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Robust latent-variable 
interpretation of in vivo regression 
models by nested resampling
Alexander W. Caulk1 & Kevin A. Janes2,3*

Simple multilinear methods, such as partial least squares regression (PLSR), are effective at 
interrelating dynamic, multivariate datasets of cell–molecular biology through high-dimensional arrays. 
However, data collected in vivo are more difficult, because animal-to-animal variability is often high, 
and each time-point measured is usually a terminal endpoint for that animal. Observations are further 
complicated by the nesting of cells within tissues or tissue sections, which themselves are nested 
within animals. Here, we introduce principled resampling strategies that preserve the tissue-animal 
hierarchy of individual replicates and compute the uncertainty of multidimensional decompositions 
applied to global averages. Using molecular–phenotypic data from the mouse aorta and colon, we find 
that interpretation of decomposed latent variables (LVs) changes when PLSR models are resampled. 
Lagging LVs, which statistically improve global-average models, are unstable in resampled iterations 
that preserve nesting relationships, arguing that these LVs should not be mined for biological insight. 
Interestingly, resampling is less discriminatory for multidimensional regressions of in vitro data, where 
replicate-to-replicate variance is sufficiently low. Our work illustrates the challenges and opportunities 
in translating systems-biology approaches from cultured cells to living organisms. Nested resampling 
adds a straightforward quality-control step for interpreting the robustness of in vivo regression models.

Modern biology and physiology demand rich, quantitative, time-resolved observations obtained by differ-
ent methods1. To analyze such datasets, statistical “data-driven” modeling2 approaches have been productively 
deployed in vitro to examine network-level relationships between signal transduction and cell phenotype3–9. 
One class of models uses partial least squares regression (PLSR) to factorize data by the measured biological 
variables10. Linear combinations are iteratively extracted as latent variables (LVs) that optimize the covariation 
between independent and dependent datasets to enable input-output predictions. Highly multivariate data are 
efficiently modeled by a small number of LVs because of the mass-action kinetic processes underlying biological 
regulation11.

The success of PLSR at capturing biological function extends to nonlinear derivatives12 and structured multi-
dimensional data arrays13 (tensors) from cell lines. By contrast, in vivo applications of PLSR have not gone beyond 
qualitative classification of inputs or outcomes14–17. The gap is unfortunate, because in vivo studies are the gold 
standard to compare phenotypes across species18,19, disease models20,21, and laboratories22–26. Animal surrogates 
can offer insight into the (patho)physiologic function of individual proteins, but interpreting the consequences 
of in vivo perturbations is complicated27,28. Applying PLSR quantitatively to in vivo data may better identify the 
underlying networks that, when perturbed, yield clinically relevant phenotypes.

For predictive modeling, there are many hurdles to using PLSR- and other LV-based approaches with in vivo 
data. Unlike spectroscopy (where PLSR originated10) or experiments in cultured cells, variation among in vivo 
replicates is often large even within inbred strains29–31, and this uncertainty does not get transmitted to standard 
models built from global averages. Including all replicates fixes the problem of replication uncertainty but creates 
others related to crossvalidation32 and the nesting of replicates in the study design33. In vivo data are typically 
grouped by replicate within a time point but are unpaired between time points, complicating model construction. 
An open question is whether the combinatorics of replicated, multivariate in vivo datasets can be tackled algorith-
mically within a multidimensional PLSR framework.
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In this study, we apply computational statistics34 to the construction and interpretation of in vivo PLSR mod-
els built from multidimensional arrays. Replicate-to-replicate uncertainty is propagated by resampling strate-
gies that maintain the nesting relationships of the data acquisition (Fig. 1). Nested resampling separates robust 
latent variables, which arise regardless of replicate configuration, from those that are statistically important in 
the global-average model but fragile upon resampling. Interpretations of robustness are more conservative when 
nested resampling is executed by subsampling (a leave-one-in approach) than by jackknifing (a leave-one-out 
approach). By contrast, neither is especially informative at discriminating latent variables when applied to a 
highly reproducible35 multidimensional dataset collected in vitro, bolstering the claims of earlier studies with cul-
tured cells3–9. By leveraging the structure of multidimensional arrays, nested resampling provides a rapid numer-
ical means to incorporate the uncertainty of in vivo observations into data-driven models without violating their 
mathematical assumptions.

Results
We sought an implementation of PLSR that robustly analyzes in vivo datasets comprised of temporal, multiparam-
eter, and interrelated responses to perturbations. At the core of a PLSR model are its LVs (alternatively, principal 
components), which capture separable covariations among measured observations2,36. Interpreting LV features—
for example, a “score” related to a condition or a “weight” (“loading”) related to a measured observation—is aided 
by computational randomization approaches that build hundreds of null models from the same data but without 
any true structure13,37. Scores and loadings that are similar between the null model and the actual model indicate 
data artifacts (biases, batch effects, etc.) that should not be used for hypothesis generation. Thus, by systematically 
building many alternative models, the randomization approach contextualizes the meaning of the true model.

We reasoned that a conceptually analogous approach might be useful for handling in vivo datasets that are 
inherently more variable than is typical for PLSR31,32. Iterative leave-one-out approaches such as jackknifing38 or 
crossvalidation10 are established approaches for omitting individual conditions during PLSR training and vali-
dation. Unexplored is whether there could be value in adapting such a strategy to replicates rather than condi-
tions. To resample replicates by jackknifing, one biological replicate (i.e., animal) is randomly omitted from each 
condition. All observations from that replicate are removed as a group to reflect the nesting relationships within 
the dataset. After one replicate is left out, averages are recalculated and a resampled PLSR model is built. The 
distribution of hundreds of jackknifed iterations indicates the extent to which the global-average model requires 
all of the data available.

