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Purpose: To apply machine learning models for predicting the number of pro re nata
(PRN) injections of antivascular endothelial growth factor (anti-VEGF) for neovascular
age-relatedmacular degeneration (nAMD) in two years in the Comparison of AMD (age-
related macular degeneration) Treatments Trials.

Methods: The data from 493 eligible participants randomized to PRN treatment of
ranibizumab or bevacizumabwere used for training (n= 393) machine learningmodels
including support-vector machine (SVM), random forest, and extreme gradient boost-
ing (XGBoost) models. Model performances of prediction using clinical and image data
from baseline, weeks 4, 8, and 12 were evaluated by the area under the receiver operat-
ing characteristic curve (AUC) for predicting few (≤8) ormany (≥19) injections, byR2 and
mean absolute error (MAE) for predicting the total number of injections in two years. The
best model was selected for final validation on a test dataset (n = 100).

Results: Using training data up to week 12, themodels achieved AUCs of 0.79–0.82 and
0.79–0.81 for predicting fewandmany injections, respectively,withR2 of 0.34–0.36 (MAE
= 4.45–4.58 injections) for predicting total injections in two years from cross-validation.
In final validation on the test dataset, the SVM model had AUCs of 0.77 and 0.82 for
predicting few andmany injections, respectively, with R2 of 0.44 (MAE= 3.92 injections).
Important features included fluid in optical coherence tomography, lesion characteris-
tics, and treatment trajectory in the first three months.

Conclusions:Machine learning models using loading dose phase data have the poten-
tial to predict two-year anti-VEGF demand for nAMD and quantify feature importance
for these predictions.

Translational Relevance: Prediction of anti-VEGF injections using machine learning
models from readily available data, after further validation on independent datasets, has
the potential to help optimize treatment protocols and outcomes for nAMD patients in
an individualized manner.

Introduction

Age-related macular degeneration (AMD) is a
leading cause of visual loss and blindness worldwide.1,2
Antivascular endothelial growth factor (anti-VEGF)
therapy is a mainstay of treatment for neovascular
AMD (nAMD) based on existing clinical practice
guidelines, because various studies from different

populations and of different design all support its
efficacy and safety for nAMD.3 The Comparison of
AMD Treatments Trials (CATT) evaluated the relative
efficacy and safety of two anti-VEGF treatments
(ranibizumab, bevacizumab) treated monthly or pro re
nata (PRN) for macular neovascularization (MNVs).4
TheCATT established that anti-VEGF therapy admin-
istered PRN achieved similar gain as monthly treat-
ment in visual acuity (VA) at 1 year and about 2 letters
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less gain than monthly treatment at 2 years.4,5 Patients
with nAMD require frequent long-term follow-up and
anti-VEGF treatment, and monthly injections for all
nAMD patients would be impractical because of the
large socioeconomic burden on healthcare systems, as
well as patients. For this reason, PRN or treat and
extend (T&E) treatment strategies based on the nAMD
disease activities evaluated by ocular coherence tomog-
raphy (OCT) and VA are commonly used to manage
patients with nAMD, allowing for patients to maintain
or improve their VA without as many injections as
monthly treatment.6,7

Previous studies found that in patients receiv-
ing PRN treatment, the number of anti-VEGF
injections varied substantially, indicating differen-
tial responses to anti-VEGF treatment in eliminat-
ing fluid.5,8 This variation is likely to be influenced
by many factors specific to each patient, including
severity of disease, lesion composition, and genetic
factors.8–10 Because PRN and T&E protocols are
the most popular approaches for treating nAMD
in clinical practice, identifying prognostic factors
and being able to predict early-on the number of
injections of anti-VEGF therapy a patient would
need have great value.6,8,11 Knowing the number of
anti-VEGF injections a patient may require in the
long-term is useful in consultations between physi-
cians and patients by allowing for setting patient
expectations and planning for the most appropri-
ate regimen, potentially enabling them to make more
informed decisions about the best course of treat-
ment and improving their anti-VEGF treatment adher-
ence. Because clinicians may have different experiences
and varying judgements, machine learning models
may provide useful tool for standardizing predictions.
Thus such prediction has the potential to lead to
the improved anti-VEGF treatment protocols that
can help reduce the burden of anti-VEGF treatments
and may result in individualized, flexible treatment
regimens.

