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Integrative multi-omic analysis 
identifies new drivers and pathways 
in molecularly distinct subtypes of 
ALs
Giovanna Morello1, Maria Guarnaccia1, Antonio Gianmaria spampinato1, 
salvatore salomone2, Velia D’Agata  3, Francesca Luisa Conforti6, eleonora Aronica4,5  
& sebastiano Cavallaro1

Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease. Increasing 
the chances of success for future clinical strategies requires more in-depth knowledge of the molecular 
basis underlying disease heterogeneity. We recently laid the foundation for a molecular taxonomy of 
ALS by whole-genome expression profiling of motor cortex from sporadic ALS (SALS) patients. Here, 
we analyzed copy number variants (CNVs) occurring in the same patients, by using a customized 
exon-centered comparative genomic hybridization array (aCGH) covering a large panel of ALS-related 
genes. A large number of novel and known disease-associated CNVs were detected in SALS samples, 
including several subgroup-specific loci, suggestive of a great divergence of two subgroups at the 
molecular level. Integrative analysis of copy number profiles with their associated transcriptomic data 
revealed subtype-specific genomic perturbations and candidate driver genes positively correlated with 
transcriptional signatures, suggesting a strong interaction between genomic and transcriptomic events 
in ALS pathogenesis. The functional analysis confirmed our previous pathway-based characterization of 
SALS subtypes and identified 24 potential candidates for genomic-based patient stratification. To our 
knowledge, this is the first comprehensive “omics” analysis of molecular events characterizing SALS 
pathology, providing a road map to facilitate genome-guided personalized diagnosis and treatments for 
this devastating disease.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, characterized by progressive loss and degen-
eration of motor neurons in both the motor cortex, brainstem and spinal cord, and is usually fatal due to res-
piratory failure within 3–5 years of onset1. The disease has an incidence of 2.6 per 100,000 individuals-years 
and prevalence rates of around 6–7/100,000 in Europe, making it the most common adult-onset motor neuron 
disease2. About 5–10% of ALS cases show a family history (FALS), while the remainder of cases are classified as 
sporadic (SALS), and are probably associated to a polygenic and multifactorial etiology3–5.

The remarkable advances in genome technologies over the last years have led to a huge progress in deciphering 
the genes and pathways involved in ALS pathogenesis. From the discovery of the first ALS-associated gene SOD1, 
several candidate-gene or genome-wide association studies (GWAS) have identified multiple single-nucleotide 
polymorphisms (SNPs) affecting potentially ALS-associated genes, including C9orf72, TDP43, FUS, MATR3, 
UBQLN2, VCP and OPTN6–9. In this context, a recent large-scale genome-wide association study identified a 
common missense variant and several rare loss-of-function (LOF) mutations within the microtubule motor 
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protein-encoding gene, KIF5A, as candidate ALS risk factors, further supporting perturbations in cytoskeletal 
function play an important role in ALS and offering a potential target for drug development10,11.

In addition to the contribution of SNPs, which account for only a limited number of familial and sporadic 
ALS cases, evidence suggests that other genomic variants, such as copy-number variations (CNVs), that change 
gene dose rather than gene function, may exert a more pronounced effect on the onset and rate of disease pro-
gression5,12,13. In particular, the involvement of CNVs in ALS susceptibility has been clearly highlighted in two 
ALS genome-wide association studies, where multiple rare CNVs were shown to represent a more important risk 
factor for SALS than common CNVs14,15.

The complexity of its molecular architecture has completely transformed the way we think about ALS, leading 
us to reconsider the traditional classification and therapeutic systems. In fact, despite intensive research efforts, 
the precise causes of ALS remain unknown and there is no cure for this devastating disease. The absence of effec-
tive treatments can be due in part by the complex and heterogeneous clinical, biochemical and molecular features 
of ALS, which is also supported by clinical studies on Edaravone (MCI-186), a free radical scavenger recently 
approved by FDA for ALS treatment showing effectiveness only in specific sub-cohorts of patients16. Developing 
a robust molecular disease portrait that can explain the heterogeneity of ALS is thus fundamental to improve 
our understanding of the precise molecular mechanisms underlying disease pathogenesis and develop effective 
treatments for patients.

Our research group has recently characterized the transcriptional profiles of motor cortex samples from con-
trol and SALS patients, grouping these on the basis of their similarities measured over the most “hypervariable 
genes” (9.646 genes with a standard deviation >1.5). Unsupervised hierarchical clustering analysis allowed to 
discriminate controls from SALS patients and clearly distinguished two greatly divergent SALS subtypes, each 
associated with differentially expressed genes (DEGs) and biological pathways5,17,18. In particular, the most repre-
sentative functional processes deregulated in SALS1 were annotated as involved in the regulation of chemotaxis, 
immunity, and cell adhesion and communication. Deregulated genes in SALS2, in turn, were selectively associ-
ated with cytoskeleton organization, regulation of transport and mitochondrial oxidative phosphorylation5,17. 
While these findings are consistent with previous evidence about the crucial role of these pathogenetic mecha-
nisms in ALS17,19–24, they suggest for the first time the differential involvement of these mechanisms in specific 
subsets of ALS patients, offering a useful starting point for the further development of personalized diagnostics 
and targeted therapies.

While our work lays the foundation for a molecular taxonomy of ALS, very little information is so far available 
from the single-omic analysis, which makes difficult to discriminate genes critical to ALS pathogenesis (driver 
genes) from non-relevant genes (passenger genes). An integrated and comprehensive view of multiple genomic 
data types (such as genome and transcriptome) may provide a powerful potential for defining disease subgroups 
and their molecular drivers, allowing for an overall understanding of the complex molecular networks that drive 
ALS pathogenesis at yet another level of systemic complexity.

In this study, we applied the customized exon-centric comparative genomic hybridization array (aCGH) 
NeuroArray platform, designed to target genes associated with ALS as well as genes associated with other neuro-
logical disorders25, to analyze copy number variants (CNVs) in 40 motor cortex samples of control (10) and SALS 
(30) patients, clinically and transcriptomically characterized in our previous work17,25. Next, we provided the first 
comprehensive integrative analysis of genomic aberrations with expression data derived from the same patients to 
identify specific chromosomal regions and genes with concordant alterations in DNA and RNA profiles that may 
represent promising key molecular candidates for SALS. Finally, functional pathway and network analyses were 
carried out to gain further insights into the molecular complexity of ALS and reveal novel and yet unrecognized 
biomarkers and therapeutic targets, potentially useful for the development of personalized medicine in ALS.

Results
Transcriptomically distinct SALS patient subgroups show specific copy number alterations.  
The customized exon-centric NeuroArray aCGH platform was used to identify DNA copy number alterations in 
30 SALS patients and 10 controls. A total of 1472 CNVs were detected in SALS, including 780 losses and 692 gains 
(Fig. 1a). The chromosomal distribution of all CNVs across the 30 SALS genomes tested is plotted in Fig. 1b. To 
reduce individual heterogeneities and identify ALS-related significant CNVs, we focused on those that occurred 
in at least 10% SALS samples. Accordingly, a total of 488 significant CNVs ranging in size from 7 bp to 5.9 Mb 
were identified in SALS patients, including 271 losses and 217 gains (Fig. 1c, Supplementary Table 1). Recurrent 
CNVs were dispersed in the chromosome 1 to 22, with the most frequent amplifications (76.7%) found in chro-
mosome 14, followed by amplifications in chromosome 17 (70%) (Supplementary Table 1). The most common 
linkage rate in SALS mapped to chromosome 20 with a frequency of 80%, followed by chromosome 1 with a 
frequency of 76.6% (Supplementary Table 1).

To identify subgroup-specific genomic signatures, we analyzed CNV events taking into account the previ-
ously characterized transcriptome-based stratification of SALS patients in the two subgroups, SALS1 and SALS2. 
Overall, 813 aberrant regions were associated with SALS1 and 659 with SALS2 patients (Fig. 1a). Among these, 335 
CNVs (218 losses and 117 gains) were detected as frequently altered in SALS1 patients, while 308 (135 losses and 
173 gains) were frequently associated with the SALS2 subgroup (Fig. 1c, Table 1 and Supplementary Tables 2–3).  
Interestingly, a large number of these recurrent amplifications and deletions were detected exclusively in SALS 
patients (absent in the control samples) (Table 2).

