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Abstract: Apoptosis plays an important role in development and in the maintenance of homeostasis.
Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large
variety of biological molecules, which are of great significance in intercellular communications and
the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential
for maintaining homeostasis, including systemic bone density and immune regulation as well as
tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic
diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which
can be used to treat potential targets. This review summarizes current research on the generation,
application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on
systemic diseases, providing strong evidence and therapeutic strategies for further insights into
related diseases.

Keywords: apoptotic bodies; apoptosis; intercellular communication; systemic diseases

1. Introduction

Apoptosis is a form of programmed process of cell death that occurs throughout life
as a part of normal development, which includes distinct cell shrinkage, chromatin conden-
sation, and plasma blebbing [1]. Up to 100–150 billion cells will die each day in the human
body via apoptosis to maintain homeostasis [2–8]. The importance of apoptosis can be
inferred from various biological responses and changes, e.g., embryonic development, cell
or organ renewal, and turnover. In addition, apoptotic cells may stimulate the proliferation
of progenitor cells to improve tissue regeneration and to replace damaged cells [9,10].

Extracellular vesicles (EVs) are recognized as key regulators of intercellular com-
munications and can participate in multiple physiological and pathological processes,
such as inflammation, immune responses, coagulation, tumorigenesis, and host–microbe
interactions [11–16]. Various types of EVs are produced during cell apoptosis, including
exosomes, microvesicles, and apoptotic bodies (ApoBDs) [17–22]. ApoBDs are specifically
generated from apoptotic cells and are capable of encapsulating cellular factors generated
during apoptosis [23–25]. ApoBDs can be recognized and engulfed by macrophages, den-
dritic cells (DCs), epithelial cells, endothelial cells, and fibroblasts for clearance purposes, and
are subsequently internalized, ingested, and degraded in lysosomes [7,26–28], which may
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facilitate intercellular communications through the transfer of cellular factors [29,30]. In this
review, current knowledge about ApoBDs and their therapeutic applications are discussed.

2. Cell Apoptosis

All multicellular organisms have a pathway that strictly regulates and controls cell
development, maintenance, and clearance. Controlling the number of cells is critically
important to maintain the balance between cell proliferation and clearance [31]. Apoptosis is
the core of the cell clearance process and plays an important role in normal cell homeostasis.
Apoptosis is a physiological form of programmed cell death and is critical for development
and tissue homeostasis in animals [1]. Cells actively participate in their own destruction
and specific cells are sacrificed for the greater interests of the body. The uniqueness of
this gene-directed cell suicide process is to remove residual cell components in adjacent
tissues without causing an inflammatory reaction [32,33]. Apoptosis is the key to removing
unnecessary cells and to protect cells from significant genotoxic damage.

Apoptosis is mediated by the caspase protein family. Current studies have character-
ized the intrinsic and extrinsic apoptosis pathways in the body [34] (shown schematically
in Figure 1, created with Biorender.com). The intrinsic pathway, also known as the mito-
chondrial pathway, is mainly involved in development and in genotoxic factor mediated
apoptosis, and is regulated by Bcl-2 family members [35,36]. Bcl-2 family members include
three subfamilies: pro-apoptotic BH3 only members (Bim, Bid, Puma, Noxa, Hrk, Bmf,
and Bad), pro-apoptotic effector molecules (Bax and Bak), and anti-apoptotic Bcl-2 family
proteins (Bcl-2, BCL XL, MCL1, A1, and Bcl-b) [37]. Usually, the expression of Bax/Bak is
inhibited by anti-apoptotic Bcl-2 family members. After stimulation with apoptosis signals
(such as growth and development, lack of growth factors or genotoxic factors), BH3-only
members start transcription or post-transcriptional upregulation. Activated BH3-only pro-
tein interacts with Bax/Bak or antagonizes anti-apoptotic Bcl-2 family members. Bax/Bak
induces the release of cytochrome c from mitochondria. Cytochrome c and APAF-1 form a
heptamer complex in a dATP/ATP dependent manner [38–41], which acts as a scaffold to
mediate caspase 9 activation and initiate apoptosis [42,43].
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Figure 1. ApoBDs derived from apoptotic cells induced by extrinsic and intrinsic pathways partici-
pating in intercellular communications.