Machine learning models, including random forest
models, natural gradient boosting (NGBoost) models,
and neural networks, have demonstrated great promise
for predicting the anti-VEGF treatment demand for
nAMD and other retinal diseases.12–15 These previ-
ous machine learning models primarily used morpho-
logical features extracted from OCT scans taken at
baseline and up to the first few months of treatment.
These models generally demonstrated poor prediction
at baseline, but achieved better predictions with the
addition of OCT images in the first two to threemonths
after the initial treatment, reaching their best values
for the area under the receiver operating characteristic
(ROC) curve (AUC) between 0.68 and 0.85 for predict-

ing low and high numbers of injections.12–15 However,
these machine learning models were based on limited
sample sizes and did not include other readily avail-
able predictors such as MNV lesion features, VA, anti-
VEGF injection trajectory during the loading dose
phase, and other clinical variables. Additionally, most
of these studies did not validate a final machine learn-
ing model on a dataset independently reserved for
evaluating the models’ performances.

To overcome the limitations of the previous studies,
we used the rich CATT data to develop multiple
machine learning models and to validate the best
machine learning model for predicting both the high
and low treatment demand, as well as the total
number of injections over the course of 2 years for
nAMD patients randomized to PRN treatment with
ranibizumab or bevacizumab for 2 years.

Methods

Study Design

This is a secondary analysis of CATT data publicly
available at https://hyperprod.cceb.med.upenn.edu/
catt/catt_index.php. Details on the study design and
methods of the CATT have been reported previously4,5
and on ClinicalTrials.gov (NCT00593450). Only the
major features related to the evaluation of factors
within the first 12 weeks and PRN treatment protocol
are described here.

Study Participants

The institutional review board associated with
each center approved the study protocol and a
written consent form was obtained from each partic-
ipant. Participants enrolled from 43 clinical centers
in the United States were randomized to one of
the four treatment groups: (1) ranibizumab monthly;
(2) bevacizumab monthly; (3) ranibizumab PRN; and
(4) bevacizumab PRN. The study enrollment crite-
ria included age of 50 or older, the study eye (one
eye per patient) had untreated active MNV caused
by AMD, and VA between 20/25 and 20/320 on
electronic VA testing. The presence of active MNV,
as seen on fluorescein angiography, and fluid, as seen
on time-domain OCT, located either within or below
the retina or below the retinal pigment epithelium
(RPE) were required to establish the presence of
active MNV. Either neovascularization or its sequela
(i.e., pigment epithelium detachment, subretinal or
sub-RPE hemorrhage, blocked fluorescence, macular
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edema, or intraretinal, subretinal, or sub-RPE fluid)
needed to be under the fovea.

Study Procedures

During the initial visit, participants provided
information on demographic characteristics and
medical history. Certified photographers followed a
standard protocol to obtain stereoscopic, color fundus
photographs, and fluorescein angiograms at baseline,
year 1, and year 2. OCT images were acquired for all
participants at baseline and weeks 4, 8, 12, 24, 52,
76, and 104. The OCT imaging during year 1 was
performed with time-domain OCT using Stratus OCT
(Stratus software version 6.0 or higher; Carl Zeiss
Meditec, Dublin, CA, USA).16 Spectral-domain OCT
was used for 22.6% of scans during year 2, performed
on either Cirrus HDOCT (Cirrus software version 5.2
or higher; Carl Zeiss Meditec) or the Spectralis OCT
(Spectralis software version 5.3 or higher; Heidelberg
Engineering, Carlsbad, CA, USA).16

As described in a previous CATT publication,17 two
masked trained readers in the CATT Fundus Photo-
graphic Reading Center independently evaluated lesion
characteristics based on baseline fundus photographs
and fluorescein angiograms. Qualitative evaluations
of lesion characteristics included identification of
the lesion location, lesion type, lesion composition,
retinal angiomatous proliferation features, hemorrhage
contiguous with the lesion, serous retinal pigment
epithelial detachment, atrophic or fibrotic scars, any
hemorrhage associated with lesion (not necessarily
contiguous) and geographic atrophy anywhere in the
macula. Quantitative measurements of the MNV area
and of the total area of MNV lesion were made using
Image J (http://rsbweb.nih.gov/ij/, accessed on August
27, 2022). Discrepancies between two trained readers
were adjudicated between the readers and Director of
the Photograph Reading Center.17

An OCT images evaluating team, composed of
two independent trained readers and a senior reader,
at the OCT Reading Center, masked to the treat-
ment assignment, evaluated each OCT scan.18 Any
discrepancies between the two readers were adjudi-
cated by an independent senior reader. OCT images
were assessed with respect to the presence of fluid,
location (intraretinal, subretinal, sub-RPE) of fluid,
whether fluid was foveal, RPE elevation, subreti-
nal hyper-reflective material, vitreous attached within
central 3 mm (vitreomacular traction), and epireti-
nal membrane. In addition, trained readers measured
the total thickness at the foveal center point, which
was subdivided into three measurements: thickness of
retina, subretinal fluid, and subretinal tissue complex

(material between Bruch’s membrane and outer retina
or subretinal fluid, which includes pigment epithelial
detachment, MNV, blood and fibrosis).18

Certified VA examiners, who were masked to the
treatment assignments, used the electronic visual acuity
tester to measure VA after refraction in both eyes
following the Diabetic Retinopathy Clinical Research
Network’s protocol.19 These measurements were taken
for participants at baseline and weeks 4, 12, 24, 36, 52,
64, 76, 88, and 104. The VA scores from the electronic
visual acuity tester ranged from 0 to 100, correspond-
ing with the Snellen equivalents of worse than 20/800
to 20/10.

