represented in Figure S1.

Lists of differentially expressed genes and miRNAs were

generated after successfully completing task 2a. Performance

scaled linearly when the queries were run on different sized data

sets (Table 1). Tab delimited result files with counts of gene -

cancer term co-occurrence and miRNA – cancer term co-

occurrence generated from tasks 1c and 2c are available as tables

S4 and S5. The gene – cancer term co-occurrence results were also

visualized using R scripts.

Although existing literature mining methods are able to

generate similar results for smaller datasets ([10]), using distributed

computing and running in a batch mode decreased the time to

obtain these results. As shown in Table 2, irrespective of the size of

the categorical lexicon and the number of lexicons used, for each

batch query, the PubMed documents are processed in their

entirety in a single run giving near identical performance with

different sized categorical lexicons. After the datasets were loaded,

the time to query all ,20 million abstracts with a combination of

,11,250 genes and ,130 disease terms i.e., a total of ,1,450,000

term combinations, took about 1 minute with the commodity

hardware-software cluster (hereto referred to as non-BDA) and 28

seconds on the Oracle Big Data Appliance (BDA). It is important

to note that the result populates all cells of this 1.45M cell matrix

simultaneously.

As proof that this implementation could produce biologically

meaningful results, we sought to reproduce a figure from a recent

issue of Genetic and Engineering News (http://www.genengnews.

com/gen-articles/hotspots-of-mirna-research-activity/4162/?kwrd

= miRNA). The figure in the article is a heatmap matrix with

different types of cancer on one axis and specific miRNAs on the

other axis. The values used for the heatmap were derived from the

number of literature citations for that cancer-type - miRNA pair. R

scripts were used to generate Figure 2, a similar chart to the

heatmap, using genes on one axis and different cancer terms on the

other axis and the number of citations represented as the size of the

bubble. From the figure, it can be seen that some genes have been

implicated in many cancers while other cancers seem to have fewer

gene associations. Further, some genes are shared across many

cancer types while others are specific to a single cancer subset.

While this fact was already known, the ability to reproduce the

Theme Discovery across Large Biological Data Sets

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e80503



Figure 1. Cancer term occurrences in the literature. A bar chart representation with cancer terms on the y-axis and publication counts on the x-
axis. Only the cancer terms with high literature occurrences are shown.
doi:10.1371/journal.pone.0080503.g001
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result from a single query is very significant in being able to easily

permute the query in real time.

In Figure 3, R scripts were used to generate a literature-based

network of cancer term to gene linkages. This demonstrates

another method to visualize the same data revealing that some

genes are shared across multiple cancer types while others are

unique to a particular cancer.

While the results obtained are not surprising and could be

programmatically produced using PubMed (www.ncbi.nlm.nih.

gov/pubmed/) or one of several literature mining tools ([11,12]),

the searches using these tools would take significantly longer as

they would require selecting a subset list of genes and a subset list

of disease terms and then running the query for each cell in this

comparison matrix. The term combinations should also include

semantic expansion of the terms to include gene aliases and disease

synonyms, which would further slow and complicate the process.

The ability to dynamically produce such a graph means that

clinical interpretation of mutational datasets could already be

impacted by this methodology depending on the type of cancer (or

other disease) and the mutational spectrum. For example, mutated

genes not typically observed in a particular cancer subtype may

help guide clinical treatment or even distinguish metastases from

primary tumors. The results could be further evaluated for themes

shared across those genes or perhaps unique to a specific subset of

the genes to help guide the clinical course for that particular

patient. As explained above, this scenario was demonstrated and

tested through task 2c, where an actual excerpt of both mRNA

and miRNA expression data was utilized and simulated data was

then added to increase the data volume to test performance over a

number of sample ranges extending into the millions of samples

(patients). Differentially expressed gene lists could then be used to

create similar networks or bubble charts of differentially expressed

genes versus cancer terms.

Discussion

In this study, methods for a scalable, dynamic data mining

application that can be easily expanded to ask clinically relevant

questions that retrieve literature evidence were developed. With

objective 1, we derived a method to dynamically search the 20

million abstracts in PubMed using semantic expansion at

impressive speeds. Both the Oracle BDA and the non-BDA

cluster were able to provide the results directly through map-

reduce jobs. While relatively simple language processing entities

were used, more sophisticated ontologies and/or defined learning

sets would presumably behave similarly and extend the value

tremendously. Semantic expansion of query terms has been

proven to be important in concept based searches of health

conditions [13] and functional associations [14]. The ability to

dynamically run millions of these queries on terabytes of

unstructured documents would mean faster time to get answers

that inform clinical course.

