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Abstract

Background: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation.
The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in
complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to
pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice
introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found
that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells.

Results: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses
of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting
epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast
markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while
anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of
angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination
of the transgenic lenses where vascularization can be readily observed.

Conclusion: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT,
apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant
angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter
epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue.
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Introduction
The Dbl protein is the prototype member of a large family of

guanine nucleotide exchange factors (GEFs) for Rho GTPases [1–

3], which are known to regulate various physiological processes

including actin cytoskeleton organization, cell movement, cell

proliferation, cytokinesis, and apoptosis [4–6]. Consistent with the

wide spectrum of actions of Rho-like proteins on growth

regulation, Dbl and most Dbl-like proteins possess oncogenic

potential. Oncogenic activation of Dbl occurs by truncation of the

amino-terminal 497 residues [7], resulting in constitutively active

carboxyl-terminal sequences that include a Dbl homology (DH)

domain in tandem with a pleckstrin homology (PH) domain, the

conserved motifs of the Dbl family. Dbl-mediated generation of

transformed foci of NIH3T3 cells is probably caused by altered

gene expression. Hence, Dbl was found to activate JNK and to

stimulate transcription from NF-kB responsive elements and cyclin

D1 promoter [8–10]. However, an attempt to produce Dbl-

induced neoplastic transformation in transgenic mice failed to

generate tumors [11]. In those studies we generated transgenic

mice by introducing the entire Dbl transforming genomic

sequences and the onco-Dbl cDNA linked to a set of different

tissue specific promoters into the germ line of FVB/N mice. We

reported that mice with the crystallin promoter, cry-dbl, the

metallothionein promoter, MT-dbl, and a cosmid clone constructs,

cos-dbl, expressed the Dbl protein in the lenses and developed

cataracts [11].

A normal lens is characterized by a single layer of cells, the lens

epithelium, which cover the anterior part of the lens that faces the

cornea. The lens epithelium ends on the rims of the anterior

surface of the lens and contains cells in the central region that do

not divide, and are essentially quiescent, surrounded by a dividing

zone of cells followed at the equatorial fringe by the dividing cells

that differentiate into fiber cells. The fiber cells mass provides the

lens with its functional phenotype, transparency, while the
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epithelial cells are the metabolically active cells of the lens and

sustain the physiological health of this tissue. The lens epithelium

is recognizable as a morphological entity early during gestation

and remains in this morphological state for the rest of the life.

The cataracts of the Dbl transgenic mice were characterized by

a dramatic fibroblastic dysplasia of the lens, disruption of the lens

architecture and aberrant epithelial cell proliferation. The eyes of

adult cry-dbl transgenic mice were the ones with milder

pathological alterations. Specifically, the embryonic nucleus of

the lens was typically intact while the posterior region of the lens,

which is normally occupied by the elongating secondary fiber cells,

showed extensive vacuolization. In addition, the pattern of

differentiation of the secondary fiber cells at the equatorial region

was abnormal, and there was evidence of disorganization in the

cuboidal epithelial cells. The dysplasia observed in the cos-dbl

family with cataracts was very similar to that seen in the MT-dbl

lenses, but occurred more slowly than that of the eyes of MT-dbl

mice. Differentiation of the secondary fiber cells was abnormal,

showing posterior migration of equatorial epithelial cells and

defects in nuclear resorption. Anterior epithelial cells became

disorganized and multilayered, forming epithelial plaques lying

underneath the lens capsule. The dysplastic epithelial cells

proliferated and dispersed throughout the cortex of the lens and

subsequently adopted the appearance and behavior of fibroblastic

cells. The nuclei became elongated, irregular in shape, and

surrounded by connective tissue.

We have now analyzed in depth the alterations caused by the

expression of Dbl oncogene in the mouse lens epithelial cells. We

have chosen the transgenic mouse family expressing the onco-Dbl

cDNA linked to the metallothionein promoter because it shows the

most dramatic dysplasia of the lens and thus it probably represents

the animal model where Dbl more strongly interferes with the

differentiation and growth of lens cells.

We report here the transcriptome analysis of wt and MT-dbl

transgenic mouse lenses at different time points after birth. The

results obtained indicate down-regulation of epithelial cell markers

and up-regulation of fibroblast markers, compatible with an EMT

event [12–14]. Moreover, genes encoding proteins involved in the

positive regulation of apoptosis were heavily down regulated while

those involved in the inhibition of apoptosis were strongly

upregulated, indicative of evasion from cell death. Finally, several

genes encoding proteins involved in the process of vascularization

were upregulated. Hystological examination confirmed that

lymphangiogenesis and angiogenesis occur in the Dbl transgenic

lenses.

Materials and Methods

DNA construct and generation of transgenic mice
The construction of the plasmid containing the Dbl oncogene

cDNA under the control of the MT promoter and the generation

of the transgenic mice was previously described [11]. Briefly, the

mouse MT promoter construct, P341-3, kindly provided by P.

Howley [15], was cleaved at the unique BglII site localized 39 of

the MT promoter and ligated to the BamHI site of the Dbl cDNA

[16]. Embryos at the single-cell stage were isolated from

superovulated FVB/N females mated to FVB/N males. Trans-

genic mice were generated by pronuclear microinjection of the

DNA construct at a concentration of 2 mg/ml in 10 mM Tris and

0.1 mM EDTA, pH 7.8. Embryos were reimplanted into

pseudopregnant ICR/Hsd foster mothers and allowed to develop

to term. Mice found to carry the transgene and to transmit it to

progeny were cross bred to Balb/c mice, which are rd+.

Microarray experiments and statistical analysis
Whole lenses were removed from 2, 14, and 42 day old Dbl

transgenic and wild type mice and stored in RNAlater RNA

stabilizing reagent (Qiagen, Hilden, Germany). 4 to 8 individual

lenses were pooled and homogenized in buffer through a 22-gauge

needle. Three independent pools from each time and condition

were used as replicates. Total RNA was isolated using RNeasy

mini kit (Qiagen) according to the manufacturer’s instructions.

The quality of RNA was evaluated using Agilent Bioanalyzer 2100

(Agilent Technologies, Germany) and the RNA was quantified by

NanoDrop (NanoDrop Technologies Wilmington, USA).

For the 2-, 14- and 42-days samples, 10 mg of each RNA sample

was reverse-transcribed into cDNA and biotin labeled according to

the Affymetrix’s instructions (Affymetrix, SantaClara, CA). Biotin-

labeled cRNA was cleaned with the RNeasy Mini Kit (Qiagen)

and ethanol precipitation, analyzed for quality with Agilent

Bioanalyzer 2100 and fragmented by incubation at 94uC for

35 min in 40 mM Tris-acetate, pH 8.1, 100 mM potassium

acetate, 30 mM magnesium acetate. Fragmented cRNA was used

for hybridization to Affymetrix Murine Genome Array U74Av2.