To investigate the reliability of our results and further confirm the potential functional implications of the 
detected CNVs in ALS pathogenesis, we interrogated our data for overlap with genomic aberrations previously 
associated to ALS cases available in publicly available databases (i.e., CNVD) and published PubMed literature. 
Highly similar genomic altered patterns were observed, supporting the functional importance of these regions in 
disease etiopathogenesis (Table 3).
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Identifying CNV signature genes in SALS. To identify ALS driver genes from aberrant regions, the 
recurrent CNVs in SALS were annotated and filtered out for genes previously linked to ALS and other neurologi-
cal diseases as causative and/or susceptibility factors and included in the NeuroArray design. A total of 406 signif-
icant CNV genes were obtained, including 251 duplications and 161 deletions (Fig. 2a, Supplementary Table 4). 
Among these, 36 were previously identified as ALS-linked genes (Supplementary Table 4). The same analysis 
was also performed on the most frequent subgroup-specific CNV regions, revealing 310 genes as the most sig-
nificantly altered CNV-genes in SALS1 (137 duplicated and 174 deleted) and 454 genes in SALS2 patients (320 
duplicated and 140 deleted). Among these, 28/310 SALS1 and 39/454 SALS2 CNV genes were already associated 
to ALS (Fig. 2a, Supplementary Tables 5 and 6).

Integrated analysis of CNVs and gene expression profiling identify candidate ALS-driver 
genes. To determine whether genomic aberrations contribute to global gene expression patterns in SALS, the 
identified CNV genes were checked for overlap with the DEGs previously detected in the same patient cohort17. 
We identified 70 overlapping CNV genes (29 duplications and 42 deletions) that were also differentially expressed 
in SALS1 patients and 246 CNV-driven DEGs in SALS2 patients (173 duplicated and 76 deleted) (Fig. 2b,c, 
Supplementary Tables 7 and 8). Among these, 35 CNV-driven genes (50%) in SALS1 and 112 CNV-driven genes 
(45%) in SALS2 showed a positive association between gene expression and DNA copy number changes, includ-
ing 77 up-regulated genes (24 in SALS1 and 53 in SALS2) and 70 down-regulated genes (11 in SALS1 and 59 in 
SALS2) (Fig. 2b,c, Supplementary Tables 7 and 8). Interestingly, several CNV-driven genes were SALS-patient 
specific (not detected in 10 controls) and most of them were previously linked to ALS.

To demonstrate that the correlation found in our work is meaningful, we also performed a “control exper-
iment” in which we evaluated the overlap between the genomic and transcriptomic data between two random 
groups within the total SALS samples (different from SALS1 and SALS2). We observed a very low overlap 
between CNV genes and differentially expressed genes in these randomized disease-related subgroups, confirm-
ing the appropriateness/accuracy of our analysis (Supplementary Fig. 2 and Supplementary Table 14).

Figure 1. Significant copy number regions in SALS patient subgroups. (a) Graphical overview of CNV regions 
detected in SALS patients by NeuroArray platform. The bars represents the number of regions that may be 
involved in CNV detected in SALS patients (ADM-2 aberration filter: threshold = 6; Log2 ratio ≥ 0.5 and 3 
consecutive interval probes), both with and without the assignment into the hierarchically determined two 
sets (SALS1 and SALS2). The blue bar represents the number of deleted regions and the red bar represents the 
number of amplified regions. (b) Chromosome distribution of CNVs detected with high-resolution custom 
exon-centered NeuroArray aCGH from SALS patients. The horizontal axis represents different chromosomes 
and the vertical axis represents the number of regions of each chromosome that may be involved in CNV. (c) 
Graphical overview of recurrent gains or losses (occurred in at least 10% of the SALS patients), both with and 
without the assignment into the hierarchically determined two sets (SALS1 and SALS2). The blue bar represents 
the number of deleted regions and the red bar represents the number of amplified regions that occurred at a 
high frequency (≥10%) in our cohort of SALS patients.
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Computational systems biology analysis identified distinct drivers and pathways in SALS 
molecular subtypes. To gain further insights into the biological role of identified CNV-driven DEGs in 
SALS, functional annotation and pathway enrichment analyses were performed by using specialized bioinformat-
ics tools and databases (i.e., Enrichr, IPA, Metacore).

According to GO analysis, the CNV-driven DEGs in SALS1 were significantly enriched in biological pro-
cesses such as regulation of cellular component organization (GO:0051129, P value = 0.0002), DNA conformation 
change (GO:0071103, P value = 0.0004) and regulation of neuron death (GO:1901214, P value = 0.0012), whereas 
regulation of synaptic transmission (GO:0050804, P value = 3.45E−12) and learning and memory (GO:0007611, P 
value = 5.26E−12) were the most enriched in SALS2 (Fig. 3a, Supplementary Table 9). On the basis of molecular 
function, the CNV-driven DEGs in SALS1 prominently accumulated in small conjugating protein ligase binding 
(GO:0044389, P value = 0.0004) and ubiquitin protein ligase binding (GO:0031625, P value = 0.0004), while the 
CNV-driven DEGs in SALS2 were enriched in amino acid binding (GO:0016597, P value = 7.00126E−06) and 
transcription factor binding (GO:0008134, P value = 6.6232E-05) (Fig. 3a, Supplementary Table 9).

Further pathways enrichment analysis identified an immune/inflammatory response, cytoskeleton remode-
ling and apoptotic processes as the major deregulated processes in SALS (Fig. 3b, Supplementary Table 10). In 
particular, Huntington’s disease signaling, T cell activation, Apoptosis and survival signaling were the most signifi-
cantly enriched pathways in both SALS patient subgroups, with AKT1, NFKB1 and SOS as the major key involved 
genes. In addition, ubiquitin-proteasome pathway, immune-cell mediated inflammatory response and apoptosis 
were significantly up-regulated in SALS1, while axonal guidance, oxidative stress and inflammatory intracellular 
signaling cascades were mainly up-regulated in SALS2 (Fig. 4a). Notably, the majority of the enriched pathway 
for CNV-driven DEGs in SALS patients represented processes already associated with ALS pathogenesis, such as 
immune response, cell adhesion and cell communication (Fig. 4a).

To better understand the interactions of the CNV-driven genes and identify the best candidate genes in SALS, 
a protein-protein interaction (PPI) network analysis of their encoding products was performed, revealing a highly 

SALS1 patients SALS2 patients

Chr. Start Stop
Aberration 
Size (bps)

Frequency 
(%)

NeuroArray 
genes Chr. Start Stop

Aberration 
Size (bps)

Frequency 
(%)