The extrinsic pathway, also known as the death factor pathway, is composed of FasL
TNF-α, and TRAIL (TNF-related apoptosis inducing ligand). Cell death signals combine
with their specific receptors to produce disc (death inducing signaling complex), which
leads to recruitment and activation of caspase 8 and 10. Caspase 9 is activated by the
intrinsic pathway and caspase 8 and 10 are activated by the extrinsic pathway to mediate
caspase 3 activation. Activated caspase 3 can initiate apoptosis by cleaving more than 1300
cell substrates [44–46]. Caspase 7 was considered to be redundant with caspase 3; however,
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caspase 7 activation requires caspase 1 inflammasomes under inflammatory conditions,
while caspase 3 processing proceeds independently of caspase 1 [47].

3. The Generation of ApoBDs

Vesicles are one of the earliest morphological changes that can be recognized in the
process of apoptosis. The formation of membrane vesicles is the result of an increase
of intracellular hydrostatic pressure after actin-mediated contraction [48]. The repeated
formation and contraction process of apoptotic cells leads to the production of ApoBDs
and fills them with organelles and other cellular contents [49]. The formation of ApoBDs
also depends on another phenomenon called AVD (apoptotic volume decrease) [50]. AVD
is an early event accompanied by the appearance of membrane vesicles, which leads to
the atrophy of apoptotic cells [51,52]. Two stages of AVD have been described; the first
stage is characterized by a reversal of the normal Na+ and K+ gradients, the second stage
is related with cytoskeleton organization and further K+ extrusion. In this second stage,
both cytochrome C release and caspases seem to be involved and required for AVD. AVD is
required for cell dismantling into ApoBDs [53]. The inhibition of AVD by destroying the
cytoskeleton prevents the formation of ApoBDs [54].

Although most apoptotic cells will appear as membrane vesicles, some cells will
specifically form other types of membrane protrusions, such as microtubule spikes, beaded
apoptotic structures, and so on [48,55]. For example, neurons and some epithelial cells
use microtubule spikes instead of membrane vesicles to form ApoBDs. Apoptotic THP-1
cells and primitive human neutrophils show bead-like apoptotic structures. It is worth
noting that beaded cell apoptosis seems to be the most effective way to produce ApoBDs,
producing about 10–20 ApoBDs at the same time [48]. It has been found that bead-like
apoptotic structures and the formation of ApoBDs can be observed in neutrophils that
cannot produce membrane vesicles after transformation, which directly proves that the
formation of ApoBDs does not require membrane vesicles. However, the appearance of
membrane vesicles can promote the disintegration of apoptotic cells and the formation
of ApoBDs [56–58]. However, the detailed mechanism of the cell division into ApoBDs
remains unclear. Researchers believe that the disintegration of apoptotic cells into vesicles
requires the combined action of extracellular and intracellular factors as well as some
unknown forces to separate membrane processes from the main cell body.

4. The Physiological Role of ApoBDs

Phagocytes recognize the “find me” signal sent by apoptotic cells and the “eat me”
signal on ApoBDs and phagocytize them [59] to complete the clearance of ApoBDs through
ligand/receptor interaction (shown schematically in Figure 2, created with Biorender.com).
The process of apoptotic cell clearance is called “efferocytosis”. Efferocytosis can be divided
into four stages [60]: the first stage is to locate the target cell. The “find me” signal is a
soluble factor released by apoptotic cells that mediates the movement of phagocytes near
apoptotic cells. The release of the “find me” signal starts from the beginning of apoptosis
and forms a concentration gradient near apoptotic cells [49]. The “find me” signal is
recognized by receptors on phagocytes, prompting phagocytes to move to the vicinity
of ApoBDs along the concentration gradient. The second stage is the recognition of the
“eat me” signal on ApoBDs. The “eat me” signal is comprised of phosphatidylserine (PS)
and is externalized. Once the “eat me” signal is recognized and targeted by phagocytes,
the phagocytosis process starts [59]. The third stage is phagocytosis. Phagocytes undergo
cytoskeletal rearrangements and modifications to enable them to ingest ApoBDs and
complete phagocytosis [60]. The last stage is the digestion of cell residues by lysosomal
degradation (PS), as an “eat me” signal, can interact with the calcium phospholipid binding
protein Annexin V [61]. Annexin V is involved in coagulation because of its extensive
binding to PS. Annexin V derivatives have been developed to recognize apoptosis [62–64].
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enable ingestion of ApoBDs; Stage IV: Digestion of cellular remnants through lysosomal degradation.

