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Abstract: The use of silver nanoparticles (AgNPs) in commercial products has increased 

significantly in recent years. Although there have been some attempts to determine the 

toxic effects of AgNPs in mammalian and human cell-lines, there is little information on 

plants which play a vital role in ecosystems. The study reports the use of Vicia faba  

root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX 

test conditions. The root tip cells of V. faba were treated with four different concentrations 

of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index 

(MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each 

concentration, five sets of microscopy observations were carried out. The results 

demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of 

chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared 

to control. From this study we infer that AgNPs might have penetrated the plant system 

and may have impaired mitosis causing CA and MN. The results of this study demonstrate 

that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a 

genotoxicity component in risk assessment for detection of environmental mutagens, they 

should be given full consideration when evaluating the overall toxicological impact of the 

nanoparticles in the environment. 
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1. Introduction 

Nanomaterials are part of an industrial revolution to develop lightweight but strong materials for a 

variety of purposes [1]. Due to the novel physical and chemical properties of nanoscale materials, 

nanomaterials have been used to create new consumer products as well as applications for life sciences 

and biotechnology. Chemically, the nanoparticles are very diverse. It is estimated that of all the 

nanomaterials used in consumer products, silver nanoparticles (AgNPs) currently have the highest 

degree of commercialization [2], so they are more likely to be exposed to humans and to the 

environment at large. The toxic effects of nanoparticles have been evaluated in a variety of studies; 

however the potential health and environmental impacts on plants have yet to be thoroughly examined. 

Their uniquely small size and large surface area is a key indicator of toxicity which allows them to 

translocate when inhaled [3]. Most recently, nanomaterials such as single- and multi-walled nanotubes, 

nanofibers, fullerene derivatives, quantum dots, and metal oxide nanoparticles have received much 

attention due to their toxicity on human cells, bacteria, and rodents [4-11]. With increasing interest in 

its potential toxicity, the adverse effects of engineered nanomaterials are intensively being 

investigated. To date, the studies that report on toxic effects of AgNPs either in vivo [12-14] or  

in vitro [15-18] further provide data indicating adverse health effects of cells exposed to AgNPs. 

AgNPs have also been shown to be genotoxic in plant cells [19]. Moreover, the toxicity of AgNPs has 

been observed to be mediated through oxidative stress or the generation of reactive oxygen species 

(ROS) as revealed by several studies [20,21]. Studies on potential toxicity of nanoparticles to 

ecological terrestrial test species are still lacking [22]. The studies on both positive and negative effects 

of nanoparticles on higher plants are very few. Lu et al. [23] showed that nanoscale SiO2 and TiO2 

enhanced nitrate reductase activity in soybean, and apparently hastened its germination and growth. 

Several studies reported that Nano-TiO2 promoted photosynthesis and nitrogen metabolism, and 

improved growth of spinach [24-27]. 

Exposure to nanoparticles can occur via water, food, cosmetics, drugs, and drug delivery devices, 

and can lead to a wide variety of toxicological effects [14]. Silver nanoparticles (AgNPs) have been 

rapidly employed in the manufacturing of many products such as healthcare items, room-sprays, 

pipelines, and washing machines due to its long-standing antibacterial properties [28,29]. It has been 

termed as a broad-spectrum biocide due to its ability to target a wide array of bacteria [30]. Silver 

impregnated catheters and wound dressings are used in therapeutic applications. In spite of the wide 

usage of AgNP in wound dressings, which can cause easy entry into the cells, very few reports on the 

toxicity of AgNPs are available. Several recently published reports state that despite the many 

promises of AgNPs, there are many unknown risks which have not been properly assessed prior to 

their high industrialized usage. Silver (Ag) is classified as an environmental hazard by the EPA 

because it is more toxic to aquatic plants and animals than any other metal except for mercury. Even if 

a nanoparticle itself is not especially toxic, silver nanoparticles increase the effectiveness of delivering 
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toxic silver ions to locations where they can cause toxicity. In the near future there is a risk of 

enhanced bioavailability of the nanoparticles in the environment [13]. 