In objective 2, using prototypes of large volumes of both

structured and unstructured data, it was demonstrated that queries

against multiple data sources can indeed be optimized through the

use of query distribution methods. The ability to integrate

information from unstructured data including published literature

with structured data sets including omics data, such as microarray

gene expression results, is extremely powerful in the context of

advancing both basic science and translational science. The

importance of integrating such information and their application

in understanding disease has been demonstrated previously

[15,16].

Due to the nature of the data and the analysis required, the

NextGen Sequencing community has been quick to adopt

distributed computing. As reviewed in the literature [9], there

have been several map-reduce based software applications

developed in recent years to aid in the assembly, mapping,

aligning and variant analysis of the generated sequence reads

[17,18,19]. Widely adopted bioinformatics algorithms like BLAST

and GSEA have also been implemented in Hadoop [20,21,22]

and large scale efforts have been spawned to provide consolidated

knowledge bases (DOE K-Base) (http://genomicscience.energy.

gov/compbio/, http://www.systemsbiologyknowledgebase.org/)

and computing resources for biological researchers. This study

shows that distributed computing can be leveraged to bring

together structured and unstructured data sets, as the performance

speeds are significant enough to influence the generation and

refinement of research hypothesis in real time.

Employing these ‘Big Data’ technologies to integrate data from

thousands of patients and controls might also help us understand

which measurements provide the most insights into a disease

mechanism. Such insights also raise the possibility that one would

not need to limit data to any specific disease or other pattern and

thus, similar gene expression patterns could be detected in other

disease studies and these similarities would extend our under-

standing of commonalities in disparate disease processes.

Although parts of the datasets used in the experiments were

arguably small and the complexity of applied processing was

relatively low, we believe that our test cases demonstrate the

benefits of integrating distributed computing technologies as part

of a broad platform on both structured and unstructured datasets.

Given the initial success of the prototype, further application

Table 2. Query times for batch queries on PubMed abstracts
with gene, miRNA and/or cancer term lexicons.

Categorical lexicon Number of terms Time (seconds)

Genes 11,250 29

Cancer terms 130 28

miRNAs 530 30

Gene 6Cancer terms 11,2506130 28

miRNA 6Cancer terms 5316130 30

doi:10.1371/journal.pone.0080503.t002

Table 1. Load and query times using simulated gene
expression data.

Task Data Size (TB)
Datasets
(millions)

Time
(seconds)

HDFS Ingest 32 60 36,000

Hive Query to subset data 2 3.75 6,336

4 7.5 7,058

8* 15 8,304

16 30 11,420

Hive query to extract DEGs 2 3.75 690

4 7.5 1,347

16 30 5,769

32 60 10,630

* Query to get the DEG list was not run on the 8TB data due to time constraints.
doi:10.1371/journal.pone.0080503.t001
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Figure 2. Bubble chart of Cancer-Gene associations from literature. A bubble chart representation with cancer terms on the x-axis and genes
on the y-axis. The size of the bubble is directly proportional to the number of literature articles where the cancer and gene terms co-occur.
doi:10.1371/journal.pone.0080503.g002
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opportunities of the programs that were developed through this

project are foreseen including:

a) Expanding the prototype to integrate structured patient data

sets from TCGA, including mRNA and miRNA expression,

methylation and SNP data with literature and other

unstructured text from sources such as ClinicalTrials.gov

(http://www.clinicaltrials.gov/) and Cancer Commons

(http://www.cancercommons.org/). The results obtained by

integration can be stored in NoSQL data stores and be

utilized for further real time comparisons with experimental

data from researchers.

b) Extending the program by integrating additional semantic

relations and concepts derived from semantic databases like

SemMedDB [23] and taking advantage of several new

initiatives integrating the text mining power of Lucene with

the data processing speeds obtained through Hadoop (http://

incubator.apache.org/blur/, http://www.cloudera.com/

content/cloudera/en/products/cdh/search.html).