Although ApoBDs are easily engulfed by phagocytes, intact apoptotic cells can also
be engulfed by phagocytes [65]. Moreover, some cells do not divide to generate ApoBDs.
Once the generation of EVs is inhibited, the ability of monocytes and macrophages to clear
apoptotic cells will be impaired [65,66].

An increasing amount of evidence has shown that the transfer, circulation, and even
the reuse of the contents of ApoBDs widely affects the functions of phagocytes [67]. Like ex-
osomes and microvesicles, ApoBDs also contain residual components of apoptotic cells and
play an important role in intercellular communications by transporting signal molecules.
ApoBDs can be engulfed by macrophages, DCs, fibroblasts, mesenchymal stem cells (MSCs),
endothelium cells, and epithelium cells. Studies have reported that ApoBDs contain DNA,
RNA, proteins, cytokines etc. [68,69], which are used for immune activation, recruiting of
apoptotic cells, and the regeneration of tissues. After ApoBDs are engulfed, the contents
will be released and regulate downstream receptor cells for intercellular communications
(shown schematically in Figure 1).

During apoptosis, the nuclear materials will be distributed into ApoBDs [70]. The
horizontal transfer of DNA can occur between different types of adjacent cells, so that DNA
materials can be transferred and integrated between cells from different sources to form a
new cell genome. For example, DNA contained in lymphoma-derived ApoBDs is engulfed
by surrounding fibroblasts, which leads to the integration of lymphoma-derived DNA into
the fibroblast genome [68,71]. Many studies have shown that functional molecules (such
as DNA, RNA, and protein) can be packaged into ApoBDs and have multiple regulatory
functions. Packaging functional molecules into ApoBDs for targeted therapy provides a
new approach for future treatments.

5. The Therapeutic Effect of ApoBDs on Systemic Diseases

Accumulated reports have revealed the critical role of ApoBDs in intercellular commu-
nications by transporting intracellular signaling molecules. The investigation and discovery
of ApoBDs has offered new insights for pathological therapeutic targets and explorations
for effective treatments (Table 1).
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Table 1. The regulatory mechanism of ApoBDs on systematic diseases.

Systematic Condition ApoBDs Regulatory Mechanism Reference

Bacterial infection Vancomycin loading cancer
cell-derived ApoBDs

Targets the “eat me” signal on ApoBDs and
vancomycin is delivered to kill

Staphylococcus aureus
[72]

Atherosclerosis Endothelial cell-derived ApoBDs Promotes endothelial progenitor cell
proliferation and differentiation [73,74]

Bone homeostasis 1. mOC-derived ApoBDs2.
Circulating ApoBDs

1. Induces osteoblast differentiation via the
PI3K/Akt/mTOR/S6K signaling pathway2.

Circulating ApoBDs maintain the
self-renewal and osteogenic/adipogenic

differentiation of BMMSCs via the
Wnt/β-catenin pathway

[75,76]

Hepatic fibrosis HepG2-derived ApoBDs Promotes HSC survival via the JAK1/STAT3
and PI3K/Akt/NF-κB pathways [77]

Chemotherapy CPT+ PR104A loading cancer
cell-derived ApoBDs

Enhances the ApoBD-based neighboring
effect and facilitates the deep penetration of

chemotherapeutic agents
[78]

Immunotherapy 1. Macrophage-derived ApoBDs2.
U-937/SH-SY5Y-derived ApoBDs

1. Triggers dendritic cell-mediated cross
presentation and CD8 + T cell activation
through MHC-I and CD11b2. Inhibits the

secretion of pro-inflammatory,
chemoattractant cytokines and chemokines

[79,80]

Diabetes NIT-1-derived ApoBDs

Reduces the expression of co-stimulatory
molecules CD40, CD86, and

proinflammatory cytokines of DCs, rebuilds
peripheral immune tolerance

[81]

Wound healing BMMSC-derived ApoBDs
Enhances the migration and proliferation of

fibroblasts, inducing the polarization of
macrophages to the M2 phenotype

[82]

ApoBDs: apoptotic bodies; mOC: mature osteoclast; BMMSC: bone marrow mesenchymal stem cell.