The mitotic root meristems of Vicia faba (broad beans) have been the pioneer cytogenetic materials 

for the detection of genotoxicity study of environmental pollutants. Based upon USEPA Gene-Tox 

Program chromosome aberration frequencies in the root-tips of V. faba have been used as indicators of 

genotoxicity. Plant assays have been integrated as a genotoxicity component in risk assessment for 

detection of environmental mutagens because of the simple, quick, inexpensive, efficient and reliable 

characters. The V. faba root tip chromosomal aberration assay is an established plant bioassay 

validated by the International Programme on Chemical Safety (IPCS, WHO) and the United Nations 

Environment Programme (UNEP) as an efficient and standard test for the chemical screening and  

in situ monitoring for genotoxicity of environmental substances. V. faba has been used for evaluating 

chromosomal aberrations since the 1920s [31-34].  

Although AgNPs have been the subject of important toxicological research, there exists a lack of 

appropriate plant model for genotoxicity assessment. There is also a scarcity of scientific data 

describing the dose-response relationship with respect to their cytogenetic toxicity in plant systems. 

The reports from few previous studies have advanced our knowledge of toxicological impact of several 

types of nanomaterials. There are still many unresolved issues and challenges concerning the 

biological effects of nanoparticles. Therefore, the present study is designed to investigate 

clastogenic/genotoxic impacts of silver nanoparticles on V. faba. 

2. Materials and Methods 

2.1. Nanoparticles 

Silver nanoparticles (AgNPs, Figure 1) were obtained from Ocean Nanotech LLC. (Fayetteville, 

AK, USA). The physical characteristics of the particles according to manufacturers’ data are 60 nm 

diameter size, 99.5% purity (trace metal basis), 400.0 m2/g surface area and 10.59 g/mL density. 

2.2. Test System and Treatment 

The Ag-NPs were suspended directly in deionized water (DI-water) and dispersed by ultrasonic 

vibration (100 W, 30 KHz) for 30 min to produce four different concentrations at 12.5 mg/L, 25 mg/L, 

50 mg/L and 100 mg/L. 

2.3. Plant as Test Material-Vicia faba 

Several plant bioassays have been used for detecting mutagens and clastogens for the past 40 years. 

As a cytogenetic, material V. faba has the advantage of having six pairs of relatively large 

chromosomes that is excellent for assessing chromosomal aberrations. The V. faba root tip 

chromosomal aberration assay is an established plant bioassay by IPCS, WHO because of the simple, 

quick, inexpensive, efficient and reliable characters which can be utilized for in situ evaluation of the 

biological hazards of environmental pollution. 
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2.3.4. Fixation and Staining of Root Tips 

Roots tips were fixed in freshly prepared fixative containing three parts methanol and one part 

glacial acetic acid and kept at 4 C until later use. For preparing the root tips smears, they were 

removed from the refrigerator and transferred to room temperature in distilled water for 5 minutes. The 

root tips were then hydrolyzed in 1 N HCl at 60 C for 6–7 minutes. After hydrolysis, the root tips 

were thoroughly washed with water several times and then stained with feulgen stain. When staining 

was completed, which took 45–60 minutes, the root-tips were transferred to clean slides and the dark 

stained tips containing the meristem were separated from the rest of the roots. Squash preparations 

were produced in 45% acetic acid. 

2.3.5. Scoring of Slides 

In the V. faba chromosome aberration assay, slides were scored for chromatid and chromosome 

aberrations only in metaphase. Five hundred metaphases per root-tip were screened to a total of  

2,500 metaphases for each treatment and control to obtain the total number of chromosomal 

aberrations. The mitotic indices were obtained by counting the number of mitotic cells in  

1,000 cells/root-tip to a total of 5,000 cells/treatment and control using an Olympus microscope. The 

mitotic index was calculated as the ratio of the number of dividing cells to the total number of cells, 

multiplied by 100. The aberrations scored were chromatid breaks, isochromatid breaks, chromatid 

gaps, isochromatid gaps dicentrics, rings and lagging chromosomes.  