PRN Treatment Guidelines

All the CATT participants received baseline injec-
tion with ranibizumab or bevacizumab. Every 28 days,
participants assigned to PRN treatment groups under-
went OCT and were evaluated for retreatment by clini-
cal center study–certified ophthalmologist based on the
evidence of active MNV. Signs of active MNV were
defined as fluid on OCT, new or persistent hemor-
rhage, decreased VA as compared with the previous
examination, or dye leakage or increased lesion size
on fluorescein angiography. Ophthalmologists at each
clinical center, who were unaware of drug assignments,
made retreatment decisions. Fluorescein angiography
was performed at the discretion of the ophthalmologist
to aid in retreatment decisions.

The clinical center ophthalmologist may have
withheld treatment if a patient experienced a serious
adverse event in the study eye after treatment including
intraocular inflammation ≥2+, intraocular pressure
≥30 mm Hg, vitreous hemorrhage with a ≥30 letters
loss in VA, new sensory rhegmatogenous retinal break
or detachment (including macular hole), or local infec-
tion. The clinical center ophthalmologist may also have
suspended the intravitreal injections of the study drug
if, in the best medical judgment of the treating ophthal-
mologist, it is believed that there is no chance of any
benefit to the patient from additional intravitreal injec-
tions in terms of preserving vision or retinal anatomy.

Machine Learning Models

Among the eligible patients who were randomized
to PRN treatment of ranibizumab or bevacizumab
at baseline, we applied machine learning models for
predicting the burden of PRN treatment in terms of
three outcomes: (1) whether patients would have few
(≤8) PRN injections in two years; (2) whether patients
would have many (≥19) PRN injections in two years;
or (3) the total number of PRN injections in two years.

http://rsbweb.nih.gov/ij/
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Our prediction is for PRN injections during a two-
year period since the CATT participants randomized
to PRN treatment regimen were treated and followed-
up for two years following the standardized clinical
trial protocol.4,5 Other comparable studies also used a
follow-up period of one to two years.12–15 We prespec-
ified eight PRN injections in two years as the upper
bound for having few injections, as that would be equiv-
alent to a rate of at most one injection per quarter. We
also prespecified 19 PRN injections in two years as the
cutoff for having many injections because the range of
19 injections to a maximum of 26 injections is equiv-
alent to the range for few injections of a minimum of
one injection to eight injections.

We applied three machine learning models: (1) the
support-vector machine (SVM),20 (2) random forest,21
or (3) extreme gradient boosting (XGBoost).22 We
selected these models because they are among the
most widely used and are all capable of making
predictions for both classification and regression tasks.
The SVM model is effective in transforming data to
high-dimensional spaces to find a separation between
different classes and to predict a continuous response
variable with high generalization ability.20 Random
forest models use an ensemble of tree predictors that
improves overall results and can prevent overfitting.
Random forests have also already been demonstrated
to be able to predict levels of treatment demand
and the number of injections nAMD patients would
receive.12–15 The XGBoost model makes use of gradi-
ent tree boosting with an ensemble of tree predic-
tors like the random forest model but is trained in an
additive manner. It has achieved considerable success
in machine learning competitions, including Kaggle,
and can be applied to a broad range of problems.22

For applying machine learning models to the CATT
data, we split the data into a training dataset (80% of
all samples) for training machine learning models and
a test dataset (20% of all samples) for final validation
of the best machine learning model identified from the
training dataset. We trained machine learning models
using participants’ features available up to four differ-
ent time points: baseline, week 4, week 8, and week
12. The data available at baseline included demograph-
ics, clinical characteristics, randomized drug group
(ranibizumab or bevacizumab), VA at study eye and
fellow eye, qualitative and quantitative assessment of
lesion characteristics in fundus photos and fluorescein
angiograms, and OCT features including presence and
location of fluid and thickness. The machine learning
models for prediction at weeks 4, 8, and 12 used all the
baseline data, and additional data available up to that
week (OCT data, VA, and the number of PRN injec-
tions up to thatweek). The data used formachine learn-

ingmodelling at each of the four time points is included
in Supplementary Table S1.