5.1. Bacterial Infections in Cancer

Anti-cancer treatments often have a high risk of Staphylococcus aureus infections due to
surgery, blood transfusions, radiotherapy and chemotherapy, as well as indwelling catheters
and drainage tubes [83]. Vancomycin is an efficient treatment for multidrug-resistant
Staphylococcus aureus (MRSA); however, it can have serious side effects during systemic
treatment, including thrombophlebitis, renal injury, and epidermal necrolysis, which can
result in more serious poisoning symptoms than the original infection [84]. Loading
vancomycin into cancer cell-derived ApoBDs to reconstitute ApoBDs (ReApoBDs) can
target cancer cells with the “eat me” signal on ReApoBDs and kill Staphylococcus aureus [72].

Studies have shown that cell-derived vesicles (CDVs) extracted from invasive cancer
cells can be used for the targeted delivery of miRNAs and nano-contrast agents for treat-
ment and imaging [85,86]. Therefore, a “nano bait” method has been proposed to treat
macrophages and tumor cells infected with Staphylococcus aureus by using vancomycin
loaded ReApoBDs. ReApoBDs were prepared from different cancer cells (SKBR3, MDAMB-
231, HepG2, U87-MG and LN229) and were used for vancomycin delivery. In vitro cell
culture studies showed that in Staphylococcus aureus-infected macrophages, U87-MG and
LN229 glioblastoma cell models, ReApoBDs effectively killed intracellular bacteria com-
pared with free vancomycin treatment [72]. Therefore, the recombinant nanocarrier greatly
improves the targeting of Staphylococcus aureus-infected macrophages and cancer cells.
ReApoBDs loaded with vancomycin have the potential to kill intracellular Staphylococ-
cus aureus infections and that strategy can be used to eliminate treatment-related MRSA
infection during anti-cancer treatment.
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5.2. Atherosclerosis

The development of atherosclerosis is mainly due to the accumulation of lipids and
inflammatory debris in vascular walls; however, it is also related to the apoptosis of
macrophages, smooth muscle cells (SMCs), and endothelial cells. Studies have shown
that ApoBDs generated by apoptotic endothelial cells possess the ability to regulate
atherosclerosis [73].

Pro-inflammatory cytokine IL-1α was found in endothelial cell-derived ApoBDs, and
moreover, the ApoBDs can induce monocytes to secrete chemokines, as well as to mediate
neutrophil inflammation [87]. Although the presence of ApoBDs will further exacerbate
inflammation and accelerate atherosclerosis, they may also work as mediators for vascular
repair through the recruitment of endothelial progenitor cells [74]. Studies have shown
that ApoBDs can promote the differentiation of endothelial progenitor cells. ApoBDs can
transfer miRNA-126 to recipient vascular cells, promote the production of CXCL12 and
recruit progenitor cells for tissue repair [73]. However, due to the lack of an accurate,
repeatable, and standardized technology for the isolation of ApoBDs, the application of
ApoBDs in atherosclerotic diseases needs to be further investigated.

5.3. Bone Homeostasis

During the bone remodeling process, the lifespan of osteoclasts is about 2 weeks after
which they undergo apoptosis [88,89], which will generate a large number of ApoBDs. It
has been shown that bone marrow monocytes (BMMs) are stimulated by nuclear factor
kappa B receptor activator ligand (RANKL) to differentiate into pre-osteoclasts (pOCs)
and mature osteoclasts (mOCs). Sodium alendronate (AlN) has been used to induce the
apoptosis of pOCs and mOCs and to generate their ApoBDs, respectively. It was found
that ApoBDs derived from mOCs can be engulfed by MC3T3-E1 pre-osteogenic cells and
promotes their viability. Among all EVs derived from osteoclasts, mOCs-ApoBDs have
a high concentration of RANK and possess the highest osteogenic potential. Mechanis-
tically, it was also revealed that mOC-ApoBDs induce osteoblast differentiation via the
PI3K/Akt/mTOR/S6K signaling pathway, which confirmed the osteogenic promoting
ability of mOC-ApoBDs [75].