Reciprocally, one could ask whether the global-average model is sufficiently reconstructed from any of the 
data by using subsampling instead of jackknifing. For subsampling, the nested observations from one biological 
replicate (animal) are randomly selected from each condition to build an n-of-one dataset that is modeled by 
PLSR. As with jackknife resampling, hundreds of iterations are compiled, yielding a subsampled distribution of 
models and LVs based on a single instance of the data. Together, nested jackknife–subsample resampling should 
provide numerical estimates for the fragility and robustness of PLSR models constructed from global-average 
data with high inter-replicate variance.

The premise of nested resampling was tested in three contexts. First, we used a multidimensional dataset from 
Bersi et al.39 to build a new PLSR model, which warranted reinterpretation after nested resampling. We next tested 
general applicability of the approach by repurposing in vivo data from Lau et al.14 to construct a second multi-
dimensional PLSR model for nested-resampling analysis. Last, we asked whether the same tools were similarly 
informative when applied to an existing multidimensional PLSR model from Chitforoushzadeh et al.13, which was 
calibrated with highly reproducible data from cultured cells. The results collectively support nested resampling as 
a useful complement to PLSR models applied to in vivo settings when biological variability is large.

Nested resampling uncovers PLSR model fragilities missed by randomization.  In the study by 
Bersi et al.39, ApoE−/− mice (used for their highly maladaptive hypertension-induced vascular remodeling40) 
were continuously administered Angiotensin II (AngII) and evaluated for enzymatic, cellular, and mechanical 
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Figure 1.  Overview of nested resampling. Studies involving terminal samples are often fully crossed by 
condition and time point with input and outputs (I/O) nested within replicates and replicates nested within 
time points. Standard PLSR involves taking global averages of the samples at each time point (gray) before 
model construction. In nested resampling, one replicate is randomly withheld and the average calculated by 
jackknifing (orange) or one replicate is selected randomly and used in the model during subsampling (blue).
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changes in four regions of aortic tissue (Table 1). Enzymatic–cellular (immuno)histology was collected at three 
time points and mechanical data at five time points over 28 days along with baseline controls (N = 2–7 animals; 
Fig. 2). For multidimensional PLSR modeling, data were separated by histological (input) and mechanical (out-
put) data (Fig. 1) and standardized to predict mechanical metrics from histological and immunohistochemical 
data (see Methods). The working hypothesis of the model was that regionally disparate inflammatory and enzy-
matic changes in the aorta predictably drive differential changes in tissue mechanical properties.

LVs were iteratively defined for the multidimensional arrays by established approaches13,41, and the model 
root mean squared error (RMSE) of prediction was minimized with four LVs (Fig. 3a). By leave-one-out cross-
validation, we found that standardized predictions of the four-LV model were accurate to within ~75% of the 
measured result when averaged across all conditions (Fig. 3b), suggesting good predictive capacity. The four LVs 
of the multidimensional PLSR model thereby parse the regional, temporal, and molecular–cellular–mechanical 
covariations in the global-average dataset (Supplementary Fig. S1).

For LV interpretation and hypothesis generation from the Bersi et al.39 dataset, we compared existing random-
ization methods13,37 to nested resampling. Across the four LVs, nearly all mechanical observations were weighted 
beyond the standard deviation of random null models (Fig. 4a,b), supporting interpretation of the weights. For 
example, inner radius was positively weighted on LV3 (ir; Fig. 4b) whereas thickness measures were negatively 
weighted on LV3 (H and h; Fig. 4b), suggesting that LV3 may discriminate aneurysmal dilatation, which pre-
disposes to aortic dissection and rupture42, and fibrotic thickening, which predisposes to myocardial infarction 
and stroke via increased arterial stiffness43. However, interpretations changed when biological variability of the 
underlying in vivo data was considered through nested resampling (Fig. 4c–f). Both jackknifed and subsampled 
resampling suggested that LV3 and LV4 were too unstable to justify interpreting any parameters in these LVs 
(Fig. 4d,f). LV1 and LV2 yielded nonzero weights that were more robust, even retaining certain thickness and 
outer diameter observations that were excluded by randomization (H, od, and OD; Fig. 4c). However, nested 
resampling revealed considerable uncertainty in the weights of LV3 and LV4 (Fig. 4d,f), arguing against any 