For each time point, three of each type of machine
learning model (SVM, random forest, XGBoost) were
trained for predicting each of three outcomes (one for
predicting few injections, one for predictingmany injec-
tions, and one for predicting the total number of injec-
tions), for a total of nine unique models at each time
point. We performed 10-fold cross-validation using the
training dataset for tuning the hyperparameters of our
machine learning models. In 10-fold cross-validation
at each time point, the training dataset is first divided
into 10 nonoverlapping subsets of approximately equal
size. Each subset is selected as a validation dataset, and
the remaining nine subsets are used to train a model.
This model is used to predict on the validation dataset,
and this process occurs 10 times, one for each possible
validation dataset across the 10 folds, with the mean
performance from 10 folds used for model evaluation.
This process was repeated for many combinations of
hyperparameters to determine the best set of hyperpa-
rameters for each model. We tuned hyperparameters
based on optimization of the F1 score (the harmonic
mean of recall and precision) to train the classifica-
tion models for predicting whether patients had few
and many injections. For the regression models for
predicting total number of injections, we tuned hyper-
parameters based on the optimization of R2 (ameasure
for quantifying the amount of variation in number of
injections explained by the predictors). Once the hyper-
parameters were selected in this way, one final model
can be fit on the entire training dataset available at each
time point using these hyperparameters.

Based on the 10-fold cross-validation results of
the machine learning models (SVM, random forest,
XGBoost), the best model was selected for final valida-
tion on the test dataset. The primary measures for
assessing machine learning model performance in the
training dataset and test dataset were the AUC for
predicting low and high numbers of PRN injections,
and R2 and mean absolute error (MAE) for prediction
of the total number of PRN injections in two years.

The importance of each feature was quantified by
the permutation importance, defined by the decrease in
the model’s AUC for classification and R2 for regres-
sion, after shuffling the feature.21 Feature importance
was evaluated using both the training dataset and test
dataset for the best machine learning model identified
from cross-validation in the training dataset.

All of the machine learning models were imple-
mented using Python 3.9 and its open-source package
scikit-learn version 1.1.1. The code for this machine
learning analysis can be provided on request to the
authors.
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Results

PRN Cohort

Among 598 CATT participants randomized to
PRN treatment with ranibizumab or bevacizumab at
baseline, 497 (83.1%) participants were eligible for
this analysis. Participants were excluded from analy-
sis because of death (n = 40), not in the second year
of the study (n = 21), treatment futility (n = 6), and
missed visits or not treated because of contraindica-
tions inmore than six out of 26 study visits in two years
(n = 34).

Among the 497 participants eligible for analysis,
the total number injections over two years (out of 26
maximum injections) ranged from one to 26 injections
(median= 13) with amean (standard deviation) of 13.4
(6.8). In two years, 143 patients (28.8%) had eight or
fewer injections, 224 (45.1%) had nine to 18 injections,
and 130 (26.2%) had 19 or more injections. Among the
497 eligible patients, four patients did not have baseline
OCT grading data because of poor image quality
and thus were excluded from the machine learning
analysis.

Cross-Validation for Predicting PRN
Injections in 2 Years in Training Dataset

We evaluated SVM, random forest, and XGBoost
machine learning models for predicting few (≤8) injec-
tions, many (≥19) injections, and the total number of
injections in two years. The mean results from 10-fold
cross-validation of each of these models in the training
dataset for predicting at baseline, week 4, week 8, and
week 12 are presented in Table 1 and Supplementary
Figure S1.

For predicting few (≤8) injections, the mean AUC
from the SVMmodel increases from 0.64 for prediction
at baseline, 0.72 at week 4, 0.78 at week 8, and 0.82 at
week 12. A similar increase in mean AUC was seen for
prediction using the random forest (0.65 at baseline to
0.81 at week 12) and the XGBoost (0.65 at baseline to
0.79 at week 12) (Supplementary Fig. S1A).

For predicting many (≥19) injections, the mean
AUC from the SVM model increases from 0.70 for
prediction at baseline, 0.77 at week 4, 0.78 at week 8,
and 0.81 at week 12. The mean AUCs from the random
forest (0.63 at baseline to 0.79 at week 12) andXGBoost
(0.63 at baseline to 0.80 at week 12) were lower but

Table 1. Tenfold Cross-Validation Results With Mean and SD for Predicting PRN Injections in Two Years Using
Demographic andOcular Characteristics Available at Baseline,Week 4,Week 8, andWeek 12 in the TrainingDataset

Baseline Week 4 Week 8 Week 12
Model (n = 393)* (n = 387)* (n = 374)* (n = 352)*

AUC for predicting few (≤8) PRN injections in two years,
mean (SD)
SVM 0.64 (0.07) 0.72 (0.08) 0.78 (0.07) 0.82 (0.06)
Random Forest 0.65 (0.06) 0.69 (0.07) 0.75 (0.10) 0.81 (0.07)
XGBoost 0.65 (0.07) 0.70 (0.08) 0.76 (0.08) 0.79 (0.07)