Hence, ApoBDs are necessary to maintain systemic bone density. Studies of Fas-
deficient MRL/lpr and caspase 3−/− mice revealed that a reduced generation of ApoBDs
significantly impairs the self-renewal and osteogenic/adipogenic differentiation of bone
marrow MSCs. The systemic infusion of exogenous ApoBDs rescued the impairment of
MSCs and ameliorated the osteopenia phenotype. MSCs were able to engulf apoptotic
bodies via integrin αvβ3 and reuse ApoBD-derived ubiquitin ligase RNF146 and miR-328-
3p to inhibit Axin1. MSCs thereby activate the Wnt/β-catenin pathway. This suggests the
potential use of ApoBDs in the treatment of osteoporosis [76].

5.4. Hepatic Fibrosis

Hepatic stellate cells (HSCs) play a key role in the process of liver fibrosis. Under the
induction of fibrogenic stimulation, HSCs were activated and differentiated into myofibrob-
lasts. HSC survival is central to the progression of liver fibrosis and the induction of HSC
apoptosis can rescue liver fibrosis. Phagocytosis of ApoBDs promotes HSC survival via the
JAK1/STAT3 and PI3K/Akt/NF-κB pathways [77]. Targeted treatment can contribute to
the recovery of liver fibrosis.

5.5. Enhancement of the Effect of Chemotherapy Drugs

Chemotherapeutic nanomedicines can exploit the neighboring effect to increase tu-
mor penetration; however, the neighboring effect is limited due to the consumption of
chemotherapeutic drugs and the drug resistance of internal hypoxic tumor cells. ApoBDs
were shown to carry the remaining drugs into neighboring tumor cells after apoptosis [78].
It was reported that camptothecin (CPT) could kill tumor cells with a normal external
oxygen content to produce ApoBDs, while the hypoxia-activated prodrug PR104A re-
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mained active. The remaining drugs can be effectively transported into tumor cells through
ApoBDs. This ApoBD-mediated neighboring effect provides a new approach to enhance
the efficacy of chemotherapeutic drugs, which may improve the therapeutic efficiency of
clinical nano drugs in the future.

5.6. Immunotherapy and Immune Defense

In pathological conditions such as cancers and infections, ApoBDs contain antigens
from cancer cells and pathogens, which can be recognized by the immune system. Since
ApoBDs are easily engulfed by antigen-presenting phagocytes such as DCs, they can
activate an adaptive T cell response through the cross antigen-presenting process [90,91].
Macrophages will undergo apoptosis after a mycobacteria infection. The ApoBDs generated
from apoptotic macrophages contain pathogen antigens, which can trigger dendritic cell-
mediated cross presentation and CD8+ T cell activation through MHC-I and CD11b [79].
Infections can be controlled by inhibiting the apoptosis of macrophages, which not only
confirms that ApoBDs possess a strong ability to initiate adaptive immune responses, but
also reveals their potential application in vaccine development and immunotherapy.

Meningeal epithelial cells (MECs) are the cellular components of the meninges, which
work as a barrier for the central nervous system, establish an interface between neuronal
tissues and cerebrospinal fluid, and are also a part of the immune system. MECs are highly
activated phagocytes, which can engulf and digest apoptotic cells. MECs are immune
suppressive via the inhibited secretion of pro-inflammatory, chemoattractant cytokines and
chemokines following the uptake of apoptotic bodies to shut down immune responses in
the brain [80].

5.7. Diabetes

Type I diabetes is due to the autoimmune destruction of insulin-producing B cells in the
islets. An ideal immunotherapy should inhibit the autoimmune destruction, avoid systemic
side effects, and promote islet regeneration. Apoptotic cells, as the source of autoantigens,
are cleared rapidly by macrophages and DCs through an immunologically silent process
that contributes to maintaining tolerance. DCs that produce peripheral immune tolerance
may open new therapeutic approaches to prevent or alleviate autoimmunity.