NeuroArray 
genes

DUPLICATIONS

14 31552632 31552690 59 76.47 AP4S1 14 31552632 31552690 59 76.92 AP4S1

17 17716576 17720711 4136 70.59 SREBF1 17 17716576 17720711 4136 69.23 SREBF1

X 122318451 122336599 18149 70.59 GRIA3 22 24376158 24384300 8143 69.23 GSTT1

X 122318291 122318451 161 64.71 GRIA3 17 17720711 17726812 6102 61.54 SREBF1

7 100493729 100493862 134 58.82 ACHE 9 129272014 129458220 186207 53.85 LMX1B

X 122318031 122318291 261 58.82 GRIA3 9 131388073 131394672 6600 53.85 —

X 122336599 122459975 123377 58.82 GRIA3 17 17715816 17716576 761 53.85 SREBF1

17 17720711 17726812 6102 52.94 SREBF1 1 55331123 55527185 196063 46.15 DHCR24, PCSK9

7 100488043 100490289 2247 47.06 ACHE 2 127807997 128439169 631173 46.15 BIN1, LIMS2

7 100493373 100493729 357 47.06 ACHE 2 241657356 241728764 71409 46.15 KIF1A

9 131388073 131394672 6600 47.06 — 5 176853852 176869527 15676 46.15 GRK6

DELETIONS

1 47716828 47775972 59145 88.24 STIL 3 155547586 155560259 12674 69.23 SLC33A1

20 33986975 35569474 1582500 88.24

UQCC, 
NFS1, PHF20, 
EPB41L1, 
DLGAP4, 
NDRG3, 
TLDC2, 
SAMHD1

20 33986975 35575306 1588332 69.23

UQCC, 
NFS1, PHF20, 
EPB41L1, 
DLGAP4, 
NDRG3, TLDC2, 
SAMHD1

20 35569474 35575306 5833 82.35 SAMHD1 1 47767175 47770585 3411 61.54 STIL

1 47435653 47716828 281176 76.47 STIL 18 9117815 9134199 16385 61.54 NDUFV2

2 32339724 32429834 90111 76.47 SPAST, 
SLC30A6 3 155560259 155560361 103 53.85 SLC33A1

3 155551254 155560202 8949 76.47 SLC33A1 12 111956174 111993684 37511 53.85 ATXN2

9 128001127 128001733 607 76.47 HSPA5 1 47435653 47767175 331523 46.15 STIL

1 47775972 47776133 162 70.59 STIL 1 47770585 47770755 171 46.15 STIL

2 32323849 32339724 15876 70.59 SPAST, 
SLC30A6 2 32314495 32409410 94916 46.15 SPAST, SLC30A6

2 32429834 32432100 2267 70.59 SPAST, 
SLC30A6 10 70432579 70441196 8618 46.15 TET1

3 155547586 155551254 3669 70.59 SLC33A1 14 92527804 92562372 34569 46.15 ATXN3

Table 1. The top most frequent copy number gain and loss in both SALS patient subgroups. The table lists the 
gains and losses that occurred in at least 10% of the two previously characterized transcriptome-based SALS 
subgroups. The chromosomal regions, including the start and end positions, aberration size, frequency in SALS 
patients and CNV embedded NeuroArray genes are listed. Chromosomal positions are referred to the human 
reference sequence hg19 assembly. Genes previously identified as potential risk factors in ALS are in bold.
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Chr. Start Stop Lenght (bps) SALS patients NeuroArray-related genes

Duplications

1 19229182 19826022 596841 6 ALDH4A1, UBR4

1 22216964 22222489 5526 5
CLCNKA, CLCNKB, FBXO42, RCC2, IGSF21, HTR6, 
VWA5B1, CDA, PINK1, DDOST, EIF4G3, ECE1, USP48, 
LDLRAD2, HSPG2, APL

1 22222489 22222904 416 4
CLCNKA, CLCNKB, FBXO42, RCC2, IGSF21, HTR6, 
VWA5B1, CDA, PINK1, DDOST, EIF4G3, ECE1, USP48, 
LDLRAD2, HSPG2, APL, CDC42

1 22222904 22379326 156423 3
CLCNKA, CLCNKB, FBXO42, RCC2, IGSF21, HTR6, 
VWA5B1, CDA, PINK1, DDOST, EIF4G3, ECE1, USP48, 
LDLRAD2, HSPG2, APL

1 110280992 110467801 186810 3 GSTM3, CSF1

1 165377539 165378926 1388 5 LMX1A, RXRG

1 165378926 165406335 27410 3 LMX1A, RXRG

2 127805579 127806098 520 3 BIN1, LIMS2

2 152954807 152955141 335 3 CACNB4

5 37824072 37834861 10790 4 GDNF

9 135810367 136390729 580363 3 TSC1, RXRA, EDF1, TRAF2, ABCA2, MAN1B1, GRIN1

11 117263667 117265845 2179 3 CEP164

17 8790922 8791519 598 3 PIK3R5

17 8791519 8794231 2713 4 PIK3R5

17 34198604 34415754 217151 3 (only SALS1) CCL5, CCL3

17 56349278 56350271 994 3 MPO

19 50364607 50364748 142 5 PNKP

22 18907140 18918487 11348 3 (only SALS1) PRODH

X 62886007 63005325 119319 3 ARHGEF9

Chr. Start Stop Size Ratio SALS/Control NeuroArray-related genes

Deletions

1 173797400 173826691 29292 5 DARS2

1 173827623 174553313 725691 3 ZBTB37, RABGAP1L

1 207791343 207791566 224 3 CR1

1 207793150 207795258 2109 6 CR1

1 207795258 207815117 19860 7 CR1

3 155560361 155572231 11871 4 SLC33A1

3 155572231 156645173 1072943 3 SLC33A1, KCNAB1, TIPARP, LEKR1

3 156645399 156660486 15088 3 LEKR1

4 1810306 3434075 1623770 4 FGFR3, POLN, ZFYVE28, FAM193A, NOP14, RGS12

6 31625489 31777500 152012 3 HSPA1L

6 31777500 31783348 5849 4 HSPA1L, HSPA1A

6 31783348 31797880 14533 6 HSPA1A, HSPA1B

6 74354308 74530628 176321 3 (only SALS2) SLC17A5

8 94767910 94777676 9767 4 TMEM67

8 94805417 94830376 24960 4 TMEM67

9 39140211 41979303 2839093 3 CNTNAP3, KGFLP2

9 125947382 126690362 742981 5 STRBP, DENND2A

10 101934013 101938026 4014 3 ERLIN1

11 108124607 108155047 30441 3 ATM

15 63579805 63673002 93198 3 APH1B, CA12

15 63673002 64226370 553369 4 HERC1, DAPK2

16 70551635 70553577 1943 3 COG4

21 44496313 44496400 88 3 CBS

22 42373034 42373060 27 4 SEPT3

X 40460110 41599792 1139683 3 ATP6AP2, MED14, DDX3X, CASK

X 119673121 119676960 3840 3 CUL4B

Table 2. Chromosomal distribution of the most frequent CNVs exclusively detected in SALS patients. The 
table lists the duplications and deletions that occurred in at least 10% of SALS patients and absent in the control 
samples. The chromosomal regions, including the start and end positions, number of SALS patients and CNV 
embedded NeuroArray genes are listed. Chromosomal positions are referred to the human reference sequence 
hg19 assembly. Genes previously identified as potential risk factors in ALS are in bold.

https://doi.org/10.1038/s41598-019-46355-w


6Scientific RepoRts |          (2019) 9:9968  | https://doi.org/10.1038/s41598-019-46355-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

interconnected functional network, also including a greater number of ALS-associated genes (Fig. 4b). The PPI 
network consisted of 147 nodes and 2787 edges, including 46 CNV-driven DEGs in SALS. Node degree ≥10 was 
selected as the threshold. UBA52, RPS27A and HIST2H3A were selected as the hub genes.

To assess the value of CNV-driven genes as potential biomarkers for patient-specific diagnosis and prognosis, 
we reviewed and analyzed the literature on the CNV-driven genes exhibiting the same expression tendencies. A 
total of 24 candidate gene markers were selected, including 6 up-regulated CNV-driven DEGs in SALS1 and 18 
deregulated (10 up-regulated and 8 down-regulated) CNV-driven genes in SALS2. Interestingly, some of these 
candidate genes (TIMP2, AKT1, MMP9, CST3, SMN1 and SMN2) were previously associated with susceptibility 
to ALS while the remaining 18 genes (GAA, KIF1A, MC1R, MECP2, ALPL, HSPG2, L1CAM, PLEC, STK11, CSF1, 
F2, GSTM3, TRAF2, HSPA5, HTT, IL6, LETMD1, SOAT1) represent novel candidate mediators for disease pro-
gression. The set of CNV-driver genes also included many patient-specific ‘druggable’ genes that may represent 
good candidates for the development of personalized, molecularly targeted therapies for SALS patients (Table 4).

Discussion
In this work, we reported the first fully integrated analysis of CNVs and gene expression profiling derived from 
the same SALS patients to provide a more comprehensive genomic framework for dissecting molecular hetero-
geneity of ALS and identify the DEGs with alterations in genomic segments that may represent novel potential 
markers and/or therapeutic targets.