Symbol Variable Name (Mode 3) Method N =  Input/Output

elnm Elastin - media Histology 2 Input

colm Collagen - media Histology 2 Input

SMCm Smooth muscle cells - media Histology 2 Input

GAGm Glycosaminoglycans - media Histology 2 Input

cola Collagen - adventitia Histology 2 Input

CD3m Cluster of differentiation 3 - media Immunofluorescence 2 Input

CD45m Cluster of differentiation 45 - media Immunofluorescence 2 Input

CD68m Cluster of differentiation 68 - media Immunofluorescence 2 Input

CD3a Cluster of differentiation 3 - adventitia Immunofluorescence 2 Input

CD45a Cluster of differentiation 45 - adventitia Immunofluorescence 2 Input

CD68a Cluster of differentiation 68 - adventitia Immunofluorescence 2 Input

MMP2m Matrix metalloproteinase 2 - media Immunofluorescence 2 Input

MMP12m Matrix metalloproteinase 12 - media Immunofluorescence 2 Input

MMP13m Matrix metalloproteinase 13 - media Immunofluorescence 2 Input

MMP2a Matrix metalloproteinase 2 - adventitia Immunofluorescence 2 Input

MMP12a Matrix metalloproteinase 12 - adventitia Immunofluorescence 2 Input

MMP13a Matrix metalloproteinase 13 - adventitia Immunofluorescence 2 Input

OD Unloaded outer diameter Biaxial testing 4–7 Output

H Unloaded thickness Imaging 4–7 Output

od Systolic outer diameter Biaxial testing 4–7 Output

h Systolic thickness Biaxial testing 4–7 Output

ir Systolic inner radius Biaxial testing 4–7 Output

λz,iv In vivo axial stretch Biaxial testing 4–7 Output

σθθ Circumferential stress Biaxial testing 4–7 Output

σzz Axial stress Biaxial testing 4–7 Output

Cθθθθ Circumferential stiffness Biaxial testing 4–7 Output

Czzzz Axial stiffness Biaxial testing 4–7 Output

W Stored strain energy Biaxial testing 4–7 Output

Dist Distensibility Biaxial testing 4–7 Output

Table 1.  Symbols, metrics, methods of acquisition, and sample sizes per condition per time point (N = ) 
for the PLSR model of Bersi et al.39. Histological stains used for matrix quantification include Elastica van 
Gieson (elastin – black stain), Movat’s Pentachrome (smooth muscle cells – red stain, GAGs – blue stain), and 
Picrosirius Red (collagen). Output samples were whole aortic sections from one mouse which were formalin-
fixed after testing. Input samples were slides from output samples chosen for sectioning and staining based on 
their proximity to the mean thickness of their associated groups. Inputs were averages of three sections per slide.
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quantitative comparison of mechanical observations along these LVs. In contrast to standard performance met-
rics for PLSR (Figs. 3 and 4a,b), nested resampling provisioned the Bersi et al.39 model as fragile in its lagging LVs 
compared to the robustness of LV1 and LV2.
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Figure 2.  Time-resolved profiling of cellular infiltration, extracellular matrix production–turnover, and aortic 
geometry and mechanics during pharmacologically-induced hypertension. Mice were treated with AngII and 
tissue harvested at the indicated time points for subsequent histological and mechanical analysis (Table 1). 
Data are separated by independent (left) and dependent data (right) and aortic region (rows). Standardized 
differential changes (uncentered and variance-scaled by measured variable; see Methods) from the 0-day 
baseline value are shaded red (increase) or blue (decrease).
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One possible explanation for such high uncertainty is that some resampled models might switch the sign of an 
LV weight together with the associated LV score, which mutually offset as a degenerate solution. We accounted 
for sign switching by looking for symmetric bimodal distributions about zero and flipping signs to the dominant 
mode when switching was evident. Some bimodal scores were asymmetrically distributed with a near-zero mode 
(e.g., the distribution of LV1–LV2 scores for the DTA condition; Supplementary Fig. S2), indicating that their LV 
assignments were heavily dependent on the resampling iteration. For LV3 and LV4, however, the distribution of 
scores was broad among resampling replicates and mostly indistinguishable from zero (Supplementary Fig. S2). 
Uncertainty in the trailing LVs may stem from model iterations requiring less than 4 LVs to explain the variance 
in that iteration. The analysis further supports that the lagging LVs of this model do not contain prevailing trends 
in the data but instead capture a specific replicate configuration of the animals used.

Data pairing does not significantly alter results of nested resampling.  In the Bersi et al.39 study, 
inbred animals sacrificed at several time points were doubly used to collect enzymatic–cellular histology (X) 
and mechanical data (Y; Fig. 1). Possibly, the paired animal-by-animal covariation of histology and mechanics 
was greater than the condition-wide averages. We sought to evaluate the relative importance of within-animal 
pairing between independent and dependent datasets by applying nested resampling. To do so, we built a second 
PLSR model using only the time points with paired enzymatic–cellular and mechanical data: 0, 4, 14, and 28 days 
(Fig. 2). For the second model, resampling was coupled between X and Y to retain the paired information of each 
animal selected by subsampling. The interpretation of subsampled time weights for the paired model was then 
compared with the original unpaired model to determine if conclusions were fundamentally different.

We found that the LV1–LV2 time weights obtained by paired sampling were indistinguishable from those 
obtained by unpaired sampling (Fig. 5, upper). Relative to their corresponding global-average model, both anal-
yses indicated that the dynamics associated with LV1 and LV2 were robust, consistent with the prior assessment 
of mechanical weights for these LVs (Fig. 4). Histological time weights were similarly reliable for LV3 and LV4, 
but mechanical time weights were highly variable and largely overlapping with zero (Fig. 5, lower). No statisti-
cally significant differences were identified between paired and unpaired time weights in LV3 or LV4 (p > 0.25 
following two-way ANOVA with Tukey’s post-hoc test for differences between paired–unpaired or independent–
dependent time weights), indicating that pairing does not add statistical power to the trailing LVs for this dataset. 
Similar results were obtained when the X and Y blocks were individually unpaired (Supplementary Fig. S3). More 
generally, the analysis suggests that unpaired in vivo designs may be sufficient for nested resampling to assess the 
stability of model components.