GeneChips were scanned using an Affymetrix GeneChip Scanner

3000. All microarrays were examined for surface defects, grid

placement, background intensity, housekeeping gene expression,

and a 39:59 ratio of probe sets from genes of various lengths.

The complete data set for each microarray experiments has

been deposited in the Gene Expression Omnibus public repository

at National Center for Biotechnology Information (accession

number GSE15694).

Expression values were quantified and array quality control was

performed with the statistical algorithms implemented in Affyme-

trix Microarray Suite 5.0. The resulting data were analyzed by

GeneSpring Expression Analysis Software Gx 7.3 (Silicon

Genetics, Redwood City, CA). After normalization process, the

gene expression levels of replicate experiments were averaged and

only genes that were modulated by at least 1.5-fold in the Dbl

transgenic lenses relative to the wild type lenses (means of three

experiments) were considered differentially expressed. The

significance of gene expression differences between the two

experimental conditions was calculated using a non-parametric

test (Wilcoxon-Mann-Whitney U test, p-value cutoff 0.05).

The gene lists were analyzed and clustered in different pathways

or functional categories sorted by a p-value,0.05, according to

their biological function using the Database for Annotation,

Visualization and Integrated Discovery 2.0 (DAVID 2.0) tool [17].

RT-PCR validation
For the 2, 14, and 42 day old samples 2 mg of total RNA was

reverse-transcribed using Advantage RT-PCR KIT (Clontech,

Mountain View, CA) and Real Time quantitative PCR (qRT-

PCR) was performed on a Prism 7500 Sequence Detection System

(Applied Biosystems, Inc. [ABI], Foster City), using SYBR Green

PCR Master Mix (Applied Biosystems), and 300 nM sense and

antisense oligonucleotide primers (TIBMolbiol, Italy and Qiagen).

Primers for crystallin a A (Cryaa) and crystallin c f (Crygf) were

purchased from Qiagen (Quantitect primer assay, codes 12954

and 12969 respectively). All other primer pairs (Table S1) were

designed using Primer-3 software [18] from sequences in GenBank

with a Tm optimum of 60uC and a product length of 80–150 nt

and tested before use to confirm appropriate product size and

optimal concentrations. qRT-PCR was conducted in triplicate for

each target transcript under the following cycling conditions:

initial denaturation of 3 min during which the well factor was

measured, 50 cycles of 15 s at 95uC followed by 30 s at 60uC.

Fluorescence was measured during the annealing step in each
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cycle. Expression data were normalized on the values obtained in

parallel for three reference genes (glutathione peroxidase 1 (Gpx1);

dynactin 2 (Dctn2); and presenilin 1 (Psen1)) using the Bestkeeper

software [19]. Relative expression values and standard error (SE)

were calculated using Q-gene software [20].

Histochemical and immunohistochemical analysis
Eyes from 2, 14, 28, 42 day old mice were fixed with 2%

paraformaldehyde and paraffin embedded. For histological

analysis five micrometer thick serial sections were stained with

Ignesti (aurantia, emallume, methyl blue, orange G, and

phosphomolybdic acid) or Azan-Mallory. For immunohistochem-

istry analysis serial sections were treated in a microwave oven four

times with citrate buffer (pH 6.0) for 5 min at 960 W. Sections

were saturated with 10% BSA in PBS with 0.1% Triton X-100

and incubated overnight at 4uC in a humidified chamber with the

specific primary Ab. For immunohistochemical analyses anti

MMP12 rabbit monoclonal (Novus Biologicals), anti E-cadherin

mouse monoclonal [21], anti Ccl2/MCP-1 rabbit polyclonal

(Abcam), anti Bcl2A1 rabbit polyclonal (Abcam), and SPP-1

mouse monoclonal (Santa Cruz Biotechnology) antibodies were

used. The reactions were developed with LSAB2 System-HRP

(Dako) after addition of a secondary goat anti-mouse antiserum

(DAKO). Images were obtained with a Leica DMRB microscope.

Micrographs were taken on LEICA DFC 320 camera.

TUNEL Assay
DNA cleavage was assessed by enzymatic end-labeling of DNA

strand breaks with a commercial kit (In Situ Cell Death Detection

kit, Fluorescent, Roche Molecular Chemicals). Labeling was

carried out according to the manufacturer’s instructions. Briefly,

paraffin embedded lens sections were deparaffined and rehydra-

tated and washed with deionized water. Sections were, then,

permeabilized with 0.1% Triton X-100 for 8 minutes at room

temeprature. After rinsing with PBS, slides were incubated with

20 mL of terminal deoxynucleotidyl transferase (TdT)-mediated

dUTP nick end labeling (TUNEL) reaction mixture, containing

TdT- and FITC-labeled dUTP, in a humidified atmosphere for

1 hour at 37uC in the dark. Rinsed slides were then coverslipped

with Vectashield mounting medium containing 49,69-diamidino-2-

phenylindole (DAPI; Vector Laboratories, Burlingame, CA) for

nuclear counterstaining. TUNEL+ apoptotic cells, which fluoresce

bright green, were viewed with a Nikon Eclipse E1000 fluorescent

microscope (Nikon Corp., Tokyo, Japan) equipped with a FITC

filter.

Results

Mice carrying the Dbl cDNA linked to the mouse metallothio-

nein promoter express the Dbl protein in the lenses and show

dominant bilateral lens cataracts characterized by disruption of the

lens architecture, aberrant epithelial cell proliferation and a

dramatic fibroblastic dysplasia [11]. Fig. 1 shows the histology of

Dbl transgenic mouse lenses in comparison with normal

nontransgenic ones at different times after birth. The normal lens

remains morphologically the same and only grows in size as the

mouse grows older (Fig. 1 a–h). At higher magnification it is clearly

visible the migration at the equatorial region of the epithelial cells

and their differentiation into lens fiber cells. Transgenic mice, on

the other hand, showed disruption of the lens architecture and

epithelial cells exhibited a disorganized proliferation. At the

equatorial region, the epithelial cells migrate towards the anterior

as well as the posterior region and disperse throughout the lens,

adopted the appearance of fibroblastic cells, with spindle-shaped

nuclei (Fig. 1, m–p). Fiber cells could no longer be observed

indicating abnormalities in the differentiation process of lens cells

(Fig. 1, i–p). By 6 weeks of age the dysplasia of the lens was

extensive accompanied by dramatic changes in the other parts of

the eye. The iris appeared disorganized and attached to the

anterior part of the lens and the retina appeared disorganized and

convoluted (Fig. 1, o). Moreover, the lens capsule appeared

partially destroyed (Fig. 1, p).