Taking advantage of the custom-made NeuroArray platform, designed to uncover CNVs in clinically rele-
vant genes for ALS and other neurological diseases25, we performed an exon-focused evaluation of structural 
imbalances occurring in motor cortex samples from 30 SALS and 10 control patients trascriptomically charac-
terized in our previous work17. A large number of aberrations were detected in over 10% of SALS patients, with 
the highest number of gains documented at chromosomes 14 and 17, and the majority of losses found on the p 
arm of chromosome 1 and at cytoband 20q11.22-q11.23 (Fig. 1c and Supplementary Table 1). Notably, at 17p 
region the SREBF1, a gene encoding a lipogenic transcription factor whose expression levels were increased in 
the spinal cords of FALS and SALS patients as well as in ALS animal models, and whose direct causative role in 
excitotoxicity-induced neuronal cell death, has been extensively established26–28.

Our analysis also revealed distinct genomic signatures associated with two previously characterized 
transcriptome-based SALS subgroups. In particular, the loss of chromosome 1p was the most common chromo-
somal aberration in SALS1 (~90%), while 60–70% of the SALS2 patients showed simultaneous deletion of precise 
regions of chromosomes 3q and 18p (Fig. 1c, Table 1, Supplementary Table 1)29. It is interesting to note that genes 
in these CNV regions showed the same subgroup-specific expressional tendencies. In fact, the 1p33 deletion 
includes STIL, a gene involved in neural protection and survival and whose expression was down-regulated in 
SALS1, suggesting that a “loss-of-function” of this gene may contribute to render motor neurons vulnerable to 
excitotoxic insults in these patients30. Likewise, SALS2 patients carried the deletion of 18p11.22 that encompassed 
NDUFV2, one of the many components of the mitochondrial oxidative phosphorylation pathway, whose expres-
sion levels were decreased in the same patient subgroup. Defects in this subunit have been associated with altered 
energy production, mitochondrial dysfunction and oxidative stress, representing a risk factor for several neuronal 
diseases, including ALS31.

Compared with previous CNV reports32, some genomic aberrations identified in our study partially or totally 
overlap with those previously associated with ALS, further supporting them as disease susceptibility variants 
(Table 3). Among these, of particular interest is the deletion of chromosomal region 15q22.2-q22.31 that was 
detected exclusively in SALS patients and not altered in any controls in our study nor listed in the Database of 
Genomic Variants – DGV.

Besides strengthening previously reported results, we identified new potential susceptibility loci that were 
overrepresented in SALS patients and absent in controls (Table 2). Among these, we distinguished the deletion 
at the chromosome 1q32.2, which encompassed CR1 (also known as CD35), a member of the human regulator 
of complement activation gene cluster33,34. This gene encodes one of the major immune adherence receptors and 
plays an important role in immune complex processing and clearance via reducing activation of classical and 
alternative complement cascade activity. Deletion of CR1 is consistent with the lower mRNA expression level of 
this receptor in SALS patients, providing support for aberrant complement regulation as a part of ALS process 
and highlighting the potential use of complement molecules as disease biomarkers35,36. Another interesting asso-
ciation is represented by a 162.362-kb duplicated region in 1p36.12 spanning several neuronal genes, including 
the FBXO42 encoding an important member of the F-box protein family involved in the ubiquitin-proteasome 
system and already known to be associated with ALS (Table 2)37. Of particular interest, three CNV regions (17q12, 
22q11.21; 6q13) were selectively detected in specific SALS patient subgroups and absent in all control individuals, 
providing the basis for a CNV-based molecular classification of the disease (Table 2). In particular, the deletion at 
the 6q13 region harbors the SLC17A5 gene encoding sialin, a vesicular excitatory amino acid transporter, whose 
loss-of-function leads to defect in myelin structure and function, contributing to the disruption of axonal integ-
rity and the motor phenotype38,39. The increase in gene copy numbers for the 17q12 region encompassing several 
chemokines (i.e., CCL5 and CCL3) is consistent with the observation that high mRNA expression levels of these 
chemokines may increase activation of the inflammatory system and changes in blood-brain barrier permeability, 
two key mechanisms implicated in, and possibly aggravating, motor neuron damage40,41.

By integrating the analysis of CNVs and gene expression profiling in the same patients and tissue samples, 
we found that 71.2% of CNV genes were differentially expressed in SALS patients in comparison to controls, the 
majority of them were cluster specific, further suggestive of the great divergence of two SALS subgroups at the 
molecular level (Fig. 2b,c, Supplementary Tables 7 and 8). Among these genes, 49% showed a positive association 
between CNV and mRNA expression, suggesting them as potential driver genes in ALS. These included some 
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genes (SYNE1, SDK1, EEF1D, GSDMD, TIMP2, CST3, ALAD, AKT1, EPHA4, SPAST, SMN1, SETX, ATXN2, 
TBK1, SPG11, TAF15, MMP9) previously reported as potential risk factors in ALS, as well as novel candidates 
whose association with ALS was previously unappreciated. These genes may represent overlapping genetic sig-
natures among different neurological condition, providing additional features for exploring ALS pathogenesis. 
To name a few of those detected exclusively in SALS patients (i.e., absent from controls) are ALDH4A1, a com-
ponent of the mitochondrial matrix contributing to protect cells from oxidative stress42; BIN1, the most signif-
icant late-onset susceptibility locus for Alzheimer’s disease whose alterations in expression levels and splicing 
seem to induce muscle weakness and T tubule alterations43, and RABGAP1L, a GTPase-activating protein whose 
loss-of-function exacerbates neuronal loss44.

On the other hand, our analysis identified a number of CNV genes, including known ALS-related genes (i.e., 
NIPA1, NAIP, VPS54 and GRIN3B), which do not appear to exert any apparent influence on expression levels, 
suggesting that the expression of these genes may be not gene-dose dependent and that they are likely to repre-
sent secondary ‘passenger’ events in ALS pathogenesis. Genes differently regulated at the transcriptomic and 
genomic level (i.e., showing no or negative correlation), in turn, could result from other, non-CNV-related reg-
ulatory mechanisms, such as those associated with gene mutation, promoter methylation, and non-coding RNA 
regulation (Fig. 2b,c, Supplementary Tables 7 and 8). An example is KIF5A, a gene encoding a neuronal kinesin 
heavy chain that acts as a molecular motor and whose genetic alteration was recently associated with ALS suscep-
tibility10. SALS2 patients showed a selective downregulation of KIF5A not overlapping with any CNV, suggest-
ing reduced mRNA expression of this gene is probably due to defective splicing events and/or loss-of-function 
variants rather than to deletion within its genomic region. It is interesting to note that in the same subgroup we 
also observed defects in axonal transport as well as a general downregulation of genes involved in mitochondrial 
oxidative phosphorylation machinery, suggesting a link between loss-of-function events in KIF5A and impaired 
transport and dysfunction of mitochondria in ALS17,45.

Chr. Start Stop CNV type Overlapped Genes*
SALS 
(n = 30)