c) Building automated systems for annotating study-specific

literature articles by using custom ontologies. Annotated

literature resources like that provided by TextPresso [24]

provide a huge benefit to the research community. Any

performance gains associated with building such resources

Figure 3. Network of Cancer-Gene associations from literature. Network of Cancer/Gene associations displaying shared genes between
cancers and genes specific to certain cancer types based on literature evidence. Cancer terms are represented as labeled nodes, genes are unlabeled
pink nodes and the edges represent at least one publication with a co-occurrence of the cancer term and gene.
doi:10.1371/journal.pone.0080503.g003
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would be immensely helpful, especially in view of the current

growth in published literature as seen in Figure 4. Study-

specific vocabularies or ontologies can be used and several

such lexicons combined to annotate literature for specific

projects. Although these would lack the extent of functionality

seen by the TextPresso application, they would still provide

an immensely valuable resource for researchers, as they can

be generated in a relatively short period of time and updated

through automated scripts.

d) Research on the applicability of integrating several omics

data sets to patient stratification as observed by Yan et. al.,

[25]. It would be interesting to see if any of the distributed

computing and NoSQL query approaches would permit

querying across many patient data sets to detect disease sub-

type specific gene signatures.

This pilot study demonstrated that real time integration of large

structured and unstructured data sets can be achieved by leveraging

massively parallel computing and querying technologies like

Hadoop and Hive. The performance and results obtained with

immense data sets directly translate to a greater flexibility in

defining/ingesting the data sets and generating hypotheses with an

exponentially faster iterative cycle time. Through the success of this

project, we believe that the power of combining a distributed

computing hardware platform with novel data structures and

innovative query technologies has the potential to create an

automated custom pipeline in which terabytes of information

available from data sources like TCGA (https://tcga-data.nci.nih.

gov/tcga/) and ENCODE (http://www.genome.gov/10005107)

can be mined and integrated with literature evidence, using drug/

disease vocabularies in any desired combination, to generate

actionable biological knowledge producing improved treatment

outcomes.

Methods

Queries were performed on a commodity hardware-software

cluster (non-BDA) and the Oracle Big Data Appliance (BDA)

(http://www.oracle.com/us/products/database/big-data-appliance/

overview/index.html). The non-BDA cluster was based upon the Sun

Blade 6000 chassis. Single gigabit Ethernet interconnected 9 blades

supporting 16 AMD 2224 cores, 40 Intel X5355 cores, 244 gigabytes

of memory, and 1.3 terabytes of disk. The project’s BDA consisted of

18 Oracle servers interconnected by 40 Gbit Infiniband delivering

216 Intel Xeon 5675 processing cores, 2.6 terabytes of memory, and

648 terabytes of disk within a single cabinet. The disparity between the

non-BDA cluster and the BDA were known from the beginning; the

idea of this part of the project was not to replicate the hardware

requirements of the Oracle Big Data Appliance (BDA) but to replicate

the environment of the BDA so that code can be developed and

queries can be run on the non-BDA cluster prior to BDA access. This

was necessitated, as the BDA was accessible only during the last 2

weeks of the project.

Software applications including Java, Cloudera’s Enterprise

Hadoop, Oracle R Connector for Hadoop, Oracle Loader for

Hadoop, Oracle JRockit, Oracle Data Integrator, and Oracle

NoSQL database were installed on the non-BDA. All these are

pre-installed on and optimized for the BDA. Additional details on

the non-BDA cluster are provided in document S1.

Data was acquired in a short initial phase and literature queries

conforming to the objectives were performed in the later phase.

Data Aquisition
Literature. Publicly available 2012 MEDLINE baseline data

was licensed and downloaded from NLM (http://www.nlm.nih.

gov/databases/journal.html, http://www.nlm.nih.gov/databases/

license/license.html). The data consists of approximately 20 million

literature abstracts formatted in XML. The size of the dataset is

approximately 80 gigabytes. Along with the title and abstract of the

published article, it also includes metadata about the publications

such as Author, Institution, Dates, Publisher, etc. For this prototype,

we were interested in three fields: PMID (The unique ID of the

publication), Title and Abstract text (The abstract of the

publication). In order to extract these fields, we used a simple

Python script to parse each XML document and convert it to tab-

Figure 4. Growth of articles in MEDLINE. A bar chart displaying the number of baseline records in NLM MEDLINE’s 2001 baseline release to 2012
baseline release. (http://www.nlm.nih.gov/bsd/licensee/2012_stats/baseline_doc.html).
doi:10.1371/journal.pone.0080503.g004
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delimited files containing the columns, PMID, title and abstract.