AUC for predicting many (≥19) PRN injections in two years,
mean (SD)
SVM 0.70 (0.06) 0.77 (0.08) 0.78 (0.09) 0.81 (0.09)
Random Forest 0.63 (0.08) 0.68 (0.09) 0.75 (0.07) 0.79 (0.05)
XGBoost 0.63 (0.10) 0.69 (0.06) 0.78 (0.07) 0.80 (0.05)

R2 for predicting total number of PRN injections in two years,
mean (SD)
SVM 0.06 (0.06) 0.20 (0.07) 0.30 (0.16) 0.35 (0.18)
Random Forest 0.10 (0.07) 0.22 (0.08) 0.31 (0.16) 0.36 (0.17)
XGBoost 0.03 (0.17) 0.20 (0.14) 0.31 (0.15) 0.34 (0.21)

Mean absolute error for predicting total number of PRN injections
in two years, mean (SD)
SVM 5.76 (0.69) 5.27 (0.62) 4.70 (0.58) 4.45 (0.54)
Random Forest 5.59 (0.63) 5.17 (0.60) 4.59 (0.48) 4.58 (0.45)
XGBoost 5.59 (0.70) 5.09 (0.75) 4.61 (0.46) 4.48 (0.52)

SD, standard deviation.
*Patients with incomplete data at the specified time point were not included.
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Table2. Final ValidationResultsWith SDFrom1000-Fold Bootstrapping for the Selected SVMModel for Predicting
Number of PRN Injections in Two Years Using Demographic and Ocular Characteristics Available at Baseline, Week
4, Week 8, and Week 12 in the Test Dataset

Baseline Week 4 Week 8 Week 12
(n = 100)* (n = 98)* (n = 95)* (n = 89)*

AUC (Bootstrapped SD) for predicting few (≤8) PRN injections in
two years

0.46 (0.07) 0.63 (0.07) 0.70 (0.07) 0.77 (0.07)

AUC (Bootstrapped SD) for predicting many (≥19) PRN injections
in two years

0.57 (0.08) 0.72 (0.06) 0.79 (0.05) 0.82 (0.04)

R2 (Bootstrapped SD) for predicting total number of PRN
injections in two years

0.01 (0.07) 0.16 (0.08) 0.25 (0.10) 0.44 (0.08)

Mean Absolute Error (Bootstrapped SD) for predicting total
number of PRN injections in two years

5.23 (0.35) 4.84 (0.33) 4.41 (0.34) 3.92 (0.31)

SD, standard deviation.
*Patients with incomplete data at the specified time point were not included.

showed similar trends of increasing over time (Supple-
mentary Fig. S1B).

The SVM model provides the highest mean AUCs
in cross-validation for predicting both few injections
(AUC = 0.82) and many injections (AUC = 0.81) by
using data up to week 12. The ROC curves from each
individual fold of the cross-validation for the SVM
model in the training data at all four time points are
shown in Supplementary Figure S2.

For the prediction of the total number of PRN
injections in two years using only baseline data, the
R2 is highest from the random forest model (0.10),
and lowest from the XGBoost model (0.03). The R2

from the three machine learning models increases over
time, with R2 of 0.20-0.22 for the week 4 predic-

tion, 0.30-0.31 for the week 8 prediction, and 0.34-
0.36 for the week 12 prediction (Supplementary Fig.
S1C). The MAE for the baseline prediction is 5.76
injections for the SVM model and 5.59 injections for
both the random forest and XGBoost models. The
MAE decreases over time, reaching 4.45 injections in
the SVMmodel, 4.48 injections in the XGBoost model,
and 4.58 injections in the random forest model for
predictions using data available up to 12weeks (Supple-
mentary Fig. S1D).

As shown in Table 1, different numbers of patients
were available at each time point in this analysis
due to missing data or loss to follow-up, which
may bias our evaluation of the performances of
machine learning models over time. We performed a

Figure 1. ROC curves for the selected SVM model for predicting (A) few (≤8) and (B) many (≥19) PRN injections in 2 years using
demographic and ocular characteristics available at baseline (n = 100), week 4 (n = 98), week 8 (n = 95), and week 12 (n = 89) in the
test dataset.
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Figure 2. Relative feature importance for the selected SVM model for predicting PRN injections in 2 years using demographic and ocular
characteristics available at baseline (n = 393) and week 12 (n = 352) in the training dataset. The top 10 features by relative importance are
displayed for the baseline analyses (A, few (≤8) injections; B, many (≥19) injections; C, number of injections) and week 12 analyses (D, few
injections; E, many injections; F, number of injections).

sensitivity analysis by restricting to 352 patients who
had complete data at each of the time points (baseline
and weeks 4, 8, and 12). As shown in Supplementary
Table S2, results consistently demonstrated improved
model performance at later time points in line with the
main cross-validation results in Table 1 that consider
all patients with complete data at a specific time
point.