In one study, immature DCs were obtained from the bone marrow of non-obese
diabetes (NOD) mice and were pulsed with antigen-specific ApoBDs from the beta cell
line NIT-1 [81]. The DCs with phagocytosed apoptotic cells reduced the expression of co-
stimulatory molecules CD40 and CD86 and proinflammatory cytokines, failed to complete
the antigen presentation process, rebuilt peripheral immune tolerance, and reduced the
incidence rate of diabetes in NOD mice. Those findings proved the regulatory role of
ApoBDs in type I diabetes and opened new therapeutic approaches for the prevention or
remission of autoimmunity.

5.8. Wound Healing

To identify new treatments for large-area skin wounds, an increasing number of
studies has shown that bone marrow MSCs can accelerate the healing of skin wounds and
restore an intact and orderly skin structure [92]. ApoBDs derived from bone marrow MSCs
further enhanced the migration and proliferation of fibroblasts and accelerated skin wound
healing by inducing the polarization of macrophages to the M2 phenotype [82].

6. Engineering and Recombination of ApoBDs

Engineered and recombinant EVs carrying effective therapeutic molecules are ideal
candidates for the treatment of diseases (shown schematically in Figure 3, created with
Biorender.com). They can amplify the targeting and efficacy of EVs treatments, as well as
maximize the therapeutic roles of EVs to disrupt the process of disease development.
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Several studies have reported that the recombination of EVs can be achieved by modi-
fying the donor cells [93–100]. In addition, to engineer the construction of EVs, multiple
methods for therapeutic molecule loading can be used. Catalase-loading is one construc-
tion method for EVs that has proven to be a versatile strategy to treat inflammatory and
neurodegenerative disorders [101]. Electroporation can be used to load target exogenous
siRNAs into EVs, and intravenously injected engineered EVs can result in the knockdown
of specific genes and a therapeutic potential of recombinant EV-mediated siRNA delivery
has been observed [102]. Sonication has been used as an approach to actively load func-
tional small RNAs into EVs with minimal detectable aggregation, which can then be taken
up by recipient cells and are capable of targeting mRNA knockdown leading to reduced
protein expression [103]. Chimeric ApoBDs functionalized with a natural membrane and
modular delivery system can be applied for the modulation of inflammation [104]. The
combination of natural neutrophils and mesoporous silica nanoparticles loaded with hexyl
5-aminolevulinate hydrochloride (HAL) exhibited excellent inflammation-tropism and
immunoregulatory properties in myocardial infarction [105].

However, the existing methods still have considerable limitations: (a) residual contents
irrelevant to the purpose of treatment cannot be completely removed, which may pose a
potential threat to the body [106]; (b) EVs activate downstream signals to regulate receptor
cells only after the receptor cells release the bioactive molecules contained therein. However,
EVs entering receptor cells can be intercepted by the lysosomal system, which reduces
the content of EVs in the cells and significantly reduces their therapeutic effect [107]; and
(c) surface modified chemical bonds that increase the targeting of EVs may lead to the
destruction of the membrane structure [108].

7. Concluding Remarks and Prospects

Extensive research studies on EVs have proven that ApoBDs not only phagocytize
residual materials of apoptotic cells, but, like exosomes and microvesicles, ApoBDs also
play an important role in intercellular communications by transporting signaling molecules.
The natural combination of ApoBDs and phagocytes provides a unique opportunity for
future treatment schemes. They are bound to provide new ideas for immunotherapy,
vaccine development, tissue regeneration, drug delivery, and disease diagnosis, which can
maximize the therapeutic effects and specificity.
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Although the applications of ApoBDs have great prospects, there are still some key
points that need to be further investigated, including their heterogeneity, storage condi-
tions, quality control, standardized isolation, and purification. It is necessary to further
understand the biological mechanism of ApoBDs. Various molecules have been proposed
as signals of phagocytosis; however, the consensus remains unclear. Further investigation
of the targeting, classification, and engulfing mechanism of ApoBDs will magnify their
therapeutic effects and overcome those limitations. ApoBDs play regulatory roles in multi-
ple physiological and pathological processes, and the manipulation and reconstruction of
ApoBDs hold great promise for curing systemic diseases.
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