Generality of nested resampling to other multidimensional in vivo and in vitro datasets.  The 
LV fragilities revealed by nested resampling could be specific to the Bersi et al.39 dataset. We thus sought another 
in vivo study comprised of multiple molecular–cellular measurements, time points, and animals where nested 
replicate information could be recovered confidently. Raw data was obtained from Lau et al.14, who examined 
the molecular and cellular inflammatory response of the small intestine to the cytokine tumor necrosis factor α 
(TNFα). Animals (N = 5) were administered one of two doses of TNFα and sacrificed at one of six time points 
after administration. From each animal, two intestinal regions were analyzed for signaling by Luminex phospho
proteomics, cell proliferation by immunohistochemistry, and overall cell death by western blotting (Table 2). The 
data were used previously to classify cell-fate responses14—we asked here whether cell proliferation and death 
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Figure 3.  A four-component multidimensional PLSR model predicts AngII-induced evolution of aortic 
geometry and mechanics from matrix production and turnover, proteolytic enzyme expression, and 
inflammatory cell infiltrate. (a) Root mean squared error (RMSE) of cross-validated predictions is minimized 
with four LVs. (b) Pearson (R) and Spearman (ρ) correlation coefficients of the four-LV PLSR model for all 
aortic regions and time points. Cross-validated predictions were made by leaving out one entire aortic region at 
a time. ATA – ascending thoracic aorta, DTA – descending thoracic aorta, SAA – suprarenal abdominal aorta, 
IAA – infrarenal abdominal aorta.
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were predicted quantitatively from the time-resolved phosphoproteomic observations. If so, then nested resam-
pling could address how robust or fragile those predictions were to the animals included.

We organized and standardized the data (Supplementary Fig. S4), building a single PLSR model of the global 
averages along with 500 null models by randomization. For the Lau et al.14 dataset, a three-LV model was optimal 
and yielded good predictive accuracy (Fig. 6). LV1 of the global-average model did not discriminate between 
tissues or outcomes, but LV2 separated cell proliferation (ph3) vs. death (cc3) readouts and LV3 stratified duode-
nal vs. ileal segments of the intestine (Supplementary Fig. S5). The LV3 variable weights further connected early 
Mek1–Erk1/2 signaling to inhibition of TNFα-induced proliferation arrest in the ileum. This mapping was con-
sistent with a PLS-based classification of the same data by Lau et al.14, who validated it mechanistically with a Mek 
inhibitor administered in vivo. Despite differences in the mathematical formalisms, the multidimentsional PLSR 
model here was sufficiently predictive to yield interpretable relationships validated by experimental follow up.

Randomization of the global-average model suggested that the ph3–cc3 distinction along LV2 was far out-
side chance expectation (Fig. 7a, left). Nested resampling, however, revealed a pronounced fragility of output 
weights when accounting for inter-replicate variability. Both jackknifing and subsampling eliminated any dis-
crimination along LV2 (Fig. 7a, middle and right), undermining model interpretations based on it. Similarly, the 
time-dependent behavior associated with LV2 and LV3 (Fig. 7b) mostly reverted to near zero after subsampling 
(Fig. 7c). Therefore, as with the Bersi et al.39 study, the lagging components of this multidimensional PLSR model 
capture in vivo replicate instabilities instead of salient trends in the data. Together with the successful discrimi-
nant analysis of Lau et al.14, we conclude that the measured signaling kinetics are classifiers of tissue phenotype 
but not quantitative predictors of it.
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-0.6 -0.3 0 0.3 0.6
LV1 (qm1)

-0.4

-0.2

0

0.2

0.4

0.6

(a)

(b)

(e)

(f)

(c)

(d)

SubsamplingJackknifing

-0.6 -0.3 0 0.3 0.6
LV3 (qm3)

-0.6

-0.3

0

0.3

0.6

-0.6 -0.3 0 0.3 0.6
LV1 (qm1)

-0.4

-0.2

0

0.2

0.4

0.6

LV1 (qm1)

-0.6 -0.3 0 0.3 0.6
LV3 (qm3)

-0.6

-0.3

0

0.3

0.6

LV3 (qm3)

LV
4 

(q
m

4)
LV

2 
(q

m
2)

Non-zero 
x and y Non-zero x Non-zero y ~ZeroNull

Resampled
Weights Null ± σ

Figure 4.  Resampling PLSR distinguishes robust dependent variable weights (qmn) in a four-LV model of 
AngII-induced hypertension. (a,b) Generation of a null PLSR model via data randomization of data to identify 
parameters of interest. Dependent variable weights (qmn) in the original PLSR model lying outside of a single 
standard deviation of the null PLSR model are labeled in black (see Table 1 for abbreviations). Solid gray lines 
denote the mean of N = 500 reshufflings within mode 1 (i.e., time and measured variables were shuffled within 
each aortic region). Dotted-gray lines denote mean ± standard deviation of weights. (c,d) Replicate resampling 
(N = 500) by jackknifing changes confidence of predictions for parameters compared with randomization. 
Black dots denote variable weights with error bars that do not intersect with zero (i.e., parameters weight 
consistently in a single region). Gray error bars denote errors that intersect with zero. (e,f) Replicate resampling 
(N = 500) by subsampling decreases confidence of parameters compared to jackknifing and yields no significant 
identifications in LV3 or LV4. Grayscale delineations are identical to those in (c,d). The top row depicts results 
for LV1 and LV2, and the bottom row depicts results for LV3 and LV4.
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It is possible that nested resampling excludes lagging LVs in any multidimensional dataset irrespective of 
its origin. To determine if fragility is tied to the higher biological variability of in vivo datasets, we reassessed 
an earlier multidimensional PLSR model built from global averages of in vitro measurements. The model of 
Chitforoushzadeh et al.13 predicts gene-expression cluster dynamics from intracellular signaling in a colon-cancer 
cell line stimulated with combinations of cytokines and growth factors3,35,44. Cell extracts (N = 2–6) were collected 
at three or 13 time points and measured transcriptomically by microarray or for signaling by various methods 
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Figure 5.  Subsampling PLSR with paired data shows similar performance to subsampling with unpaired data. 
Time weights (wjn, qln) from a PLSR model using (a) unpaired (blue) and (b) paired (orange) subsampling of 
histological and biomechanical data were generated 500 times for unpaired and paired sampling each. Note 
that paired sampling required omission of the 7 and 21 day time points in the dependent variables because 
histological data were not collected for those time points. Paired data were available for only two samples per 
aortic region and time point, both of which were chosen based on the proximity of the thickness value to the 
mean thickness value for the corresponding region and time point.