Results fromModel Validation on Test
Dataset

From the three machine learning models, the
SVM model was selected for final validation on the
test dataset, given its better prediction performance
than the random forest and XGBoost models at
12 weeks, with superior performance in the classi-
fication tasks and similar prediction in the regres-
sion task at other time points compared to the
random forest and XGBoost models in 10-fold
cross-validation.

The SVMprediction performance in the test dataset
was overall consistent with the results in the training
dataset (Table 2, Supplementary Fig. S3). The model’s
best performance occurred using data up to week 12,
with AUC values of 0.77 for the prediction of few
injections (Fig. 1A, Supplementary Fig. S3A) and 0.82
for predictingmany injections (Fig. 1B, Supplementary
Fig. S3B). For predicting the total number of injections
in two years, the SVMmodel achieved its greatestR2 of

0.44 (Supplementary Fig. S3C) and its minimumMAE
of 3.92 injections (Supplementary Fig. S3D) when
using data up to week 12, consistent with the cross-
validation results. Supplementary Figure S4 shows the
agreement between the observed and predicted number
of injections in the test dataset using data up to
week 12.

Feature Importance
From the SVMmodel, the top 10 important features

based on their relative importance (calculated by divid-
ing each feature importance by the maximum feature
importance) in the training dataset are displayed
in Figure 2 for the baseline and week 12 analyses.
Relative feature importance is shown in Supplemen-
tary Figure S5 for week 4 and week 8 analyses using
the training dataset, and in Supplementary Figure S6
for baseline and weeks 4, 8, and 12 in the test dataset.
Fluid presence (intraretinal, subretinal, or sub-RPE)
assessed in OCT was frequently among the features
with the greatest importance, with baseline lesion
characteristics and the number of injections received
up to the specified time point also having relatively
high importance. Baseline lesion characteristics include
MNV lesion area, lesion location (subfoveal or non-
subfoveal), lesion composition (considering lesions
such as MNV, hemorrhage, blocked fluorescence, and
serous retinal pigment epithelial detachment), and
lesion type (occult only, minimally classic, or predomi-
nantly classic).
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Discussion

In this secondary analysis of CATT data, we
assessed the ability of multiple machine learning
models for predicting anti-VEGF treatment demand of
nAMD patients including few (≤8) anti-VEGF injec-
tions, many (≥19) injections, and the total number of
injections in two years. Notably, the rich CATT data
enabled us to include additional data beyond OCT
features in our analysis that are also generally available
in real-world settings, such as demographics, baseline
lesion features in fundus photographs, VA, treatment
trajectory in the loading phase (first three months),
and other clinical variables. Our results showed that
machine learning models using baseline data did not
provide good prediction for the level of treatment
demand or number of injections, but the inclusion of
data in the first three months of anti-VEGF treatment
lead to substantial improvement in prediction perfor-
mance.

Understanding the injection demand in terms of
whether patients will receive few or many injections,
along with measures of confidence for these values,
is valuable for broadly gauging required treatment
frequency for patients and providers in everyday clini-
cal practice. Although providing a probability for every
possible value for potential number of injections over
the course of a 2-year period would be overwhelm-
ing and less practical in the clinical setting, we have
predicted the precise number of injections as a supple-
mentary piece of information for even further detail.
Not only could this information be of general inter-
est to patients, but with these predictions obtained in
an objective manner, patients and providers can also
better plan around the projected, long-term treatment
course necessary to achieve the desired therapeutic
effect, which may lead to the better treatment adher-
ence. Furthermore, this information enables physicians
and patients to consider other treatment options early-
on if the expected anti-VEGF injection burden exceeds
what the patient would be willing to tolerate.

Of the three types of machine learning models on
which we trained (SVM, random forest, XGBoost),
we selected the SVM model to evaluate on the test
dataset for final validation. Although the SVM model
is relatively simple, it allows for high generalization
ability by controlling the trade-off between complex-
ity and error rate, making it a useful model for classi-
fication and regression tasks.20 We found that the final
validation results from the test dataset are consistent
with the cross-validation results in the training dataset.
The SVM model ultimately achieved strong cross-
validation and final validation results when evaluated

in the context of existing studies that trained machine
learning models for similar tasks.12–15

Using data from 317 participants of the HARBOR
trial (ClinicalTrials.gov number, NCT00891735),
Bogunović et al.12 evaluated random forest models
for predicting low treatment demand (≤5 injections)
and high treatment demand (≥16 injections) with
ranibizumab PRN for nAMD in two years. When
trained primarily on patients’ OCT features from the
first two months in the clinical trial, these models
achieved AUCs of 0.70 and 0.77 from 10-fold cross-
validation for predicting low and high treatment
demand, respectively. However, their model perfor-
mance was not validated on a separate test dataset.