Control 
(n = 10) Previously reported aberrations Reference/Database

5 70320678 71554990 Loss SMN1, SMN2, NAIP, BDP1, 
MRPS27

7 (6 SALS1 
and 1 SALS2) 2

Loss
n = 27/167 ALS
n = 6/167 controls

Corcia P. et al., Annals 
of neurology 2002

8 144635580 145024441 Gain GSDMD, EEF1D, PLEC1 5 (2 SALS1 
and 3 SALS2) 1

Gain
n = 12/781 ALS
n = 0/621 controls

Wain L.V. et al., 
PlosOne, 2009;
Cronin S. et al., Hum 
Mol Gen, 2008

11 424565 792284 Gain ANO9, DRD4, DEAF1, SLC25A22, 
OR4A5, OR4C12 3 (SALS2) 1

Gain
n = 11/575 ALS
n = 0/621 controls

Wain L.V. et al., 
PlosOne, 2009

11 4056596 7324468 Loss STIM1, HBB, TRIM5, CCKBR, 
APBB1, RRP8, TPP1, SYT9

4 (1 SALS1 
and 3 SALS2) 1

Loss
n = 5/575 ALS
n = 0/621 controls

Wain L.V. et al., 
PlosOne, 2009

15 20575646 23060821 Loss and 
Gain NIPA1, NIPA2 10 (6 SALS1 

and 4 SALS2) 3
Loss and Gain
n = 15/4434 ALS
n = 8/14618 controls

CNVD; Blauw HM 
et al., Hum Mol Gen, 
2010

15 27017550 27018935 Loss and 
Gain GABRB3 3 (1 SALS1 

and 2 SALS2) 1
Loss and Gain
n = 15/4434 ALS
n = 8/14618 controls

CNVD; Blauw HM 
et al., Hum Mol Gen, 
2010

15 41535920 42703427 Loss and 
Gain

CHP1, NUSAP1, NDUFAF1, 
MGA, PLA2G4E, CAPN3

5 (2 SALS1 
and 3 SALS2) 3

Loss and Gain
n = 15/4434 ALS
n = 8/14618 controls

CNVD; Blauw HM 
et al., Hum Mol Gen, 
2010

15 63579805 64226370 Loss
APH1B, CA12, HERC1, DAPK2, 
DPP8, PTPLAD1, C15orf44, 
SLC24A1

4 (3 SALS1 
and 1 SALS2) 0

Loss
n = 1/1875 ALS
n = 0/8731 controls

CNVD; Blauw HM 
et al., Hum Mol Gen, 
2010

17 2580007 4605227 Loss

OR1D5, OR1D4, OR1D2, 
OR1G1, OR1A2, OR1A1, SPNS2, 
ALOX15, PELP1, ARRB2, 
MED11, CXCL16, ZMYND15, 
PAFAH1B1, RAP1GAP2, ITGAE

9 (5 SALS1 
and 4 SALS2) 4

Loss and Gain
n = 1/1875 ALS
n = 0/8731 controls

CNVD; Blauw HM 
et al., Hum Mol Gen, 
2010

17 75277604 78092622 Gain
SEPT9, TNRC6C, DNAH17, 
CYTH1, TIMP2, C1QTNF1-AS1, 
C1QTNF1, RBFOX3, TBC1D16, 
CHMP6, AATK, BAIAP2

7 (4 SALS1 
and 4 SALS2) 2

Gain
n = 1/12 ALS
n = 0/24 controls

CNVD, Pamphlett 
R. et al., Journal of 
Neuroscience, 2011

X 153127628 153602907 Gain L1CAM, MECP2, FLNA 9 (4 SALS1 
and 5 SALS2) 2 Loss Schoichet S.A. et al., 

Amy Lat Scl, 2009

Table 3. Characteristics of the most frequent CNV regions detected in SALS patients and previously associated 
to ALS from different database and/or published literature. The table shows the most frequent CNV loci and 
relative NeuroArray genes that partially or completely overlap with genomic aberrations previously associated 
to ALS cases and reported in publicly available databases (i.e., CNVD) and/or published PubMed literature. The 
chromosomal regions, including the start and end positions, aberration type and CNV embedded NeuroArray 
genes are listed. In addition, the number of controls and ALS cases from both our experiment and previous 
scientific reports of these CNV loci was also shown. Chromosomal positions are referred to the human reference 
sequence hg19 assembly. Genes that may be reasonable ALS candidates are in bold. Chr: Chromosome.
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Integrated analysis of CNVs and corresponding expression data represents an effective approach to elucidate 
mediators and mechanisms involved in ALS. However, it has become clear that the process of motor neuronal 
degeneration is complex and requires many genomic alterations acting in concert. This also emerged by our anal-
ysis of PPI network constructed for CNV-driven DEGs that revealed a great number of close interconnections and 
identified three hub genes (UBA52, RPS27A and HIST2H3A) involved in inflammatory and immune responses 
(Fig. 4b)46. We also put forward a ‘systems biology’ analysis to identify biological processes and signaling path-
ways that were overly represented by CNV-driven genes in both SALS patient subgroups. Functional enrichment 
analysis of these candidate genes showed that they were mainly involved in immune/inflammatory signaling, 
neuronal migration, differentiation and survival, and neurite outgrowth, supporting the concept that these path-
ways may crosstalk with each other to drive the disease pathogenesis (Fig. 4a). In particular, Huntington’s disease 
(HD) signaling and Protein folding and processing were among the top canonical pathways for both SALS patient 
subgroups, supporting the possibility of a causal link between protein aggregation, neurotoxicity and disease 
severity in ALS and other neurological diseases, like HD47,48 (Fig. 4a). Among the most important candidate genes 
involved in these processes is AKT1, a gene encoding a cAMP-dependent serine-threonine kinase that was ampli-
fied in both SALS subgroup and overexpressed in SALS2. Our results are supported by previous evidence that 
abnormal AKT activation is implicated in several cellular mechanisms involved in ALS, such as the altered elimi-
nation of toxic protein aggregates, increasing oxidative stress and rendering cells susceptible to ROS-triggered cell 
death49. Our PPI network analysis identified AKT as a highly interconnected node, suggesting that alterations in 
this protein are not mere passenger events, but may have a great impact on one or more signaling pathways that 
are recurrently involved in ALS. Pharmacological inhibition of AKT and its downstream pathways has already 
demonstrated neuroprotective effects by modulating the activation state of microglial cells during neuroinflam-
mation, and promoting cellular clearance in neurodegenerative storage diseases, suggesting a potential role of 
AKT inhibitors in ALS treatment50,51.

It is interesting to note that although partially complementary and convergent, the two SALS patient clusters 
showed different significantly deregulated processes and mediators. In particular, antigen processing and pres-
entation, and extracellular matrix organization were the most significantly enriched pathways for the CNV-driven 
genes in SALS1, while the pathways of highest significance in SALS2 were associated with axonal guidance, oxi-
dative stress and inflammatory intracellular signaling cascades (Fig. 4a). Therefore, a careful monitoring of these 
signaling cascades may help to better diagnose the specific subtype of ALS and optimize treatment strategies. To 

Figure 2. Integrative analysis of DNA copy number and expression variation in SALS patients reveals a good 
number of overlapping ALS candidate genes. (a) Graphical overview of the most frequent (≥10%) CNV-
embedded genes detected in SALS patients, both with and without the assignment into the hierarchically 
determined two sets (SALS1 and SALS2). (b,c) Venn diagrams compare the number of protein-coding genes 
obtained from CNV analyses with the genes found to be differentially expressed in SALS1 (b) and SALS2 (c) 
patients.
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Figure 3. Functional enrichment analysis for GO and pathway map ontologies revealed significant biological 
processes associated with the candidate CNV-driven genes in SALS. (a) Pie charts represent the top 10 enriched 
(P < 0.05) GO terms for the 70 CNV-encompassed DEGs in SALS1 and SALS2 patients. The GO terms were 
subdivided into three GO categories: biological processes, molecular functions and cellular components. 
Enrichment analyses were performed using the Enrichment Analysis tool in Enrichr. For each category, 
GO terms or biological features represented in CNV-driven differently expressed genes are indicated. (b) 
Representation of the top 20 most significantly enriched (P value < 0.05) canonical pathway maps associated 
with the candidate CNV-driven genes in SALS1 and SALS2 patients. A histogram of statistical significance (−
log P value) is shown: the list is arranged in descending order with the most significant pathways at the top. The 
analysis was performed using the MetaCore™ pathway analysis suite.
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this regard, the convergent functional analysis of CNV-driven genes also pinpointed known and novel candi-
date therapeutic targets and biomarkers for early diagnosis, molecular subtyping and targeted therapy in SALS 
(Table 4). In particular, among CNV-driven genes in SALS1 showing the same expressional tendencies between 
DNA copy number and mRNA expression, we distinguished some genes (KIF1A, MC1R and MECP2) that were 
not previously implicated in ALS, representing new candidates for molecularly guided diagnosis and treatments. 
Within the cluster of CNV-driven genes in SALS2, we found a large number of new candidate ALS genes mainly 
implicated in oxidative and inflammatory signaling cascades52–57. Among these, identification of gain and over-
expression of TRAF2 was in accordance with previous evidence that correlated elevated expression levels of this 
gene with inflammatory processes in PD and other neurological disorders58,59. On the contrary, copy number loss 
and reduced expression levels HSPA5 in SALS2 may reflect the suppression of neuroprotective role of this mol-
ecule against ER stress-associated cell death, leading to oxidative stress and alterations in calcium homeostasis, 
and rendering neurons vulnerable to degeneration60–64. Concordantly, pharmacological activation of HSPA5 and 
its co-chaperones has demonstrated to exert neuroprotective effects on motor neurons of ALS by reducing ER 
stress-mediated cell death, supporting a translational potential for HSPA5 induction as a therapy against ALS and 
other neurologic disorders65.