Symbol Variable Name (Mode 3) Marker Method N= Input/Output

pIκβα Inhibitor of nuclear factor κβ-α Phospho Ser32/36 Bio-Plex 5 Input

pJnk c-Jun N-terminal kinase Phospho Thr183/Tyr185 Bio-Plex 5 Input

pMek1 MAPK and ERK kinase 1 Phospho Ser217/221 Bio-Plex 5 Input

pErk1/2 Extracellular signal-related kinase 1/2 Phospho Thr202/Tyr204 (1), Thr185/Tyr187 (2) Bio-Plex 5 Input

pRsk Ribosomal S6 kinase Phospho Thr359/Ser363 Bio-Plex 5 Input

pp38 p38 mitogen-activated
protein kinase Phospho Thr180/Tyr182 Bio-Plex 5 Input

pc-Jun c-Jun Phospho Ser63 Bio-Plex 5 Input

pAtf2 Activating transcription factor 2 Phospho Thr71 Bio-Plex 5 Input

pAkt Akt/Protein kinase B Phospho Ser473 Bio-Plex 5 Input

pS6 Ribosomal protein S6 Phospho Ser235/236 Bio-Plex 5 Input

pStat3S727 Signal transducer and activator of transcription 3 Phospho Ser727 Bio-Plex 5 Input

pStat3Y705 Signal transducer and activator of transcription 3 Phospho Tyr705 Bio-Plex 5 Input

cc3 Cleaved caspase 3 Cleaved levels qWB 5 Output

ph3 Phosphorylated histone 3 Number positive cells IHC 5 Output

Table 2.  Symbols, metrics, methods of acquisition, and sample sizes per condition per time point (N = ) for 
the PLSR model of Lau et al.14 All input and output samples represent mice per time point and one intestinal 
segment each. qWB – Quantitative western blotting, IHC – Immunohistochemistry.
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(Table 3). The prior hypothesis was that quantitative predictions of gene-expression dynamics would uncover 
novel upstream signaling regulators of transcriptional programs13.

After obtaining the original dataset and confirming the nested replicate structure, we modeled the mean 
dataset (Supplementary Fig. S6) standardized as before13. The global-average model was optimally decomposed 
with four LVs, and randomizing 500 null models reproduced all the meaningfully weighted parameters (e.g., 
gene-cluster weights) described in the original study (Fig. 8a,b). Remarkably, when nested resampling was applied 
to this PLSR model, the conclusions were largely unaltered. Cluster weights were retained in ~90% of LV2 and 
LV3 and even ~56% of LV4 (Fig. 8c–f), bolstering prior interpretations of this PLSR model along with others built 
upon highly reproducible in vitro data3–9,13.

Using all three models resampled here, we plotted RMSE as a function of increasing LV for the global-average 
model compared to its mean jackknife or subsampled replication. For the Chitforoushzadeh et al.13 model built 
from in vitro data, jackknife and subsampled resamplings were superimposable with the global average (Fig. 9a). 
However, for the two in vivo studies, the resampled variants were consistently less accurate than the correspond-
ing global average (Fig. 9b,c). Taken together, the results indicate that nested resampling is an effective strategy—
distinct from prevailing methods—to benchmark meaningful LVs extracted from in vivo datasets.

Discussion
When applied to in vivo PLSR models, nested resampling is an effective way to hone in on latent variables that 
are robust to the replicate fluctuations of individual inbred animals. For high-variance observations, the method 
gives information complementary to that obtained by condition-specific jackknifing38 or crossvalidation10. In 
building hundreds of instances around the global-average model, nested resampling does not rely on any further 
assumptions to execute. However, it is important to recognize the nesting relationships within a study design and 
ensure that they are retained during resampling. The diversity of study designs33 precludes a universal software 
for nested resampling, but we provide code for the specific implementations here, which can readily be adapted 
for other in vivo datasets (Supplementary File S1).

Normally, direct use of replicated data in PLSR is discouraged, because replicates inflate the number of obser-
vations and reduce the stringency of crossvalidation32. Resampling avoids data inflation but is minimally effective 
for latent-variable assessment when replicates are highly reproducible. The in vitro model13 resampled here uses 
data with a median coefficient of variation of ~11% (ref. 44), which is too small to impact the latent variables of the 
model. In mice, however, phenotypic variability within inbred strains is typically 3–5 times greater31, competing 
with the biological effect size of many studies. Replicates are essential for more reliable central estimates and 
statistical power45. This work shows how replicates can be repurposed to reflect better the internal variability of 
in vivo datasets and identify the robust vs. fragile components of regression models that are ordinarily limited to 
using replication indirectly.

The in vivo datasets modeled here used inbred strains of mice to minimize genotypic differences. Modeling 
outbred strains of animals31 or diverse human populations46 will involve very different approaches. Rather than 
averaging (followed by jackknife–subsampled resampling), each individual will be better handled as a separate 
observation if the independent and dependent data can be reliably paired to that individual. Data pairing may be 
particularly difficult when X and Y observations are collected at multiple time points. The paired-vs.-unpaired 
resampling comparison involving the Bersi et al.39 dataset (Fig. 5) provides a useful guide for determining when 
less conservative experimental designs (i.e., averaging without pairing) are acceptable.