Using real-world data, Gallardo et al.13 similarly
trained random forest models for predicting the treat-
ment demand for patients on a T&E regimen of anti-
VEGF therapy for retinal diseases including nAMD.
These models using demographic information and
OCT morphological features from the first three visits
for 340 nAMD patients achieved AUCs of 0.79
from 10-fold cross-validation for predicting both low
(average treatment interval of ≥10 weeks) and high
(average treatment interval of ≤5 weeks) treatment
demand for nAMD patients in one year. Similarly, the
performance of these models was not validated on a
separate test dataset.

Using features extracted from real-world OCT scans
of 96 nAMDpatients treated with PRNor T&E proto-
cols, Pfau et al.14 trained several machine learning
models (LASSO, principal component, random forest,
NGBoost), to predict the total number of injections,
as well as to predict low (≤4 injections) and high
(≥10 injections) treatment demand in one year. The
random forest model yielded the greatest R2 of 0.39
from nested cross-validation. The random forest and
NGBoost models had the greatest AUCs of 0.68 for
predicting low treatment demand, whereas the princi-
pal component and random forest models had the
highest AUCs of 0.70 for predicting high treatment
demand.

Additionally, Romo-Bucheli et al.15 have even
explored an end-to-end deep learning architecture for
predicting anti-VEGF treatment requirements from
longitudinal retinal OCT scans for nAMD patients.
After being trained using OCT scans from the first
two months after initial treatment for 281 patients
treated PRN, in the test dataset of 69 patients this
approach yielded AUCs of 0.85 and 0.81 in predict-
ing low (≤5 injections) and high (≥16 injections) treat-
ment demand, as well as anR2 of 0.22 for total number
of injections in two years. Although this architec-
ture performs well for predicting low and high treat-
ment demands and is not limited to using only the
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prespecified extracted features fromOCT scans, it does
require that patients’ OCT scans be available to make
its predictions after being trained through a more
computationally intensive process. Additionally, this
approach only considers features from OCT scans and
does not consider other easily available data such as
demographics, VA, past treatment trajectory, and other
clinical characteristics.

Although deep learning, and artificial neural
networks more generally, are very powerful model-
ing tools, there are several reasons why we did not
evaluate them in our study because they are not as well
suited for our analysis. Neural networks are typically
used for more complex tasks, such as those with
much larger training datasets or for use with image
data.15,23 Additionally, neural networks can be likened
to a black-box model that complicates interpretation
and ascertaining feature importance.15 Understand-
ing feature importance was a valuable aspect of our
analysis, as we used the rich CATT data with many
predictors not previously evaluated for the prediction
of anti-VEGF treatment demand, including MNV
lesion features, VA, and anti-VEGF injection trajec-
tory during the loading dose phase. Furthermore, our
relatively simple SVM model that incorporates these
additional features achieved similar AUCs for predict-
ing low and high injections, as well as a larger R2 for
predicting the total number of injections compared to
Romo’s more computationally intensive deep learning
architecture.15 Nonetheless, further evaluation of the
ability of neural networks to predict anti-VEGF treat-
ment demand would be valuable for future research,
especially for cases in which more data are available for
training these models.

In comparison to previous studies, our SVMmodel
predictions at 12 weeks achieved highest AUCs up to
0.82 and 0.81 for predicting few and many PRN injec-
tions, respectively, and an R2 up to 0.35 for predicting
the total number of PRN injections in two years based
on the cross-validation results. Similarly, when evalu-
ated on the test dataset for final validation, our SVM
model achieved AUCs up to 0.77 and 0.82, respectively,
for predicting few and many injections, and an R2 of
0.44 for predicting the total number of PRN injec-
tions in two years. The similar AUCs and improved
R2 of our models for long-term PRN injection predic-
tion when compared to those achieved by Bogunović et
al.,12 Gallardo et al.,13 Pfau et al.,14 and Romo-Bucheli
et al.15 support that models like ours can supplement
those from the previous studies in clinical applica-
tion with predictive power gained from considering
additional readily available data beyond those just from
OCT images. Predictors from the CATT data that we
used in training our models, including lesion features,

VA, and treatment trajectory, can be easily obtained
and have the potential to enhance prediction accuracy
in the clinical setting.