Overall, our study provided the first comprehensive and integrated map of genomic and transcriptional events 
characterizing different SALS subtypes, revealing key drivers and etiopathogenic mechanisms that may have been 
masked by considering SALS pathology as a single entity. Despite the most obvious limitation in this research was 

Figure 4. Definition of SALS subtype-specific genomic signature using pathway and network analyses. (a) A 
representative illustration showing the functional correlation between SALS associated CNV-driven genes and 
their biological processes. Interaction map represents the most promising candidate genes showing a positive 
correlation between gene expression and underlying genomic changes, grouped on the basis of the main 
biological processes associated with them. The map was created using the MetaCore Pathway Map Creator tool 
(GeneGo). Gene expression and CNV values are presented on the map as ‘thermometer-like’ figures with SALS1 
patients data represented as thermometer #1 and SALS2 patients as #2. Genes associated with overexpression 
and CNV gain regions are labeled with red dots while genes associated with downregulated expression and 
homozygous or heterozygous deleted CNVs are labeled with blue dots. A detailed legend for the network 
objects is shown in the Supplementary Fig. 1. (b) Functional network of known and predicted interactions 
of the most promising candidate CNV-driven genes. The network was produced by the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) v10 (http://string-db.org/) using default settings. Proteins 
are represented by spheres. Lines linking proteins indicate evidence for interactions: a red line indicates the 
presence of gene fusion (genes that are sometimes fused into single open reading frames); a green line – gene 
neighborhood (genes that reside within 300 bp on the same strand in the genome); a blue line – co-occurrence 
(gene families whose occurrence patterns across genomes show similarities); a purple line - experimental 
evidence (interaction extracted from protein-protein interaction databases); a yellow line – text mining 
(interaction extracted from scientific literature); a light blue line - database (interaction extracted from curated 
databases); a black line – co-expression (proteins whose genes are co-expressed in the same or in other species).
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Symbol
Entrez Gene 
Name Location Family

Molecular 
aberration Tissue/Cells

Biological Fluid 
detectability

Biomarker 
Application(s) Diseases Drug(s)

SALS1-specific Biomarkers/Targets

CST3 cystatin C Extracellular 
Space other Gain/UP Brain, Cerebral 

Cortex

Blood, Plasma/
Serum, 
Bronchoalveolar 
Lavage Fluid, 
Cerebral 
Spinal Fluid, 
Saliva, Sputum, 
Synovium/
Synovial Fluid, 
Tears, Urine

diagnosis, 
efficacy, 
prognosis, 
safety

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

GAA glucosidase alpha, 
acid Cytoplasm enzyme Gain/UP

Brain, Cerebral 
Cortex, Spinal 
Cord

Bronchoalveolar 
Lavage Fluid, 
Urine

diagnosis

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Voglibose, 
Miglustat

KIF1A kinesin family 
member 1A Cytoplasm other Gain/UP Cerebral Cortex Blood, Plasma/

Serum
diagnosis, 
prognosis

Immunological 
Disease, 
Neurological 
Disease, et al.

—

MC1R melanocortin 1 
receptor

Plasma 
Membrane

G-protein 
coupled 
receptor

Gain/UP Brain Blood diagnosis

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders

—

MECP2 methyl-CpG 
binding protein 2 Nucleus transcription 

regulator Gain/UP
Brain, Cerebral 
Cortex, Spinal 
Cord

Not detected in 
biofluid

unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

TIMP2
TIMP 
metallopeptidase 
inhibitor 2

Extracellular 
Space other Gain/UP

Brain, Cerebral 
Cortex, Spinal 
Cord

Blood, Plasma/
Serum, Cerebral 
Spinal Fluid, Urine

efficacy

Immunological/
Inflammatory 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Pravastatin, 
ABT751 
(inhibitors)

SALS2-specific Biomarkers/Targets

AKT1 AKT serine/
threonine kinase 1 Cytoplasm kinase Gain/UP Brain, Cerebral 

Cortex Blood
diagnosis, 
efficacy, 
response to 
therapy

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Thalidomide, 
XL418, ABT100 
(inhibitors)

ALPL
alkaline 
phosphatase, liver/
bone/kidney

Plasma 
Membrane phosphatase Gain/UP Spinal Cord

Blood, Plasma/
Serum, 
Bronchoalveolar 
Lavage Fluid, 
Urine

efficacy, safety

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Alendronic acid, 
Zoledronic acid, 
Dexamethasone, 
Zaprinast 
(inhibitors)

HSPG2 heparan sulfate 
proteoglycan 2

Extracellular 
Space enzyme Gain/UP Spinal Cord

Blood, Plasma/
Serum, Cerebral 
Spinal Fluid, 
Bronchoalveolar 
Lavage Fluid Tears, 
Urine

unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

L1CAM L1 cell adhesion 
molecule

Plasma 
Membrane other Gain/UP Brain, Cerebral 

Cortex

Blood, Plasma/
Serum, Synovium/
Synovial Fluid, 
Urine

unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Ethanol, 
Rivanicline, 
Anabaseine, 
Ketamine, 
Mecamylamine, 
Bupropion 
(inhibitors)

PLEC plectin Cytoplasm other Gain/UP
Brain, Cerebral 
Cortex, Spinal 
Cord

Blood, Plasma/
Serum

unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

Continued
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Symbol
Entrez Gene 
Name Location Family

Molecular 
aberration Tissue/Cells

Biological Fluid 
detectability

Biomarker 
Application(s) Diseases Drug(s)

STK11 serine/threonine 
kinase 11 Cytoplasm kinase Gain/UP

Brain, Cerebral 
Cortex, Spinal 
Cord

Blood efficacy

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

CSF1 colony stimulating 
factor 1

Extracellular 
Space cytokine Gain/UP

Brain, Cerebral 
Cortex, Spinal 
Cord

Blood, Plasma/
Serum, Cerebral 
Spinal Fluid, 
Bronchoalveolar 
Lavage Fluid, 
Synovium/Synovial 
Fluid, Urine

diagnosis

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

—

F2 coagulation factor 
II, thrombin

Extracellular 
Space peptidase Gain/UP Brain, Cerebral 

Cortex

Blood, Plasma/
Serum, Cerebral 
Spinal Fluid, 
Bronchoalveolar 
Lavage Fluid, 
Tears, Urine

diagnosis, 
unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

enoxaparin, 
desirudin, 
dabigatran 
etexilate, 
Fibrinogen, 
ximelagatran, 
thrombin inhibitor, 
antithrombin alfa, 
aspirin/dabigatran 
etexilate, 
dabigatran, 
ulinastatin, 
aspirin/bivalirudin, 
argatroban, 
bivalirudin, 
lepirudin

GSTM3 glutathione 
S-transferase mu 3 Cytoplasm enzyme Gain/UP Cerebral Cortex Blood, Plasma/

Serum, Urine
diagnosis, 
prognosis

Neurological 
Disease, et al. —

TRAF2 TNF receptor 
associated factor 2 Cytoplasm enzyme Gain/UP Brain Blood, Plasma/

Serum diagnosis
Immunological/
Inflammatory 
Disease, et al.