The nested methods proposed here differ from prior resampling approaches that focus on defining observation 
sets for proper model selection47. Numerical Monte-Carlo simulations have a rich history in PLSR originating in 
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Figure 6.  A three-component multidimensional PLSR model predicts TNFα-induced apoptosis and 
proliferation of intestinal cells from cell signaling in the duodenum and ileum. (a) Root mean squared error 
(RMSE) of cross-validated predictions is minimized with three LVs. (b) Pearson (R) and Spearman (ρ) 
correlation coefficients of the three-LV PLSR model for all intestinal regions and time points.
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chemometrics48,49. However, applications to replicated data have not been considered previously, likely because 
of the high reproducibility of measured chemical spectra. In nested resampling, the subsample and jackknife 
gauge different ends of latent-variable robustness. Subsampling is highly conservative, evaluating whether any 
random draw of replicates yields essentially the same model. Latent variables that survive subsampling capture 
large, reproducible effect sizes and thus are highly robust. Conversely, jackknifing is a much weaker test of model 
fragility. Global-average relationships that disappear with jackknifing are severely underpowered and should be 
ignored or followed up with more replicates. Together, these established tools from computational statistics34 
enable formal examination of data qualities that would otherwise be inaccessible by PLSR alone.

The concepts put forth here generalize to other data-driven approaches besides PLSR. For example, when 
classifying observations by support vector machines50, the handling of replicated observations is often heuristic. 
Heinemann et al.51 investigated the effects of replicate downsampling on classification by metabolomics data 
with small or large variance, but nesting of replicates within observations was not considered as we did. Nested 
resampling of PLSR models shares conceptual analogies with the method of random forests52 for decision tree 
classifiers. Individual decision trees are unstable in their predictions, but robustness is improved when training 
data are randomly resampled to make ensemble classifications. Biological data in vivo are typically noisy and the 
number of observations is often limited, suggesting that some form of nested resampling would be beneficial for 
many data-driven methods seeking to identify molecular–cellular drivers of organismal phenotypes.
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Figure 7.  Subsampling PLSR of a second in vivo dataset reveals poor repeatability in trailing LVs. (a) 
Dependent variable weights (qmn) for LV2 vs. LV3 following randomization, jackknifing, and subsampling. LV1 
is omitted for clarity. Graphs are labeled as in Fig. 4. (b) Time weights for the global-average model delineating 
temporal behaviors of each LV. (c) Subsampled time weights (N = 500) show good agreement with the mean 
dataset on LV1 and LV3 with less agreement on LV2. Data are presented as mean ± standard deviation, with 
black markers indicating error bars that do not intersect with zero and gray markers indicating error bars that 
intersect with zero.
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A primary motivation for applying PLSR in biological systems is to simplify complex observations and gen-
erate testable hypotheses2,36. The latter goal is impossible when chasing latent variables that are statistically sig-
nificant overall but fragile upon replication. By using all of the in vivo data available, nested resampling identifies 
where PLSR stops modeling effect sizes and starts fitting biologically noisy averages. It contributes to the ongoing 
effort to improve the reproducibility of models53 and preclinical research26,54.

Materials and Methods
Experimental models.  Three studies were selected in which an inflammatory agent was administered in 
vivo or in vitro and subsequent temporal and/or spatial analyses were performed13,14,39. First, source data were 
obtained from Bersi et al.39 in which male ApoE−/− mice were infused with Angiotensin II (AngII, 1000 ng/kg/
min) via an implantable osmotic mini-pump for 4, 7, 14, 21, or 28 days. Following treatment, the aorta was har-
vested and separated into four regions: (1) the ascending thoracic aorta (ATA) spanning from the aortic root to 
the brachiocephalic artery, (2) the descending thoracic aorta (DTA) spanning from the left subclavian artery to 
the 4th or 5th pair of intercostal arteries, (3) the suprarenal abdominal aorta (SAA) spanning from the diaphragm 
to the left renal artery, and (4) the infrarenal abdominal aorta (IAA) spanning from the left renal artery to the 
iliac trifurcation. Vessels were cleaned, sutured, and mounted on an opposing glass cannula and subjected to 
passive biomechanical testing without contribution from smooth muscle as previously described55. Briefly, vessels 
were preconditioned to minimize viscoelastic behavior of the material and then subjected to three fixed-length, 
pressure-diameter inflation tests and four fixed-pressure, force-length extension tests. Following testing, vessels 
were fixed in 10% neutral buffered formalin, embedded in paraffin, and sectioned and stained with Movat’s pen-
tachrome, Picrosirius red, or Elastica van Gieson to quantify layer-specific matrix content. Additional slides were 
stained for CD3, CD45, CD68, MMP2, MMP12, or MMP13 expression (Table 1). Details regarding region- and 
layer-specific matrix, inflammatory cell, and enzyme content can be found in the original publication39. Animal 
housing and experimental procedures were carried out in compliance with regulations and protocols approved 
by the Institutional Animal Care and Use Committee at Yale University.