2.3.6. Micronucleus Test 

The procedure by Ma [32] was followed with slight modifications for this study. Seeds of V. faba 

were removed from storage and cultured at 28 C with distilled water. Seedlings with lateral roots of 

V. faba at about 1–2 cm in length were collected for this experiment. The lateral roots were treated 

with four different concentrations (12.5, 25, 50 and 100 mg/L) and a control for 6 h at 28 C, they 

were then transferred into distilled water for 44 h recovery time. The root tips were cut and fixed in a 

mixture of methanol and acetic acid (3:1, v/v). Before being squashed under a cover slip, the samples 

were hydrolyzed with 1N HCL at 70 C for 7–8 min, stained with feulgen reagent for 2 h, and slides 

were made permanent. A total of 300 cells were analyzed, which were isolated from 3 different root 

tips (300 cells per root tip) for each sample. Micronuclei which localized inside the cell wall and in the 

cytoplasmic area surrounding the main nucleus with a diameter not exceeding one-third of the main 

nucleus were counted. 

2.3.7. Statistical Analysis  

Statistical analysis was performed with SAS 9.1 software for Windows XP. Data was presented as 

Means ± SDs. One-way analysis of variance (ANOVA) with p-values less than 0.05 were considered 

as statistically significant. 
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3. Results 

3.1. Nanomaterial Characterization 

Nanoparticles were characterized by TEM with respect to morphology, diameter, tendency of 

aggregation and cellular distribution. AgNPs were mainly spherical shaped (Figure 1). Observing  

300 particles, a mean longitudinal diameter of 63 ± 41 nm (mean ± SE) and a mean lateral diameter of 

36 ± 21 nm (mean ± SE) could be measured. Hence, particle sizes matched the declarations of their 

commercial supplier (60 nm). The uptake of Ag NPs by the V. faba meristematic root tip cells is 

characterized by histochemical method (feulgen staining) and viewed under BXI-40 Olympus 

microscope (1,000×) is shown in Figure 2. The release of Ag+ ions is demonstrated in Table 1. 

Figure 2. A histochemical stained (feulgen Stain) meristematic root-tip cell of Vicia faba 

showing silver nanoparticle inside viewed under BXI-40 Olympus Microscope (1,000×), 

mc = meristematic cell. 

 

Table 1. Mean release of Ag+ ions (mg/L) to the DI-water: n = not measurable.  

Concentration 
(mg/L)  

                                         Release of Ag+ ion: 
Exposure to Ag 

 
Exposure to Ag NPs 

Control n n 
12.5 1.2 1.2 
25 30.4 49.2 
50 60.5 121.8 

100 228.6 403.9 

 

To understand the state of dispersion of the particles when placed into deionized water (DI-water), 

the AgNPs sample was analyzed by dynamic light scattering (DLS). The results from DLS showed 

agglomeration of Ag-NPs more than its primary size, and the zeta potential value of AgNPs was 
shown to be -33.2 mV. A solution is considered stable if the zeta potential value is more negative than 

-30 mV or more positive than +30 mV.  

3.2. Mitotic Index 

The mitotic index was used to determine the rate of cell division. The slides prepared for the 

assessment of chromosomal aberrations were used for calculating the mitotic index. It was found  
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(MN) as the toxicological endpoints. We have noted a decrease in the mean mitotic index values in 

silver nanoparticle-exposed root-tips as compared to the controls. This could be due to a slower 

progression of cells from S (DNA synthesis) phase to M (mitosis) phase of the cell cycle as a result of 

AgNP exposure. It has been suggested that the cytotoxicity level can be determined by the decreased 

rate of the mitotic index [35]. Although it is most likely that this impairment in cell cycle progression 

is associated with silver nanoparticles toxicity, further experiments are needed to elucidate the 

biochemical mechanisms involved. At present, there are no published studies assessing the effect of 

silver nanoparticles on mitotic index in biological systems. As the mitotic index represents the number 

of dividing cells it accounts for the growth, and any decrease in mitotic index leads to the reduced 

growth. The reduction in mitotic index may be caused by the effect of the AgNP/test chemical on the 

microtubule [36,37]. 