To further analyze the alterations caused by the expression of

onco-Dbl in the mouse lens epithelial cells (Dbl-lens), we analyzed

the gene transcriptional profile of the lenses of the transgenic mice

using the Affymetrix Murine Genome Array U74Av2 chip. RNA

was extracted from 2, 14 and 42 day old Dbl transgenic and wild

type mice lenses. Three independent RNA pools for each

experimental condition were analyzed. The genes modulated by

more than 1.5 fold in Dbl transgenic lenses relative to wild type

samples were considered and the significance of gene expression

differences between the two experimental conditions was calcu-

lated using a non-parametric test (Wilcoxon-Mann-Whitney U

test) with a confidence level of 95%. We identified a total of 2,776

genes differentially expressed in Dbl transgenic mice at 2, 14 and

42 day old lenses. Analysis of the biological processes was

performed to assess the overall number of significantly changed

genes in various functional categories according to Gene Ontology

(GO) annotations [22] and to determine the general trend of the

molecular response to Dbl expression. The transcriptional profile

induced by onco-Dbl was mainly related to changes in

morphogenesis, cell cycle, cell adhesion, cell proliferation,

signaling cascade, nucleic acid and protein metabolism, apoptosis,

and angiogenesis (Table 1).

Some GO biological process categories were selected for a more

detailed analysis because more closely related to lens biology, such

as eye development, Wnt and TGFb pathway, and to oncogene-

induced cell transformation, such as cell adhesion, apoptosis, blood

vessel development and Notch pathway. For each category we

considered the genes that were modulated by more than 1.5 fold in

at least two time points out of three. As shown in Table 2, there is

a strong decrease in RNA levels of genes encoding lens structural

proteins and lens-fiber specific markers, in all the time points,

indicating that Dbl strongly perturbs lens structure and function.

Perturbation of epithelial cell features, migration and polarity

characteristics are indicated by down regulation of laminin a2

(Lama2), collagen type IV (Col4a1, Col4a2 and Col4a3) and E-

cadherin (Cdh1) and up-regulation of N-cadherin (Cdh2), collagen

type 1 (Col1a1), periostin (Postn), matrix metalloproteinase 12

(Mmp12) and the transforming growth factor beta induced gene

(Tgfbi), a structural homolog of periostin. Genes involved in the

pro-apoptotic process are mainly down-regulated in Dbl trans-

genic lenses, whereas genes with anti-apoptotic activity are up-

regulated. These data support a role for Dbl in promoting cell

survival. Moreover, our results suggest that onco-Dbl may induce

neovascularisation, since modulation of genes involved in

angiogenesis such as Anxa2, Ctfg, Eng, Nrp, Plat, and mostly

Ccl2, a potent inducer of angiogenesis [23] is also observed in Dbl

lenses. Finally, onco-Dbl alters the gene expression profile of

Notch, Wnt and TGFb-mediated developmental signalling

pathways, critical for the morphogenesis of many vital organs

and tissues [24].

During the first 6 weeks of examination, as differentiation and

growth of the lens ensued, no major differences in the overall trend

of gene modulation induced by Dbl expression were observed.

Only in a few cases changes were seen. For example, vascular

endothelial cadherin (Cdh5) was down regulated at 2 days, but

became gradually up-regulated by two and six weeks of age, and
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Eng was basically unchanged at 2 days but became up-regulated at

2 and 6 weeks of age.

The data of the gene expression profile in Dbl lenses, such as

up-regulation of genes involved in cell proliferation, down-

regulation of lens-specific genes and of epithelial cell markers,

and up-regulation of fibroblast markers are in agreement with the

histological observations (Fig. 1). Moreover, modulation of genes

such as cadherins and collagens type 1 and 4 suggested that Dbl

oncogene induces changes in lens cells compatible with an EMT

process. EMT requires loss of epithelial polarity and epithelial

specific proteins, induction of a fibroblastoid phenotype and of

mesenchymal markers, and acquisition of a migratory phenotype

[12,25,26]. We searched the results obtained and determined a 21-

transcript list of genes modulated by Dbl expression and involved

in EMT (Table 3). An overlapping of 17 out of 20 genes exists with

the genes in the GO categories of Table 2. The selected genes

include hallmarks of EMT such as E-cadherin (Cdh1), N-cadherin

(Cdh2), collagen 1 (Col1a1), collagen 4 (Col4a1, Col4a2, Col4a3),

smooth muscle alpha-actin (Asma), and tight junction protein 1

(Zo-1) and genes whose modulation has been implicated in EMT

processes such as inhibition of cell adhesion, cell–matrix

interaction, disruption of basement membrane and digestion of

extracellular matrix (laminin, Vil2, Itga6, Tgfbi, Plat, Mmp12),

and inhibition of apoptosis, increased survival and proliferation

(Casp7, Casp9, Bcl2a1, Ki-67). Representative references describ-

ing the involvement of these genes in EMT process are given in

Table 3. These observations suggest that onco-Dbl expression in

mouse lenses induces events associated with EMT.

To validate the microarray results, mRNA levels for a subset of

genes were quantified by quantitative real time PCR (qRT-PCR)

(Fig. 2). We found a 100% concordance between qRT-PCR and

Affymetrix data with respect to the direction of the expression

changes of all genes but Col4a1, for which a slight up-regulation

instead of down-regulation was observed at 2 days of age (Fig. 2).

For 65% of the genes, including Cryaa Crycf, Cryba1, Crybb2,

Mmp12, Tgfbi, Mfng, Col1a1, Bcl2a1, Plat, Vcam, a-Sma, and

Cdh2, fold differences were higher according to qRT-PCR,

indicating that microarray can underestimate the extent of gene

regulation compared to qRT-PCR, while for the rest of the genes

fold differences were of comparable magnitude. The expression of

onco-Dbl in the transgenic mouse lenses was confirmed by qRT-

PCR for all time points (data not shown). These data validate the

Figure 1. Developmental progression of Dbl transgenic lenses. Eyes were fixed with 2% paraformaldehyde and paraffin embedded. Serial
sections were stained with Ignesti. (a, h,) normal lenses; (i–p) lenses from transgenic mice. (a, b, i, j) lenses from 2 day old mice; (c, d, k, l) lenses
from 14 day old mice; (e, f, m, n) lenses from 28 day old mice; (g, h, o,p) lenses from 42 day old mice. (a, c, e, g, i, k, m, o) 406; (b, d, f, h, j, l, n, p)
1006. The boxes in a, c, e, g, i, k, m, and o denote the regions shown at higher magnification in b, d, f, h, j, l, n, and p, respectively. Symbols: C,
cornea; I, iris; L, lens; R, retina; LC, lens capsule; LE, lens epithelial cell monolayer; LF, lens fiber cells.
doi:10.1371/journal.pone.0007058.g001
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microarray results and substantiate the ability of Dbl oncogene to

modulate genes involved in lens morphogenesis, apoptosis,

angiogenesis and EMT processes.