Passive mechanical properties of the tissue were quantified using a microstructurally-motivated strain energy 
function assuming hyperelasticity. The analytical methods for determining mechanical metrics have been 
described in detail previously55. Briefly, biaxial Cauchy wall stresses were calculated as

= − +
∂
∂

p Wt I F
C

F2 (1)
T

where t is the Cauchy stress tensor, p is the Lagrange multiplier enforcing incompressibility, I is the second-order 
identity matrix, F is the deformation gradient mapping spatial coordinates from a reference to deformed 

Symbol Variable Name (Mode 3) Marker Method N= Input/Output

ERK Extracellular signal-related kinase Kinase activity Kinase assay 3–6 Input

Akt Akt/Protein kinase B Kinase activity Kinase assay 3–6 Input

pAktAb Akt/Protein kinase B Phospho Ser473 Ab μ-array 3–6 Input

pAktWB Akt/Protein kinase B Phospho Ser473 qWB 3–6 Input

tAkt Akt/Protein kinase B Total amount Ab μ-array 3–6 Input

ptAkt Akt/Protein kinase B Phospho/total ratio Ab μ-array 3–6 Input

JNK1 Jun N-terminal kinase 1 Kinase activity Kinase assay 3–6 Input

IKK IκB kinase Kinase activity Kinase assay 3–6 Input

MK2 MAP kinase-activated
protein kinase 2 Kinase activity Kinase assay 3–6 Input

pMEK MAPK and ERK kinase 1 Phospho Ser217/221 qWB 3–6 Input

pFKHR Forkhead in rhabdomyosarcoma Phospho Ser256 qWB 3–6 Input

pIRS1636 Insulin receptor substrate 1 Phospho Ser636 qWB 3–6 Input

pIRS1896 Insulin receptor substrate 1 Phospho Tyr896 qWB 3–6 Input

proC8 Caspase-8 Zymogen amount qWB 3–6 Input

cc8 Caspase-8 Cleaved amount qWB 3–6 Input

proC3 Caspase-3 Zymogen amount qWB 3–6 Input

pEGFR Epidermal growth
factor receptor Phospho Tyr1068 Ab μ-array 3–6 Input

tEGFR Epidermal growth
factor receptor Total amount Ab μ-array 3–6 Input

ptEGFR Epidermal growth
factor receptor Phospho/total ratio Ab μ-array 3–6 Input

c1–c9 Gene clusters 1–9 Transcription level μ-array + CLICK 2 Output

Table 3.  Symbols, metrics, methods of acquisition, and sample sizes per condition per time point (N=) for 
the PLSR model of Chitforoushzadeh et al.13. All input and output data represent cell extracts per time point. 
Ab – antibody, μ-array – microarray, qWB – Quantitative western blotting, CLICK – Cluster Identification via 
Connectivity Kernels.
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Figure 8.  Resampling PLSR validates the robustness of higher-order LVs in multidimensional arrays. (a,b) 
Generation of a null PLSR model via randomization (N = 500 reshufflings within mode 1) identifies parameters 
of interest as variable weights in the original PLSR model (black dots) lying outside of a single standard 
deviation of the null PLSR model. (c,d) Replicate resampling (N = 500) by jackknifing increases confidence 
of most LV parameters. (e,f) Replicate resampling (N = 500) by subsampling yields very similar results to 
jackknifing, as expected given the N = 2 sample size for output data (Table 3). Graphs are labeled as in Fig. 4.
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configuration, C is the right Cauchy-Green deformation tensor (C = FTF), and W is a microstructurally-motivated 
strain energy density function reflecting contributions of matrix constituents to material behavior. Linearized 
biaxial material stiffnesses were determined in terms of the second derivative of W with respect to deformations. 
These metrics, along with associated loaded geometry, were evaluated at group-specific blood pressures and at 
estimated in vivo axial stretch values.

For the second study, source data were obtained from Lau et al.14 in which male C57BL/6 J mice were injected 
with 5 or 10 µg TNFα by retro-orbital injection for 0.5, 1, 2, 4, or 8 hours. Following treatment, mice were euth-
anized, and two regions of the small intestine were harvested: 1) the duodenum consisting of the 1 cm of area 
immediately distal to the stomach, and 2) the ileum consisting of the 3 cm of area immediately proximal to the 
cecum. Tissue samples were rinsed in PBS and lysed and homogenized in Bio-Plex lysis buffer or fixed in formalin 
for immunohistochemical analysis. Data characterizing apoptosis and proliferation were obtained by quantitative 
immunoblotting for cleaved caspase 3 (cc3) and by immunohistochemistry for phosphorylated histone 3 (ph3), 
respectively. Signaling data were obtained via Bio-Plex signaling analysis. The targets included pIκβα, pJnk, 
pMek1, pErk1/2, pRsk, pp38, pc-Jun, pAtf2, pAkt, pS6, pStat3, and Mek1, totaling 12 signaling targets (Table 2). 
Details regarding the quantification of apoptosis, proliferation, and signaling are in the original publication14. 
Animal housing and experimental procedures were carried out in compliance with regulations and protocols 
approved by the Subcommittee on Research Animal Care at Massachusetts General Hospital.

For the third study, source data were obtained from Chitforoushzadeh et al.13 in which HT-29 cells were 
pretreated with interferon γ (IFNγ; 200 U/mL) for 24 hours and subsequently treated with various combinations 
and concentrations of TNFα, insulin, and epidermal growth factor (EGF) for 5 min, 15 min, 30 min, 1 hours, 
1.5 hours, 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, or 24 hours. Signaling metrics included 12 pro-
teins that were evaluated via kinase activity, protein phosphorylation, total protein, phospho-total ratio, zymogen 
amount, or cleaved amount. Proteins included ERK, Akt, JNK1, IKK, MK2, pMEK, pFKHR, pIRS1, caspase 8, 
caspase 3, and EGFR. The combination of 12 proteins and multiple possible proteoforms (e.g., phosphorylated 
protein and total protein) yielded a total of 19 signaling metrics (Table 3). Additionally, microarray profiling of 
HT-29 cells was performed on Affymetrix U133A arrays and organized by Cluster Identification via Connectivity 
Kernels (CLICK). Briefly, cells were pretreated with IFNγ (200 U/mL) for 24 hours before stimulation with TNFα 
(0, 5, or 100 ng/mL), insulin (0, 5, or 500 ng/mL), and EGF (0, 1, or 100 ng/mL) for 4, 8, or 16 hours. CLICK clus-
tering of microarray data yielded 9 clusters for each condition and time point13.