Different types of structural chromosomal aberrations were observed with different concentrations 

of silver nanoparticle suspensions. The increase in the induction of structural chromosomal aberrations 

was found to be statistically significant in exposed root-tips compared to control. Out of all types of 

aberrations, chromatid breaks, isochromatid breaks, acentric fragments, minutes, translocations and 

gaps were the predominant forms of CA observed. These results are in agreement with the reports  

of [19,38]. Increases in percentage of aberrations in root meristems indicates genotoxic effects of test 

chemicals [35]. Number of factors can be contributing to the increased chromosomal aberrations. The 

most important one is due to the interference of chemicals during DNA repair. Different types of 

chromosomal aberrations by the chemicals/nanoparticles represent their clastogenicity. The 

chromosome gaps which involve only the loss of chromatin may be due to the loss of protein part of 

the chromosome [39]. The chromatid breaks, which represent the DNA double strand breaks that may 

not have undergone the G2 repair. Any such irreversible DNA damages will lead to the chromosomal 

aberrations. Irreversible DNA damage would be produced whenever the trapped cleavable complex 

collides with a replication fork, independently of whether it is euchromatic or heterochromatic regions 

of the chromosomes that are being replicate [40]. Root tips frequently used for cytogenetic studies in 

the past five decades were from Allium cepa and Vicia faba [31,33] which are excellent materials for 

clastogenicity studies of physical and chemical agents.  

Li et al. [41] and Chen et al. [42], while working with mammalian cell lines, demonstrated that the 

nanoparticles penetrated subcellular structures such as the mitochondria and nucleus causing 

uncoupling of respiration and increased oxidative stress. Tetramethylammonium hydroxide  

(TMA-OH) coated magnetic nanoparticles of ferrofluid induced chromosomal aberrations in the root 

meristem cells of Zea mays according to Racuciu et al. [43]. 

The results from this study showed that there was a statistically significant difference in the 

frequencies of MN induction in the V. faba root-tips exposed to AgNP when compared to control. 

Similar results were reported in A. cepa root-tips exposed to ZnO nanoparticles [38] and AgNP [44], 

showing an increase in the frequency of MN induction in a dose-dependent manner. Micronucleus 

formation is the result of acentric fragments or laggards being excluded from the nucleus proper during 

mitosis [32]. The increase in micronuclei also supports that the test chemicals are clastogenic and are 

capable of producing different types of chromosomal aberrations. Several hypotheses can be suggested 

to account for the clastogenic/genotoxic effects of silver nanoparticles, including the formation of 

adduct and/or damage at the level of DNA or chromosomes. DNA damaging agents have the potential 
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to cause genomic instability, which is a predisposing factor in carcinogenesis. Hence, careful 

monitoring and further characterization of their systemic toxicity, genotoxicity and carcinogenicity is 

also essential. 

5. Conclusions 

Silver nanoparticles might penetrate plant systems and may interfere with intracellular components, 

impairing the stages of the cell division. In the present study a dose-dependent decrease in the MI was 

observed in the exposed group compare to control. There was an increase in the frequencies of CA and 

MN in root-tips of V. faba. Plant species are widely used for monitoring air pollution and for screening 

environmental chemicals for their genotoxic effects. The growing public debate on the toxicity and 

environmental impact of exposures to nanoparticles has not yet thoroughly established. Therefore it is 

imperative to determine a relatively inexpensive and commonly used short-term plant assay for in situ 

evaluation of the biological hazards of nanoparticles in the environment. The V. faba root tip 

chromosomal aberration assay is an established plant bioassay by IPCS to study such effects. 
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