To further validate the microarray results we analyzed normal

and Dbl lens sections by specific staining and immunohistochem-

istry. The anti-apoptotic effect of Dbl expression was assessed by

end-labeling of DNA strand breaks on paraffin embedded sections

of normal and transgenic lenses (TUNEL assay). Fig. 3 shows the

results obtained for lenses of 14, 28 and 42 days old mice. No

major differences can be seen between normal lenses and cataracts

and except for a couple of cells in lenses of 42 day old mice no

apoptotic event could be detected. We then evaluated the

expression of collagen type 1 by staining normal and Dbl-lens

sections with Azan-Mallory that stains collagen fibers in blue. By 6

weeks of age Dbl-lenses display a strong blue staining clearly

demonstrating the presence of collagen type 1 (Fig. 4, panel a).

Microarray results indicated that genes involved in positive

regulation of angiogenesis are modulated in Dbl lenses. This was

quite surprising since the lens is not vascularised, not even in

pathological conditions and the embryonic lens vasculature in

mice begins to degenerate after birth and is completely regressed

at weaning (3 weeks). Therefore, we examined sections of normal

and Dbl lenses at different times after birth for evidence of

vasculature. As shown in Fig. 4, panels b–d, both lymphatic and

blood vessels could be observed in Dbl lenses throughout the 6

weeks of examination. Lymphatic vessels (arrowheads) are shown

in a lens section from a 14 day old mouse and blood vessels

(arrows) are shown in lens sections from a 28 and a 42 day old

mouse, with erythrocytes stained in orange. The vascular structure

filled with red blood cells suggests the presence of a functional

vasculature and indicates that the up-regulation of pro-angiogenic

genes correlates with the development of vessels. The presence of

vessels was confirmed by immunohistochemistry with an anti

CD31 antibody. As shown in Fig. 5, lymphatic vessels (arrow-

heads) appear at 2 days of age and increase in number as the mice

grow older (see also Fig. 4, panels b–d). Blood vessels (arrows) can

Table 1. Functional analysis of genes induced or suppressed
in Dbl transgenic mousea.

GO IDb GO Category Genes %c P-valued

Induced genes

GO:0006396 RNA processing 50 2.91% 1.08E-07

GO:0007049 cell cycle 80 4.66% 2.14E-06

GO:0046907 intracellular transport 76 4.42% 1.73E-04

GO:0006915 apoptosis 61 3.55% 1.91E-04

GO:0007399 nervous system development 60 3.49% 2.30E-04

GO:0007242 intracellular signaling cascade 99 5.76% 2.76E-04

GO:0000902 cellular morphogenesis 47 2.74% 1.13E-03

GO:0006281 DNA repair 24 1.40% 2.79E-03

GO:0006954 inflammatory response 23 1.34% 3.45E-03

GO:0009653 morphogenesis 91 5.30% 3.77E-03

GO:0006956 complement activation 10 0.58% 3.96E-03

GO:0009416 response to light stimulus 10 0.58% 3.96E-03

GO:0050770 regulation of axonogenesis 7 0.41% 1.09E-02

GO:0043066 negative regulation of apoptosis 17 0.99% 1.47E-02

GO:0008203 cholesterol metabolism 10 0.58% 2.00E-02

GO:0030182 neuron differentiation 28 1.63% 2.09E-02

GO:0006096 glycolysis 10 0.58% 2.23E-02

GO:0030029 actin filament-based process 19 1.11% 2.48E-02

GO:0006350 transcription 184 10.71% 2.52E-02

GO:0001568 blood vessel development 20 1.16% 2.56E-02

GO:0051028 mRNA transport 6 0.35% 3.52E-02

GO:0007155 cell adhesion 55 3.20% 3.52E-02

GO:0007219 Notch signaling pathway 8 0.47% 3.90E-02

GO:0006909 phagocytosis 7 0.41% 4.34E-02

GO:0051270 regulation of cell motility 8 0.47% 4.87E-02

Suppressed genes

GO:0019538 protein metabolism 253 19.05% 2.47E-12

GO:0007423 sensory organ development 10 0.75% 3.52E-07

GO:0007422 peripheral nervous system
development

12 0.90% 1.75E-06

GO:0009887 organ morphogenesis 55 4.14% 2.40E-06

GO:0042254 ribosome biogenesis and
assembly

19 1.43% 6.47E-05

GO:0043065 positive regulation of apoptosis 22 1.66% 7.98E-05

GO:0001654 eye development 14 1.05% 2.66E-04

GO:0006066 alcohol metabolism 28 2.11% 3.67E-04

GO:0006412 translation 22 1.66% 4.19E-04

GO:0006082 organic acid metabolism 43 3.24% 9.38E-04

GO:0006629 lipid metabolism 47 3.54% 3.90E-03

GO:0006457 protein folding 24 1.81% 3.93E-03

GO:0006096 glycolysis 10 0.75% 4.28E-03

GO:0007399 nervous system development 43 3.24% 6.87E-03

GO:0046907 intracellular transport 53 3.99% 1.24E-02

GO:0006508 proteolysis 54 4.07% 1.36E-02

GO:0006915 apoptosis 42 3.16% 1.39E-02

GO:0006520 amino acid metabolism 22 1.66% 1.60E-02

GO:0048598 embryonic morphogenesis 15 1.13% 1.70E-02

GO:0046849 bone remodeling 11 0.83% 1.85E-02

GO:0007155 cell adhesion 45 3.39% 2.28E-02

GO IDb GO Category Genes %c P-valued

GO:0007223 frizzled-2 signaling pathway 5 0.38% 2.49E-02

GO:0016055 Wnt receptor signaling pathway 12 0.90% 2.79E-02

GO:0008284 positive regulation of cell
proliferation

13 0.98% 2.85E-02

GO:0007267 cell-cell signaling 24 1.81% 2.93E-02

GO:0007167 enzyme-linked receptor
protein signaling

21 1.58% 3.72E-02

GO:0007179 TGF beta receptor signaling
pathway

7 0.53% 3.84E-02

GO:0009308 amine metabolism 27 2.03% 4.07E-02

GO:0006979 response to oxidative stress 7 0.53% 4.22E-02

The Gene Ontology categories and the number of significantly changed genes
in the various functional categories are listed. The categories are divided into
induced genes (upper panel) and suppressed genes (lower panel) according to
their differential expression in Dbl transgenic versus wild type lenses.
aGO analysis performed using NIH DAVID http://david.abcc.ncifcrf.gov.
bGene ontology ID numbers obtained from AmiGO http://www.genedb.org/

amigo-cgi/go.cgi.
c% of total induced or suppressed genes.
dT-test p-value (confidence of 95%) indicates the gene enrichment for that
pathway.

doi:10.1371/journal.pone.0007058.t001

Table 1. Cont.
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Table 2. Differentially expressed genes of selected functional category.