For all studies, global averages were calculated as the mean among replicates.

Multidimensional partial least squares modeling.  Multidimensional PLSR was performed in 
MATLAB using version 2.02 of the NPLS Toolbox56 after dividing each study into independent and dependent 
datasets according to the stated hypothesis. Model variables for the three studies are listed in Tables 1–3 with 
associated abbreviations, methods of acquisition, sample sizes, and input–output classifications. The algorithm 
for PLSR has been described in detail previously with specific application to multi-linear frameworks13,57. Briefly, 
PLSR is a simultaneous decomposition of two matrices where the scores of each decomposition are linearly 
related. Various options exist for exact algorithms. The algorithm applied in this study is detailed below:

	(1).	 Organize independent data into an i × j × k array X, where i is the number of experimental conditions, j is 
the number of time points, and k is the number of variables in the independent dataset. In parallel, organ-
ize the dependent data into an i × l × m array Y where l is the number of time points, and m is the number 
of variables in the dependent dataset. Note that the algorithm requires the first dimension of each matrix to 
be equal but numbers of variables and time points need not be equal.

	(2).	 Standardize the data by mean centering and/or variance scaling the data. Different standardization 
techniques can yield markedly different results58. For Bersi et al.39, only variance scaling across mode 
3 was performed, and time 0 values were subtracted for a given condition and variable from all other 
corresponding time points within the same condition and variable such that regional differences are not 
considered at baseline. For Lau et al.14 and Chitforoushzadeh et al.13, variance scaling across modes 2 and 3 
was performed.

	(3).	 Initialize an i × 1 vector for the nth latent variable for the dependent condition scores, u, and the independ-
ent condition scores, t. Here, u is initialized by performing principal components analysis on the standard-
ized residual Y matrix (which equals the original scaled Y matrix for the first LV) and setting u = principal 
component 1. The vector t is randomly initialized.

	(4).	 Calculate variable and time weights for the independent data, w, by back projecting the independent data, 
X, onto u,

=w X u (2)T

Back projection requires unfolding X into an i × (j*k) matrix, X.
	(5).	 Update independent condition scores, t, by projecting X onto w,

=t Xw (3)

	(6).	 Calculate variable and time weights for the dependent data, q, by back projecting the residual of the Y 
matrix onto t,

=q Y t (4)T

Back projection requires unfolding Y into an i × (l*m) matrix, Y.
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	(7).	 Update dependent condition scores, u, by projecting the residual of Y onto q,

=u Yq (5)

	(8).	 Calculate the difference in magnitude between the updated t from step 5 and the original t from step 3 (or 
the previously calculated t if on iteration 2 or more) and return to step 4 as long as the change in magnitude 
remains above a critical threshold (here, 10–10).

	(9).	 Calculate the regression coefficient between the independent and dependent condition scores,

= −B (T T) T U (6)T 1 T

where B is an n x n matrix where n is the number of the current LV. If the calculation is for the first LV, then 
B becomes a scalar calculated as b = (tTt)−1tTu.

	(10).	Calculate the residuals of X and Y by subtracting the decomposed matrices from the previous residual 
matrices.

	(11).	Complete steps 4–10 for the desired number of LVs using X and Yres.

Statistical significance of variable weights was determined by calculating a null PLSR model in which 
raw data were shuffled within mode 1 (i.e., time and variable data were shuffled within each condition) and 
re-standardized, and the scores and weights recalculated according to the previously mentioned algorithm. 
Average scores and weights were calculated for 500 iterations of reshuffling, and meaningful scores–weights were 
considered to be those exceeding one standard deviation from the mean. The PLSR model was cross-validated 
using a leave-one-out approach in which predictions for one condition are calculated from parameters derived 
from the remaining conditions. The root mean squared error (RMSE) for the cross-validated predictions was cal-
culated with the addition of each LV, and the optimal number of LVs was determined by the number of LVs that 
minimized the RMSE in the global-average model.

Nested resampling.  Data subsets were generated by sampling individual replicates for each condition and 
time point by using a jackknifing (leave-one-out) approach or subsampling (leave-one-in) approach, and PLSR 
models were developed for each sampled dataset. Data were resampled 500 times with or without retention of 
data pairing by animal if pairing information was available. Replicate sizes per condition per time point are 
denoted in Tables 1–3. From Bersi et al.39, the majority of the histological samples were paired to one of the bio-
mechanical datasets and were chosen based on the nearness of the unloaded thickness to the mean within each 
condition (aortic region) and time point. For ph3 data in Lau et al.14, source data for individual replicates was 
not available because of blinding in the original study. Therefore, sets of 5 individual samples for each condition 
(intestinal region and TNFα dose) and time point were simulated from published means and standard deviations 
by assuming the data were normally distributed.

For each randomly generated dataset, scores and weights were calculated using the number of LVs required 
for the corresponding mean dataset to facilitate comparison to the global-average model. Each model was 
cross-validated using the leave-one-out approach as previously described, and scores, weights, and cross-validated 
predictions were summarized and compared to the corresponding values derived from the model of the mean 
dataset.

Data availability
All code and source data are available in Supplementary File S1. Parameter values for the the Bersi et al.39, Lau et 
al.14, and Chitforoushzadeh et al.13 PLSR models are available in Supplementary File S2.
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