—

HSPA5
heat shock protein 
family A (Hsp70) 
member 5

Cytoplasm enzyme Loss/DOWN
Amygdala, 
Brain, 
Cerebellum, 
Cerebral Cortex

Blood, Plasma/
Serum,Synovium/
Synovial Fluid, 
Tears, Urine

efficacy, 
unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Mefloquine 
(activation)

HTT huntingtin Cytoplasm transcription 
regulator Loss/DOWN Brain, Cerebral 

Cortex
Blood, Plasma/
Serum

unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

IL6 interleukin 6 Extracellular 
Space cytokine Loss/DOWN

Cortical 
neurons, 
Brain, Cerebral 
Cortex, Spinal 
Cord

Blood, Plasma/
Serum, Synovium/
Synovial Fluid, 
Tears, Urine

diagnosis, 
disease 
progression, 
efficacy, 
prognosis, 
response to 
therapy, safety, 
unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Tocilizumab, 
Siltuximab, 
Mifamurtide, 
Mycophenolate 
mofetil, 
Acetaminophen, 
Rifampicin, 
Prostaglandin 
E2, Morphine, 
Hyaluronic acid 
(activators)

LETMD1 LETM1 domain 
containing 1

Plasma 
Membrane other Loss/DOWN Brain, Cerebral 

Cortex
Blood, Plasma/
Serum

unspecified 
application

Neurological 
Disease, et al.

MMP9 matrix 
metallopeptidase 9

Extracellular 
Space peptidase Loss/DOWN Brain, Cerebral 

Cortex

Blood, Plasma/
Serum, 
Bronchoalveolar 
Lavage Fluid, 
Saliva, Sputum, 
Synovium/
Synovial Fluid, 
Tears, Urine

diagnosis, 
disease 
progression, 
efficacy, 
prognosis, 
unspecified 
application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

GS-5745, 
Rebimastat, 
Marimastat, 
Prinomastat, 
Glucosamine, 
Ciprofloxacin, 
Aclarubicin, 
Prostaglandin 
E2, Phorbol 
12-myristate 
13-acetate 
(activators)

SMN1/SMN2
survival of 
motor neuron 1, 
telomeric

Nucleus other Loss/DOWN
Brain, Cerebral 
Cortex, Spinal 
Cord

Blood diagnosis
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

Continued
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that of a small and unbalanced number of samples, our brain tissue samples represent a vanishingly rare resource 
for investigating molecular mechanisms underlying neurological disorders. The importance of an integrative 
analysis such as the one presented here, emerges from recent published data that highlight the presence of somatic 
changes in brain tissue of patients affected by neurological diseases66,67. Moreover, the custom-designed platform 
used in this study has some disadvantages, including limited use for discovering novel genes or gene features and 
inability to detect nucleotide repeat expansions or balanced structural chromosomal abnormalities. However, the 
possibility to simultaneously detect multiple genes involved in neurological disorders may allow for differential 
diagnosis between common neurological disorders, refine the genotype-phenotype correlations and explore the 
potential genetic overlapping signatures among different neurological conditions.

In conclusion, the present study proposes the use of a multi-omics analysis as a promising approach for the 
identification of somatic alteration and candidate drivers in ALS for defining disease subtype and directing 
molecular targeted clinical trials that more accurately reflect inter-individual differences among patients. Future 
more in-depth functional and integrative omics studies will be necessary to verify our findings and explore the 
impact of candidate genes on the outcome of the disease.

Material and Methods
The analysis workflow is shown in Fig. 5 and described below.

Subject cohorts and sample preparation. All samples were provided by the Department of Pathology 
of the Academic Medical Center (University of Amsterdam). This cohort included motor cortex samples from 
30 patients with clear SALS diagnosis and 10 control individuals collected as previously described17, and whose 
clinico-pathological parameters are detailed in the Supplementary Table 12. Informed consent was obtained 
for the use of brain tissues and for access to medical records for research purposes, and approval was obtained 
from the relevant local ethical committees for medical research. All experiments were performed in accordance 
with relevant guidelines and regulations of both institutions. Genomic DNA was extracted from 10μm-thick 
sections using the QIAamp Fast DNA Tissue Kit according to the manufacturer’s instructions (QIAGEN, Hilden, 
Germany). The extracted genomic DNA was quantified by using the NanoDrop ND-1000 spectrophotome-
ter (Thermo Fisher Scientific, MA, USA), and assessed for quality by microcapillary electrophoresis on 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA).

NeuroArray aCGH processing and data analysis. High-resolution exon-centered analysis of CNVs was 
done using an 8 × 60 K custom exon-centric NeuroArray platform v.2.0 (Agilent Technologies, Santa Clara, CA), 
tailored to detect single/multi-exon deletions and duplications in a large panel of ALS-related genes (n = 154) 
and to others additional neurological disorders (Supplementary Table 13)25. Details concerning the NeuroArray 
aCGH platform can be found in Supplementary Materials. DNA labeling and hybridization on NeuroArray were 
performed according to the manufacturer’s protocol (Agilent Technologies, Santa Clara, CA). Briefly, DNA test 
and a reference of the same sex (Euro Reference, Agilent Technologies, Santa Clara, CA), both at the concen-
tration of 500 ng, were double digested with RsaI and AluI for 2 hours at 37 °C. After heat inactivation of the 
enzymes at 65 °C for 20 min, each digested sample was labeled by random priming by using the genomic DNA 
Enzymatic Labelling Kit (Agilent Technologies, Santa Clara, CA) for 2 hours using Cy5-dUTP for patient DNAs 
and Cy3-dUTP for reference DNAs. Labeled products were column purified by using the SureTag DNA Labeling 
Kit Purification Columns (Agilent Technologies, Santa Clara, CA). After probe denaturation and pre-annealing 
with Cot-1 DNA, hybridization was performed at 65 °C with rotation for 24 hr. After two washing steps, arrays 
were scanned at 3 µm resolution using an Agilent G4900DA SureScan Microarray Scanner System and aCGH 
image data were processed using Agilent’s Feature Extraction software to assess the array spot quality as well 
as check signal and background intensity statistics in the default setting. Feature extracted raw data was nor-
malized, analyzed and visualized using Agilent CytoGenomics v. 4.0.3.12 and Genomic Workbench v. 7.0.4.0 
software (Agilent Technologies, Santa Clara, CA, USA). Briefly, after filtering for saturated and non-uniform 

Symbol
Entrez Gene 
Name Location Family

Molecular 
aberration Tissue/Cells

Biological Fluid 
detectability

Biomarker 
Application(s) Diseases Drug(s)

SOAT1 sterol 
O-acyltransferase 1 Cytoplasm enzyme Loss/DOWN Pituitary Gland Blood unspecified 

application

Immunological/
Inflammatory 
Disease, 
Neurological 
Disease, Skeletal 
and Muscular 
Disorders, et al.

pactimibe, 
ezetimibe/
fluvastatin, 
atorvastatin/
ezetimibe, 
ezetimibe/
rosuvastatin, 
ezetimibe/
fenofibrate, 
ezetimibe/
simvastatin, 
ezetimibe, 
hesperetin

Table 4. The most promising candidate CNV-driven genes and their utility as potential biomarkers/targets 
for SALS. The table lists CNV-driven genes showing the same expressional tendencies between DNA copy 
number and mRNA expression in SALS subgroups as potential candidate biomarkers and therapeutic targets 
for ALS. Target and biomarker assessment was performed by using dedicated tools in IPA and MetaCore. UP: 
upregulation. DOWN: downregulation.
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probes, data were normalized by GC correction with a window size of 2 kb and Diploid Peak Centralization. The 
Centralization Normalization Algorithm with a threshold of 6.0 and a bin size of 10 was also used for detecting 
aberrant regions or regions of constant CNVs. Aberrations were detected by the Aberration Detection Method 
II algorithm (ADM-2), with a sensitivity threshold of 6.0 and moving average window of 2 Mb, which permits 
to identify all aberrant intervals in a given sample with consistently high or low log ratios based on the statistical 
score. An aberration filter was applied for identifying copy number alterations; changes were considered as true 
positive events with a minimum log2 ratio test/control of ±0.5 and a minimum of 3 consecutive probes. Positive 
statistical score meant amplification, while a negative score indicated deletion. Human reference sequence hg19 
assembly was used to define the genomic coordinates of detected CNVs. Raw data of the microarrays are available 
at NCBI’s Gene Expression Omnibus (GEO) with the accession number GSE107375.