Functiona Gene Name GenBank Description 2 daysb 14 daysb 42 daysb

Eye development Bfsp1 AB003147 beaded filament structural protein in lens-CP94 212.28 220.80 230.93

Cryaa J00376 crystallin, alpha A 22.10 22.16 22.15

Cryab AI842724 crystallin, alpha B 22.57 23.31 21.91

Cryba1 AJ239052 crystallin, beta A1 22.25 21.97 22.34

Crybb2 M60559 crystallin, beta B2 23.45 22.89 24.57

Crygb AV360800 crystallin, gamma B 26.81 211.09 213.85

Crygc Z22574 crystallin, gamma C 23.19 25.14 25.40

Crygd M16512 crystallin, gamma D 25.46 211.99 25.00

Crygf X57855 crystallin, gamma F 22.22 23.65 23.14

Crygs AF032995 crystallin, gamma S 22.97 22.71 23.18

Mip U27502 major intrinsic protein of eye lens fiber 25.41 27.32 211.43

Cell Adhesion/ECM Catna2 D25282 catenin alpha 2 22.39 22.18 22.80

Cdh1 X60961 cadherin 1 22.43 21.16 21.81

Cdh2 M31131 cadherin 2 3.23 1.62 2.56

Cdh5 AI853217 cadherin 5 21.59 2.41 6.52

Col1a1 U03419 procollagen, type I, alpha 1 3.01 10.66 5.05

Col4a1 M15832 procollagen, type IV, alpha 1 24.93 22.00 23.03

Col4a2 X04647 procollagen, type IV, alpha 2 25.15 23.17 23.86

Col4a3 Z35166 procollagen, type IV, alpha 3 28.39 21.40 23.77

Lama2 U12147 laminin, alpha 2 23.98 21.73 27.33

Itga6 X69902 integrin alpha 6 24.00 21.72 23.12

Mmp12 M82831 matrix metalloproteinase 12 1.81 17.70 11.12

Ncam1 X15052 neural cell adhesion molecule 1 2.18 1.18 1.81

Postn D13664 periostin, osteoblast specific factor 2.21 3.78 3.12

Tgfbi L19932 transforming growth factor, beta induced 4.65 9.86 18.48

Timp1 V00755 tissue inhibitor of metalloproteinase 1 2.66 5.41 6.20

Tnc X56304 tenascin C 1.20 3.28 2.58

Vcam1 U12884 vascular cell adhesion molecule 1 4.06 2.98 3.56

Vcl AI462105 vinculin 1.57 3.19 4.12

TGFb signaling pathway Acvrl1 Z31664 activin A receptor, type II-like 1 21.77 21.37 22.03

Atf3 U19118 activating transcription factor 3 3.16 2.90 2.08

Bmp1 L24755 bone morphogenetic protein 1 1.61 2.57 2.73

Bmpr1a D16250 bone morphogenetic protein receptor, type 1A 2.09 2.11 10.27

Ccl7 X70058 chemokine (C-C motif) ligand 7 5.05 10.32 1.63

Ccl8 AB023418 chemokine (C-C motif) ligand 8 5.15 14.00 3.74

Fgfr1 U22324 fibroblast growth factor receptor 1 2.05 2.51 2.12

Inhbb X69620 inhibin beta-B 8.41 1.88 7.41

Pcdha4 D86916 protocadherin alpha 6 2.35 2.10 2.15

Smad1 U58992 MAD homolog 1 (Drosophila) 22.61 24.97 22.49

Smad5 U58993 MAD homolog 5 (Drosophila) 21.75 22.58 21.08

Wnt signaling pathway Cldn5 U82758 claudin 5 5.12 1.52 5.05

Fhos2 AA795285 formin-family protein FHOS2 3.93 3.12 3.84

Foxl1 X92498 forkhead box L1 22.20 21.74 22.48

Frat1 U58974 frequently rearranged in advanced T-cell lymphomas 3.13 1.35 2.35

Fzd2 AW123618 frizzled homolog 2 3.77 3.03 6.64

Gngt2 AI882325 guanine nucleotide binding protein, gamma transducing
activity polypeptide 2

22.54 2.35 9.32

Nlk AF036332 nemo like kinase 1.89 21.09 2.68

Sfrp1 U88566 secreted frizzled-related sequence protein 1 23.80 23.44 23.63

Tcf12 X64840 transcription factor 12 1.73 2.04 2.51
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be seen at 28 days of age, increase in number by 42 days of age

and are mostly localized at the periphery of the lens.

Finally, we confirmed the expression of onco-Dbl in transgenic

lenses (Fig. 6, a–b) and analyzed by immunohistochemistry the

expression of E-Cadherin, a marker of epithelial cells, MMP12,

whose expression causes the breakdown of basement membrane

components, Ccl2/MCP-1, a potent inducer of angiogenesis, and

Bcl2a1 and Spp1, two anti-apoptotic proteins (Fig. 6). Paralleling the

expression patterns observed with the cDNA microarray and RT-

PCR analysis, the sections of Dbl-lenses demonstrated significant

reduction in E-cadherin expression in comparison with normal lens

epithelial monolayer, heavily and specifically stained by the anti-E-

cadherin antibody (Fig. 6, c–d). Conversely, immunoreactivity for

Ccl2/MCP-1 (Fig. 6, e–f), MMP12 (Fig. 6, g–h), Bcl2A1 (Fig. 6, i–j),

and SPP-1 (Fig. 6, k–l) can be observed in the Dbl-lenses while

normal lenses were negative or showed only faint and probably non-

Functiona Gene Name GenBank Description 2 daysb 14 daysb 42 daysb

Tcfap2c X94694 transcription factor AP-2, gamma 2.70 1.63 1.82

Tle3 X73360 transducin-like enhancer of split 3, homolog of Drosophila E 21.60 22.76 21.63

Wnt1 M11943 wingless-related MMTV integration site 1 22.41 21.41 21.89

Wnt10b U61970 wingless related MMTV integration site 10b 22.79 21.61 21.94

Wnt6 M89800 wingless-related MMTV integration site 6 22.94 22.76 22.98

Notch signaling pathway Capg X54511 capping protein, gelsolin-like 2.53 8.75 3.61