Based on both our cross-validation and final valida-
tion results, the SVM model was able to better predict
whether a patient would need many injections than
whether a patient would need few injections at earlier
time points. The SVM model achieved a mean AUC
for cross-validation and AUC for final validation of
at least 0.70 using data available at baseline and at
week 4, respectively, for predicting many injections,
but required an additional four weeks of data to
achieve similar performance for predicting few injec-
tions. However, when using data available at 12 weeks,
the model’s performances for predicting few and many
injections were more similar.

For predicting the total number of injections in
the two years, the SVM model, like the other models,
performed poorly using data at baseline. Adding
features from subsequent weeks allowed the models to
substantially improve their predictions, increasing the
mean R2 by almost 0.30 in cross-validation when using
the data up to the first 12 weeks. A more dramatic
increase was seen in final validation from 0.01 using
baseline data to 0.44 using week 12 data, underscoring
the value of the patients’ features collected over time for
predicting the number of injections. A similar improve-
ment was observed in MAE between the SVM model
trained only using baseline data and the SVM model
trained using data available at week 12.

The ability to adequately predict anti-VEGF treat-
ment demand for nAMD patients can have impor-
tant implications for clinical practice. In the real-world
setting, patients are typically treated using PRN or
T&E protocols for nAMD, which have shown promise
in improving patients’ VA with a reduced number of
visits and injections.24 Given good predictions from
using the first three months of data for injection
demand patients may need in the long-term, it may be
possible to refine a treatment plan that has the potential
to improve efficacy with fewer injections in the context
of PRN and T&E regimens, as well as to better set
expectations for patients.

Our machine learning models provide measures of
confidence (i.e., probability) for the classification of few
or many injections as well, which can prove valuable
in clinical decision-making. As an example, for one
patient in the training dataset with 21 injections over
two years, the random forest models in cross-validation
using baseline data predicted the patient would have
14.6 injections, had a 21% probability of receiving few
injections, and had a 33%probability of receivingmany
injections. The random forest models cross-validation
predictions improved substantially when incorporating
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data up to week 12, predicting 20.5 injections, with a
3% probability of receiving few injections and a 77%
probability of receiving many injections. Notably, this
patient had injections at weeks 4, 8, and 12, in addition
to their baseline injection. Although this patient had
subretinal and intraretinal fluid on OCT at baseline,
week 4, week 8, and week 12, this patient had no sub-
RPE fluid at baseline and week 4 but did have sub-RPE
fluid at weeks 8 and 12.

Determining the most important features used by
machine learning models to make predictions also
enables providers to consider these specific features
when anticipating how individual patientsmay respond
to anti-VEGF therapy. The SVMmodel indicates OCT
features including intraretinal, subretinal, and sub-
RPE fluid had high importance, along withMNV area,
MNV lesion size, and the number of injections already
received, suggesting that these featuresmay help inform
providers of how many injections their patients would
require.

The strengths of our study include the large
sample size, comprehensive high-quality CATT data
for prediction, and using a test dataset for model
validation that is entirely separate from the training
dataset. One limitation of our study is that it relies on
OCTgrading data by trained readers, which is amanual
process that requires expertise. However, other studies
have demonstrated methods for automated extraction
of information from OCT images to use in predicting
the number of anti-VEGF injections nAMD patients
require, including the Iowa Reference Algorithms and
deep learning.12–15 These methods can be used to
obtain features for use in machine learning models to
make these predictions, although the accuracy of the
extraction process would need to be ensured. Another
limitation of our study is its use of clinical trial data
instead of real-world data, which tends to be more
heterogenous. However, we have shown that the CATT
data lends itself well to training machine learning
models to predict the number of injections patients
would need, which can be viewed as being more repre-
sentative of an ideal case given the high-quality data
generated from the controlled environment of a clinical
trial. Furthermore, real-world data can be augmented
with this CATT data to increase the sample size for
training, which can theoretically improve the perfor-
mance of machine learning models.

In conclusion, we have evaluated the ability of
machine learning models to predict anti-VEFG treat-
ment demand in two years for nAMD patients and
assessed the importance of different features in making
these predictions. We have shown the improvement in
prediction using data from the first three months of
injections (e.g., treatment in the loading dose phase).

Importantly, our machine learning models incorpo-
rated easily available predictors beyond OCT charac-
teristics, including demographics, treatment trajectory,
lesion characteristics in fundus images, VA, and other
clinical data. Our machine learning models have the
potential for clinical use that would be beneficial to
both physicians and patients for clinical decision-
making. Our machine learning models may provide
standardized tools for assessing the expected burden
of anti-VEGF injections, equipping physicians and
patients to plan the best treatment course that can
be tailored at the individual level. Future works are
needed to further validate the machine learning model
on independent real-word data, as well as identify
other useful predictors to enhance the prediction
of anti-VEGF treatment demand, before implemen-
tation of such machine learning models in clinical
settings.
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