Identification of significantly altered genomic regions and CNV-encompassed genes. For sta-
tistical analysis, the ALS samples were divided into two groups (SALS1 and SALS2) based on their previously 
characterized gene expression profiles17. The chromosomal distribution and the frequency of the copy number 
gains and losses in both SALS subgroups were also investigated. Using ADM-2 generated interval based ampli-
fication and deletion data, penetrance analysis was performed to find the percentage of samples that share aber-
rations in a particular genomic region among multiple samples. A recurrent CNV was called when the gains or 
losses occurred in at least 10% of the SALS patients, both with and without the assignment into the hierarchically 
determined two sets. Multiple amplifications and deletions were counted as separate events. Aberrant intervals 
were also filtered taking into account those occurring in at least 10% of the cases and absent in individual con-
trols. In addition, to assess the effective relations between the detected CNVs and ALS pathogenesis, we compared 

Figure 5. Experimental workflow of multi-omics analysis for characterization of CNV-driven differentially 
expressed genes in SALS patients. The workflow depicts the steps performed in this study, from data acquisition 
to the visualization, validation and export of results in various output formats. See Materials and Methods 
section for details.
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these aberrant regions with those previously associated with ALS via screening of publicly available databases (i.e., 
CNVD) and published literature.

Frequent amplifications and deletions observed in both SALS patient subgroups were reviewed and annotated 
to the human hg19 reference genome and then were screened out for only genes included in the NeuroArray 
aCGH design. In addition, significant probe signals were clustered for pathologies according to their location 
on causative or susceptibility genes through a homemade script on R-platform, in order to search for CNVs in 
candidate genes of ALS disease68.

Source of gene expression data. Gene expression data set E-MTAB-2325 was downloaded from EBI 
ArrayExpress database, which was annotated using the platform of GPL6480 (Agilent-014850 Whole Human 
Genome Microarray 4 × 44 K G4112F). A total of 40 samples were selected out, including 10 normal and 30 
SALS motor cortex samples. Raw signal values were thresholded to 1, log2 transformed, normalized to the 50th 
percentile, and baselined to the median of all samples using GeneSpringGX v.14.5 (Agilent Technologies, Italy). 
Fold change (FC) values were calculated between SALS patients and individual controls. Positive FC meant 
over-expression, whereas negative FC indicated under-expression. Probes not corresponding to an ENTREZ ID 
were removed. In cases where several probes corresponded to one ENTREZ ID, the probe showing the high-
est variance over all samples was chosen for further analysis. Genes that showed a significant P value < 0.05 
(one-way ANOVA followed by the Benjamini and Hochberg False Discovery Rate and the Tukey’s Post Hoc test) 
and FC ≥ ± 1.5 were considered differentially expressed and were taken for further analysis.

Integration of the aCGH and gene expression data. To assess the contribution of genomic aberra-
tions to global gene expression pattern changes in SALS and identify CNV-associated DEGs, we performed an 
integrated analysis of differential expression values and the corresponding DNA copy number changes through 
a gene-by-gene approach. In particular, each gene expression measurement was assigned to the corresponding 
copy number probe interrogating the same named gene. A CNV-driven gene was defined when the gene expres-
sion trend was consistent with the copy number change (i.e., up-regulated gene transcript with a chromosomal 
amplification and down-regulated gene transcript with a chromosomal deletion).

Functional enrichment and biological network analysis. The function of CNV-associated DEGs in 
SALS patients was annotated and analyzed according to the three organizing principles of Gene Ontology (BP: 
Biological Process, MF: Molecular Function, CC: Cellular Component) by using the enrichment analysis tool 
Enrichr 69. To interpret the biological significance of CNV-driven genes in the context of known biological path-
ways, we used QIAGEN’s Ingenuity Pathway Analysis (IPA®; http://www.ingenuity.com/) and MetaCore repos-
itory (Clarivate Analytics, Philadelphia, United States) 70. Both these programs identify significantly enriched 
biological pathways and signaling cascades that are associated with a given list of genes by calculating the hyper-
geometric distribution. P-value < 0.05 was set as the threshold to filter out significant terms. In addition, to 
increase the statistical power of our analysis, we compared our results with three other pathway enrichment 
analysis tools and databases (KEGG; Reactome; Panther) and selected signaling pathways that were identified as 
significantly deregulated by two or more platforms.

To better understand the interactions of the CNV-driven genes and identify the best candidate genes in SALS, an 
extended protein-protein interaction (PPI) network of their encoding products was predicted by using the STRING 
database 71 and visualized with the Cytoscape v.3.5.0 software 72. The extended network was constructed by using the 
CNV-driven genes as seed molecules and setting a high level of confidence between molecular interactions (high con-
fidence score of at least 0.8) and a maximum number of interactions to 100. In order to identify the “Hub” nodes, 
a network topology analysis was performed by using the Cytoscape plug-in NetworkAnalyzer based on topological 
parameters 73. The relative importance of the genes in each network, meaning their ability to hold together the commu-
nicating nodes in a biological network, was determined based on the node centrality measure setting the topological 
parameter “node degree” ≥10. Nodes with high degree (hub genes) represented the genes having important biological 
functions: the higher the value, the higher the relevance of the gene in connecting regulatory molecules. Likewise, val-
ues of edge betweenness were mapped with the edge size: high values of this parameter correspond to a large edge size. 
The final PPI network was visualized based on node degree and edge betweenness parameters.

Finally, target and biomarker assessment tools in both IPA and Metacore were used to screen candidate 
CNV-driven genes in order to identify potential candidate biomarkers and therapeutic targets for ALS.

Real-Time quantitative polymerase chain reaction (RT-qPCR) validation. To confirm the reliabil-
ity of our data, we validated the NeuroArray CGH results performing ad hoc real-time quantitative polymerase 
chain reaction (RT-qPCR) assays. Briefly, we used DNA extracted from the motor cortex samples of 15 donors 
assayed by NeuroArray, including 5 controls, 4 SALS1 and 6 SALS2 (Supplementary Table 11). From the list of 
CNV-driven DEGs genes, we selected 5 candidates (GAA, KIF1A, CSF1, TRAF2, HSPA5) on the basis of their 
potential clinical relevance as patient-specific biomarkers and therapeutic targets (Supplementary Table 11). The 
primer sets flanking the putative exonic imbalances were designed using the PrimerBlast tool (http://www.ncbi.
nlm.nih.gov/tools/primer-blast/) as described 74 and were available in Supplementary Table 11. RT-qPCR was 
performed in triplicate using the LightCycler 1.5 (Roche Diagnostics, Germany). Cycling conditions were 95 °C 
for 15 s followed by 40 cycles of 95 °C (5 s), 60 °C (15 s) and one cycle of 95 °C (15 s), 60 °C (60 s), 95 °C (15 s). 
The data were analyzed by the 2 − ΔΔCt method that requires a healthy control sample (diploid) as a calibrator 
in all amplifications 75. 2 − ΔΔCt ≥ 1.4 or ≤0.6 was defined as copy number gain or loss, respectively, whereas 
2 − ΔΔCt values included from 0.8 to 1.2 were considered as normal diploid. As calibrator control, we used the 
same DNA reference hybridized in NeuroArray experiments. The specific PCR products were confirmed by the 
results of melting curve analysis and agarose gel electrophoresis.
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Ethics approval and consent to participate. Experiments involving human participants have been 
approved by an ethical committee (Ethics Committee of the Amsterdam Academic Medical Center, approved pro-
tocol: W11_073) for medical research and have been performed in accordance with ethical standards. Informed 
consent Informed consent was obtained from all individual participants included in the study.

Data Availability
All data generated during this study are included in this published article and the additional files. Transcriptional 
data are available at EBI ArrayExpress database with the accession number E-MTAB-2325. Raw data from Neu-
roArray aCGH analysis are available at NCBI’s Gene Expression Omnibus (GEO) with the accession number 
GSE107375.
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