Cntn1 X14943 contactin 1 1.79 2.19 2.40

Dll1 X80903 delta-like 1 (Drosophila) 7.78 2.34 3.90

Hdac5 AF006602 histone deacetylase 5 2.67 1.86 2.71

Hdac6 AF006603 histone deacetylase 6 1.65 1.59 1.62

Mfng AF015769 manic fringe homolog 2.37 1.62 2.18

Neurod4 AF036257 neurogenic differentiation 4 4.27 1.31 1.90

Psen2 U57325 presenilin 2 1.92 1.43 1.54

Positive regulation of
apoptosis

Bad AV102186 Bcl-associated death promoter 2.06 1.12 21.84

Bclaf1 AA874446 BCL2-associated transcription factor 1 1.53 22.36 22.30

Casp7 U67321 caspase 7 26.29 24.73 24.08

Casp9 AB019600 caspase 9 21.87 21.96 21.72

Cideb AF041377 cell death-inducing DNA fragmentation factor, alpha
subunit-like effector B

25.13 23.85 22.32

Dapk2 AB018002 death-associated kinase 2 22.07 21.74 21.05

Faf1 AV222925 Fas-associated factor 1 21.73 22.18 21.60

Tnfrsf6 M83649 tumor necrosis factor receptor superfamily, member 6 217.51 216.08 227.61

Negative regulation of
apoptosis

Bcl2a1c U23778 hematopoietic-specific early-response A1-c protein 5.71 3.57 4.12

Bcl2a1a U23781 hematopoietic-specific early-response A1-a protein 3.49 7.35 8.53

Bnip1 AW060311 BCL2/adenovirus E1B interacting protein 1, NIP1 1.21 1.87 2.38

Bnip2 AF035207 BCL2/adenovirus E1B 19 kDa-interacting protein 1, NIP2 5.63 3.94 4.81

Spp1 X13986 secreted phosphoprotein 1 68.23 57.16 25.84

Angiogenesis Anxa2 M14044 annexin A2 1.86 1.73 2.70

Ccl2 M19681 chemokine (C-C motif) ligand 2 56.25 67.27 29.15

Cited2 Y15163 cbp/p300-interacting transactivator, with glu/asp-rich
carboxy-terminal domain, 2

1.63 1.13 2.59

Ctgf M70642 connective tissue growth factor 3.21 2.66 1.94

Eng X77952 endoglin 1.27 2.41 2.55

Nrp D50086 neuropilin 1 1.82 2.33 4.16

Plat J03520 plasminogen activator, tissue 2.07 2.43 1.58

Sema3a D85028 sema domain, immunoglobulin domain (Ig), secreted,
(semaphorin) 3A

23.45 21.67 21.92

The differentially expressed genes and their relative fold changes are listed for each of the time points. The genes were divided according to their Gene Ontology
functional categories.
aThe common gene name, the genbank accession number, a brief gene description, and the fold change value are specified for each gene.
bFold change is calculated as a ratio of Dbl/wt signals (average of expression level of three experiments). For down-regulated genes the ratio is expressed as the

negative reciprocal.
doi:10.1371/journal.pone.0007058.t002
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specific immunoreactivity. Taken together our results indicate that

Dbl oncogene expression in the lens can cause modulation of genes

involved in the EMT process and angiogenesis.

Discussion

Deficiencies in specific Dbl proteins usually do not induce major

developmental abnormalities as revealed by studies with mice

knock-out for specific Rho GEFs, even though in a few cases lack

of GEFs can cause embryonic lethality and/or association with

abnormal development. A likely explanation for the absent or

subtle phenotypes in GEF-null mice is redundancy or compensa-

tion. Moreover, only a few GEFs have been found mutated in

human cancer despite the fact that many of them have been

originally isolated as activated, highly transforming oncogenes.

Similarly, Dbl-null mice show subtle developmental abnormalities

[27] and attempts to induce tumors in onco-Dbl transgenic mice

could be achieved only in the absence of a functional p53 [1].

The analysis of the animal model described here indicates that

onco-Dbl expression can induce major abnormalities even if such

defects are restricted to the lens tissue. Using microarray to

determine changes in gene expression associated with the

abnormalities detected we observed strong down-regulation of

expression of most of the genes responsible for eye development

and lens structure and function [28]. For several of them the

down-regulation increased with time. Crystallins are the main

structural proteins of the lens, while filensin, a member of the

intermediate filaments protein superfamily exclusively expressed in

the eye lens, is essential for lens function, and specifically

contributes to the optical properties of the lens by maintaining

the three dimensional architecture of lens fiber cells. Thus, onco-

Dbl deeply affects lens development and structure by strongly

altering the expression of lens specific genes.

Epithelial cells are characterized by a polarized morphology.

Wnt, Notch, and TGFb/bone morphogenetic protein (Bmp)

signaling networks are implicated in the maintenance of tissue

homeostasis and are transduced to the canonical pathway for cell

fate determination, and to the non canonical pathway for control of

cell movement and tissue polarity [24]. We have found that genes

involved in the Wnt, Notch and TGFb signaling are modulated in

Dbl-lenses. No genes encoding for TGFb or TGFb receptors were

up-regulated and Smad genes are unaffected or down regulated

(Smad1 and Smad5). On the other hand, Bmp1 and its receptor,

Bmpr1a, as well as the fibroblast growth factor receptor 1 (Fgfr1) are

up regulated in Dbl-lenses. The significance for such modulation is

not clear but it is possible that the Wnt, Notch and TGFb/Bmp

signaling are perturbed in the Dbl-lenses for stimulation of the non-

canonical pathway for the activation of RhoA and JNK signaling

cascade to control cell movement and tissue polarity.

Pro-apoptotic genes were down-regulated in Dbl-lenses. On the

other hand, genes encoding proteins with anti-apoptotic activity,

like Bcl2a1 and osteopontin were highly up-regulated. Bcl2, the

first apoptotic regulator identified through its involvement in the

t14;18 chromosome translocation that hallmarks follicular lym-

phoma, acts by promoting cell survival [29,30] and osteopontin

stimulates expression of anti apoptotic proteins [31,32]. Our data

confirmed that no apoptosis is occurring in the Dbl transgenic

Table 3. Differentially expressed genes related to the EMT process.