The files were then ingested into the Hadoop Distributed File

system (HDFS) for pre-processing. Pre-processing involved two

steps: tokenizing and stop-word removal. In the first step, we did not

use a standard English language tokenizer from known tools such as

Lucene but instead we manually selected characters as delimiters to

avoid missing Genes with symbols containing special characters

such as gene Hs.6719. Next, we filtered the data to remove common

English words. Since batch processing was the main goal of the

prototype we elected not to use any of the KeyValue databases such

as HBase or Oracle NoSQL as their main purpose is to provide low

latency and near real-time response for random access while our

task demands high throughput.

Gene lexicon. In order to create the Gene Lexicon that will

be used by our program to mine the publications, we linked all

Gene Symbols and Synonyms to the same Gene ID by parsing the

gene_info file from EntrezGene (ftp://ftp.ncbi.nih.gov/gene/

DATA/gene_info.gz). This lexicon is simply made of two fields:

Gene symbol and Gene ID, where the Gene Symbol contains all

human EntrezGene symbols and synonyms. For this step, we used

Hive; A data warehouse system for Hadoop. Hive provides a SQL

like querying language dubbed HiveQL over data residing in

HDFS. Since the gene info.dat file was a tab delimited file, there

was no pre-formatting and the file was loaded into HDFS and then

into a Hive table. We then created the gene lexicon by extracting

Gene symbols and synonyms for the Human species from the gene

info table using simple queries. The created lexicon was formatted

using Python and was ready to be used by our tool for mining the

abstracts.

Disease terms. A disease lexicon containing terms related to

5 different cancers (melanoma, breast cancer, lung cancer, prostate

cancer and thyroid cancer) was created. The NCI Thesaurus

version 12.05d (http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/

archive/12.05d_ReleaseNCI) was used to create this lexicon. For

this prototype, a simple lexicon was created using the terms for

these 5 cancers as categories and parsing the NCI Thesaurus to

look for related disease terms for each of the 5 cancers, which in

some cases contained author names. As the intended goal was to

test the feasibility and scalability of the approach, and due to the

limitations in time, no additional processing was performed and

these artifacts were treated as part of the lexicon.

Omics data sets. mRNA expression data and miRNA

expression data from a single Glioblastoma patient, TCGA-02-

0022, was downloaded from TCGA. This patient data set was

chosen, since it was one of the few patients where all the data

including variation results were available in the publicly available

domain (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.

html ). Although all publicly available data for TCGA-02-0022

was downloaded, only the mRNA and miRNA expression data

were used in this prototype.

Simulated data sets. To demonstrate scalability, a simula-

tion program was created to generate the requested number of

Figure 5. Architecture for integrating structured and unstructured data in Hadoop. Architectural diagram detailing the steps in creating
the categorical lexicons and using them to get the PMID counts from literature. DEG stands for Differentially Expressed Gene while DE miRNA stands
for Differentially Expressed miRNA.
doi:10.1371/journal.pone.0080503.g005
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either mRNA or miRNA sample data sets. These simulated data

sets were formatted based on the format of the mRNA and

miRNA expression data from TCGA-02-0022. In total, 60 million

simulated data files of gene expression data (32 TB) and 900

million simulated data files of miRNA expression data (18 TB)

were generated. The simulated data was created such that the

approximate distribution of expression values and values range

were reproduced for each sample from randomly generated

values.

Queries
To achieve the objectives we developed a program for tagging

text documents using a categorical lexicon. The lexicon consists of

a list of tokens and their corresponding categories. A category can

consist of several tokens. Also a token can be associated with more

than one category. The use of these categorical lexicons is not

limited to the scope of this project but can be used in sentiment

analysis, feature extraction and other areas. We used categorical

lexicons to associate the variations of gene symbols with their

corresponding gene IDs. For example, gene symbols ACTG1P1,

ACT1GP1, ACTGP1 and HY-psi-gamma-AC6 all correspond to

one gene. The program parses each document by tokenizing the

text into tokens then uses the categorical lexicons to look for the

appearances of terms within the document and tagging the

document with the corresponding categories. The program is also

capable of scanning multiple tokens at once (Window of tokens).

This capability was needed since the disease lexicon contained

multiple-word diseases such as ‘‘Invasive Breast Carcinoma’’. We

used Java for developing the code and implemented the

MapReduce framework as the distributed processing model for

scalability. Each mapper processes a single document and outputs

the document ID as key and the associated categories as value.