Gene namea GenBank Description 2 daysb 14 daysb 42 daysb References

a-Sma X13297 actin, alpha 2, smooth muscle, aorta 3,96 1,85 1,06 [43,44]

Bcl2a1c U23778 hematopoietic-specific early-response A1-c 5,71 3,57 4,12 [45,46]

Bcl2a1a U23781 hematopoietic-specific early-response A1-a 3,49 7,35 8,53 [45,46]

Bmp1 L24755 bone morphogenetic protein 1 1,61 2,57 2,73 [13]

Bmpr1a D16250 bone morphogenetic protein receptor, type 1A 2,09 2,11 10,27 [47]

Casp7 U67321 caspase 7 26,29 24,73 24,08 [48,49]

Casp9 AB019600 caspase 9 21,87 21,96 21,72 [50]

Cdh1 X60961 cadherin 1 22,43 21,16 21,81 [51,52]

Cdh2 M31131 cadherin 2 3,23 1,62 2,56 [53,54]

Col1a1 U03419 procollagen, type I, alpha 1 3,01 10,66 5,05 [55]

Col4a1 M15832 procollagen, type IV, alpha 1 24,93 22 23,03 [44,56]

Col4a2 X04647 procollagen, type IV, alpha 2 25,15 23,17 23,86 [44,56]

Col4a3 Z35166 procollagen, type IV, alpha 3 28,39 21,4 23,77 [44,56]

Ki-67 X82786 antigen identified by monoclonal antibody Ki 67 4,56 5,3 17,18 [57,58]

Itga6 X69902 integrin alpha 6 24 21,72 23,12 [43,44]

Lama2 U12147 laminin, alpha 2 23,98 21,73 27,33 [44,59]

Mmp12 M82831 matrix metalloproteinase 12 1,81 17,7 11,12 [60,61]

Plat J03520 plasminogen activator, tissue 2,07 2,43 1,58 [62]

Tgfbi L19932 transforming growth factor, beta induced 4,65 9,86 18,48 [63]

Vil2 X60671 villin 2 22,27 21,64 21,79 [63]

Zo-1 D14340 tight junction protein 1 23,04 22,14 21,69 [64,65]

The differentially expressed genes and their relative fold changes are listed for each of the time points.
aCommon gene name, genbank accession number, a brief gene description, and the fold change value are specified for each gene.
bFold change is calculated as a ratio of Dbl/wt signals (average of expression level of three experiments). For down-regulated genes the ratio is expressed as the

negative reciprocal.
doi:10.1371/journal.pone.0007058.t003
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mouse lenses (see Fig. 3) and support a role for Dbl in promoting

cell survival through the modulation of genes regulating apoptosis.

Our observations that Dbl modulates genes involved in cell

adhesion, cell polarity and apoptosis suggest that onco-Dbl

expression in mouse lenses induces events associated with EMT,

the process by which epithelial cells loose their characteristics, such

as cell–cell adhesion, polarity, and lack of motility, and acquire

mesenchymal features, including motility, invasiveness and

Figure 2. qRT-PCR analysis of genes selected from the microarray expression profile. qRT-PCR analysis of genes selected from the
microarray expression profile. For the 2, 14, and 42 day old Dbl transgenic and wild type mice lenses 2 mg of total RNA was reverse-transcribed and
Real Time quantitative PCR (qRT-PCR) was conducted in triplicate for each target transcript. Expression changes of 24 selected genes were evaluated
in relation to the values obtained in parallel for three reference genes. The results are expressed as log2 ratios of fold changes (Dbl relative to wild
type lenses) and the mean of triplicate determinations for each target transcript is shown. Positive values indicate that the mRNA level of a particular
gene is up-regulated, whereas negative values indicate that the transcript is down-regulated. The bars represent SE.
doi:10.1371/journal.pone.0007058.g002

Dbl in Transgenic Mouse Lenses

PLoS ONE | www.plosone.org 9 September 2009 | Volume 4 | Issue 9 | e7058



resistance to apoptosis. In EMT the expression of epithelial

proteins is suppressed and expression of mesenchymal genes is

enhanced [12–14]. Likewise, we found that expression of E-

cadherin (Cdh1) is down regulated in Dbl-lenses while N-cadherin

(Cdh2) is up-regulated. In addition, the expression of the fibroblast

marker a-Sma (Asma) and of Ki-67, a marker of cycling cells as

well as EMT, was significantly up-regulated in Dbl-lenses. Among

the genes identified as possible players of EMT collagen IV, the

major structural component of basal membrane, was down

regulated, while collagen I was up-regulated. Moreover, Dbl

expression induces changes in the tight-junction protein ZO-1,

thus probably affecting epithelial cell polarity, and strong up-

regulation of MMP12, which is involved in the proteolysis of

extracellular matrix [33]. Periostin (Postn), an osteoblast-specific

factor, and Tgfbi, a structural homolog of periostin, were also up-

regulated in Dbl-lenses. TGFBI is a secreted ECM protein mainly

expressed in fibroblasts, keratinocytes, and muscle cells and is

involved in cell–matrix interaction and cell migration. Finally, as

discussed above, several genes involved in the inhibition of

apoptosis were also up regulated. Collectively, these data indicate

that the expression of Dbl alone is sufficient to confer EMT to lens

epithelial cells. It should be noted, however, that not all the genes

considered hallmarks of the EMT process, such as vimentin, were

found modulated in the Dbl-lenses. Many different, often cross-

talking mechanisms cause EMT which comprises a wide spectrum

of changes in epithelial plasticity. These may involve less or more

severe gene expression changes toward a mesenchymal cell

phenotype. Moreover, the fibroblastoid phenotype expressed

may be different from one epithelial cell type to another and the

expression of epithelial and mesenchymal molecules may not

always be comparable in different tissues in vivo.

Examination of transgenic lenses indicated that onco-Dbl

expression can promote neovascularisation. In fact, both lymphan-

giogenesis and angiogenesis can be observed in the lenses of Dbl

transgenic mice throughout the 6 weeks of examination. These

observations imply that onco-Dbl induces expression of pro-

angiogenic factors and inhibits antiangiogenic protein expression.

Microarray analysis confirmed the modulation of genes involved in

angiogenesis. Annexin II, for example, stimulates cell proliferation

and angiogenesis and is a putative receptor for tissue-type

plasminogen activator (Tpa/Plat), another gene activated in Dbl-

lenses, which generates plasmin, known to promote angiogenesis

[34]. Endoglin and neuropilin 1 were also up-regulated in Dbl-

lenses. Endoglin (CD105) is predominantly expressed on cellular

Figure 3. Occurrence of apoptosis in Dbl transgenic lenses. Lens sections were stained with TUNEL (green) to reveal apoptotic cells. Nuclei
were stained with DAPI (blue). Sections were from normal and transgenic lenses. Eyes were collected at the indicated times. The two apoptotic cells
detected at 42 days are indicated by the arrowheads.
doi:10.1371/journal.pone.0007058.g003
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lineages within the vascular system and is highly expressed on

endothelial cells during tumor angiogenesis and inflammation [35].

Neuropilins (Nrp1 and Nrp2) are multifunctional receptors which

are expressed on normal vascular smooth muscle and endothelial

cells. Finally, another pro-angiogenic factor which is highly up-

regulated in Dbl-lenses is the monocyte chemoattractant protein-1

(Ccl2/Mcp-1). Indeed, in addition to VEGF or other well validated

angiogenic factors, chemokines have also been shown to be potent

angiogenic factors and Ccl2 has been reported to be a potent

inducer of angiogenesis [23].

Some of the genes modulated in Dbl-lenses have been

implicated with the transformation of lens epithelial cells to

mesenchymal cells in anterior subcapsular cataracts and posterior

capsule opacification, both of which are secondary cataracts

formed from residual lens epithelial cells after cataract surgery

[36]. These cataracts appear to be accompanied by epithelial cell

proliferation, synthesis of the fibroblast marker a-Sma, and

accumulation of abnormal extracellular proteins, including type

I and type III collagen. TGFb and its signalling pathway are

activated and considered the causative factor of lens cell

transdifferentiation observed in these cataracts [37].

The results we have obtained are not compatible with Dbl

inducing anterior subcapsular cataracts or posterior capsule

opacification for several reasons. As already discussed above, no

genes encoding for TGFb or TGFb receptors were found up-

regulated in Dbl-lenses and the Smad genes were not modulated

or were significantly down regulated. On the other hand, genes

which are highly up-regulated in Dbl-lenses, such as Mmp12,

Ccl2, and Spp1, have not been described in EMT occurring in

these cataracts. In addition, we identified up-regulation of genes

that are involved in resistance to apoptosis and induction of

angiogenesis, while apoptotic cell death and decreased expression

of Bcl-2 occur in lens epithelial cells in anterior polar cataracts [38]

and angiogenesis has never been described as a pathologic

consequence of cataract or lens injury. Thus, Dbl oncogene seems

to induce alterations in the lenses that are significantly different

Figure 4. Collagen and vessel detection in Dbl transgenic lenses. Eyes were fixed with 2% paraformaldehyde and paraffin embedded. Serial
sections were stained with Azan-Mallory for collagen (blue stain) or with Ignesti to reveal vessels. Arrowheads point to some of the lymphoid vessels
shown and arrows indicate blood vessels. Erythrocytes are stained in orange. (a–d) 2006.
doi:10.1371/journal.pone.0007058.g004
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Figure 5. CD31 staining of vessels in Dbl transgenic lenses. Eyes collected at different times were fixed with 2% paraformaldehyde and
paraffin embedded. Serial sections were treated with anti- CD31 antibody. Arrows point to blood vessels, arrowheads to lymphatic vessels. The box in
a denotes the region shown at higher magnification in b and c. The boxes in e denote the regions shown at higher magnification in f, g, and h,
respectively. The box in i denotes the region shown at higher magnification in k and j. The box in l denotes the region shown at higher magnification
in m, n and o. (a, e, i) 406; (k, l, m) 1006; (b, d f, g, j, n) 2006 (c, h, o,)4006
doi:10.1371/journal.pone.0007058.g005
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from those occurring in anterior subcapsular cataracts and

posterior capsule opacification.

The reason why Dbl oncogene expression affects only lens

development and lens epithelial cell differentiation is not clear,

since the oncogene is regulated by the metallothionein promoter

sequences, a housekeeping promoter that, in transgenic mice, is

known to promote expression of exogenous proteins in a variety of

cell types. In addition, Dbl oncogene transforming activity has

never been reported for epithelial cells. One possible explanation

can be that the lens resides in a hypoxic environment and

metallothionein gene expression is induced by a variety of stimuli,

such as metal exposure, oxidative stress, glucocorticoids, and also

by hypoxia [39–42]. Thus, the hypoxic condition of the lens may

favor the expression of onco-Dbl in this tissue. Moreover, the lens

is a rather peculiar, unique structure of the organism, being

constituted only by epithelial cells present at different stages of

maturation and differentiation. Thus, the lens may constitute the

right cellular environment for a strong and effective Dbl oncogene

expression.

In conclusion, while some of the alterations induced by Dbl

oncogene expression in mouse lenses resemble in part those

described for certain types of cataracts, the extent of the

abnormalities, the modulation of certain genes and the block of

the apoptotic pathway together with the induction of lymphan-

giogenesis and vascularization in the lens suggest that the

expression of onco Dbl in epithelial cells may cause changes that

cannot be merely ascribed to a fibrotic process. While we cannot

describe the Dbl-induced alterations in the lens as a neoplastic

event we may speculate that they represent morphological changes

indicative of a predisposition for malignancy. Moreover, to our

knowledge this is the first observation that a GEF may be directly

responsible for induction of vascularization of an epithelial tissue.

Supporting Information

Table S1 Primer pairs used for real-time quantitative RT-PCR.

All primer pairs were designed using Primer-3 software from

sequences in GenBank with a Tm optimum of 60uC and a product

Figure 6. Immunohistochemistry analysis of Dbl transgenic lenses. Eyes were fixed with 2% paraformaldehyde and paraffin embedded.
Serial sections were treated in a microwave oven four times with citrate buffer (pH 6.0) for 5 min at 960 W. Sections were saturated with 10% BSA in
PBS with 0.1% Triton X-100 and incubated overnight at 4uC in a humidified chamber with the specific primary antibodies. Primary antibodies
included: anti-Dbl rabbit polyclonal antibody (Santa Cruz Biotechnology) (a and b), anti E-cadherin mouse monoclonal [21], c and d; anti Ccl2/MCP-1
rabbit polyclonal (Abcam), e and f; anti MMP12 rabbit monoclonal (Novus Biologicals), g and h; anti Bcl2A1 rabbit polyclonal (Abcam), i and j; anti
SPP-1 mouse monoclonal (Santa Cruz Biotechnology), k and l. The reactions were developed with LSAB2 System-HRP (Dako). (g, h) lenses from 14
day old mice; (c, d, k, l) lenses from 28 day old mice; (a, b, e, f, i, j) lenses from 42 day old mice. (a, b, f, h, j,) 1006; (e, g, i, k, l) 2006; (c, d) 4006
Images were obtained with a Leica DMRB microscope. Micrographs were taken on LEICA DFC 320 camera.
doi:10.1371/journal.pone.0007058.g006
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length of 80-150 nt. The * indicates the reference genes used for

data normalization.

Found at: doi:10.1371/journal.pone.0007058.s001 (0.59 M DOC)
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