CLASS MAPPER

lexicon : HashTable

lexicon : ~Load(lexicon)

method MAP (docid n, doc d)

f or all �t�e�r�m �w in �d do :

categories : ~categorieszlexiconfwg

EMIT (docid n, categories)

Objective 1: Concept/Theme Discovery
a) Literature count for genes. We processed the abstracts

with a map-reduce job using the gene categorical lexicon to tag

each publication with the list of gene IDs it contained. The results

were also grouped to get the number of abstracts containing each

of the human genes annotated in EntrezGene.

b) Literature count for disease terms. The cancer based

disease categorical lexicon was used for getting the literature

associated with all 5 cancers. The results were the counts of the

number of abstracts containing each cancer term.

c) Gene – Disease co-occurrence query. In order to look

for co-occurrences, we extended our program to take two

categorical lexicons and output the co-occurrences of categories

as pairs, as well as the number of abstracts containing them.

method MAP (docid n, doc d)

f or all �t�e�r�m �w in �d do :

lexicon1:categories : ~lexicon1:categorieszlexicon1fwg

lexicon2:categories : ~lexicon2:categorieszlexicon2fwg

f or all �c�a�t�e�g�o�r�y �c1 in �l�e�x�i�c�o�n1:�c�a�t�e�g�o�r�i�e�s do :

f or all �c�a�t�e�g�o�r�y �c2 in �l�e�x�i�c�o�n2:�c�a�t�e�g�o�r�i�e�s do :

EMIT (p�a�i�r (�c1,�c2), �o�n�e)

method REDUCE (pair p, counts½1,1,1,:::1�)

sum : ~0

f or all �c�o�u�n�t �c in �c�o�u�n�t�s do :

sum : ~sumz�c

EMIT (pair, sum)

The program was used to query for the co-occurrence of every

possible gene-cancer term combination derived from the gene and

cancer lexicons. R scripts were used to visualize the co-occurrence

results as bubble charts and network views.

Objective 2: Scalability and DEG to Disease Association
a) Identifying Differentially Expressed Genes (DEGs).

Simulated gene expression and miRNA expression datasets,

generated based on sample TCGA data sets from a single patient,

were loaded into HDFS. Due to the differences in the two clusters,

the data set sizes varied between the non-BDA and the BDA, and

scalability and performance testing for larger data sets was limited

to the BDA (Table 1). Only a limited simulated data sets, roughly

equivalent to 100 thousand mRNA expression and 1 million

miRNA expression data sets were used in the non-BDA while it

was scaled to relatively large data sizes of 60 million mRNA

expression and 900 million miRNA expression data sets for the

BDA. In total, 32TB of gene expression and 18TB of miRNA

expression data, were ingested into HDFS in the BDA. Simple

‘create table’ Hive queries were used to generate subsets of the

data. Hive queries with expression level filter of log2x, to get

differentially expressed genes/miRNAs with greater than 2 fold

expression, were run on these subsets.

b) Literature counts of DEGs. Tables with the differentially

expressed genes/miRNAs and the counts of the number of

abstracts in which these terms occur were generated using the

map-reduce jobs created through objective 1a.

c) Co-occurrence of filtered genes and disease terms.

The extended version of the program described in objective 1c, in

combination with R was used to create co-occurrence graphs for

differentially expressed genes and disease terms.

The different tasks and steps involved in achieving the objectives

are shown in Figure 5.

Supporting Information

Figure S1 Gene term occurrences in the literature. A bar

chart representation with genes on the y-axis and publication

counts on the x-axis. Only the genes with high literature

occurrences are shown.

(TIFF)
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Table S1 Cancer term occurrences in the literature. A

three column tabular representation with cancer terms, number of

publications and the PubMed ID’s of articles containing the

cancer term.

(TXT)

Table S2 Gene occurrences in the literature. A three

column tabular representation with genes, number of publications

and the PubMed ID’s of articles containing the gene term.

(TXT)

Table S3 miRNA occurrences in the literature. A three

column tabular representation with miRNAs, number of publica-

tions and the PubMed ID’s of articles containing the miRNA term.

(TXT)

Table S4 Gene-Cancer Co-occurrences in the literature.
A four column tabular representation with genes, cancer terms,

number of publications and the PubMed ID’s of articles

containing both the gene and cancer terms.

(TXT)

Table S5 miRNA-Cancer Co-occurrences in the litera-
ture. A four column tabular representation with miRNAs, cancer

terms, number of publications and the PubMed ID’s of articles

containing both the miRNA and cancer terms.

(TXT)

Document S1 non-BDA cluster. A document detailing the

creation of the non-BDA cluster and some performance metrics.

(DOCX)
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