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ABSTRACT

Compelling studies have established that the gut microbiome is a modifier of metabolic 
health. Changes in the composition of the gut microbiome are influenced by genetics and 
the environment, including diet. Iron is a potential node of crosstalk between the host-
microbe relationship and metabolic disease. Although iron is well characterized as a frequent 
traveling companion of metabolic disease, the role of iron is underappreciated because the 
mechanisms of iron's influence on host metabolism are poorly characterized. Both iron 
deficiency and excessive amounts leading to iron overload can have detrimental effects on 
cardiometabolic health. Optimal iron homeostasis is critical for regulation of host immunity 
and metabolism in addition to regulation of commensal and pathogenic enteric bacteria. 
In this article we review evidence to support the notion that altering composition of the gut 
microbiome may be an important route via which iron impacts cardiometabolic health. We 
discuss reshaping of the microbiome by iron, the physiological significance and the potential 
for therapeutic interventions.
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GUT MICROBIOME AND METABOLIC HEALTH

The gut microbiome is a complex ecosystem comprising of over 1,000 different species 
of bacteria, viruses, fungi, parasites and eukarya.1 While it was previously thought that 
microorganisms outnumbered human cells by 10-to-1,1,2 new estimates state that there 
is appoximately an equivalent number of bacterial cells to human cells with bacteria 
contributing up to 0.2 kg in a 70 kg human.3 Based on molecular studies using 16S rDNA 
analysis, it was found that the microbiota that resides in the intestines of humans is mainly 
composed of Bacteroidetes (i.e., Bacteroides spp.), Firmicutes (i.e., Clostridium, Roseburia, 
Ruminococcus, or Lactobacillus spp.), Actinobacteria (i.e., bifidobacteria), and Proteobacteria 
(i.e., enterobacteria).4-6 Of these types of bacteria the most common phyla within the human 
gut is that of Bacteroidetes and Firmicutes.7,8

Gut bacteria and the human host coexist in a symbiotic relationship. The nature of this 
coevolved interaction is mainly classified as either mutualistic, commensalistic, or 
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parasitic. The host provides a stable enteric environment with a continuous food supply 
for microorganisms to thrive in, while the microorganisms provide nutrients critical to 
the host's growth and development.9 This includes nutrient extraction through the use of 
bacterial derived digestive enzymes and vitamin synthesis.10,11 A delicate equilibrium between 
gut bacteria, the intestinal epithelial barrier, and host immunity to maintain mutalism or 
commensalism. A disruption in this host barrier/immune-microbe equilibrium can result in a 
change in the composition of the micorbial communites that is signaificantly different from 
normal variation in the micobiome, which is often called dysbiosis.12 Since the gut microbiota 
plays an active role in the health of the host, dysbiotic alterations in bacterial composition 
have been associated with numerous chronic illnesses such as inflammatory bowel disease,13 
rhematoid arthritis,14 Parkinsons,15 osteoporosis,16 susceptibilty to infectious disease17 and 
metabolic disease.18

While many of the roles of the gut microbiome have yet to be elucidated, several beneficial 
effects have been discovered.7,8 The gut microbiome plays an important role in digestion 
and vitamin synthesis.19 However, while some species of the gut microbiome are beneficial, 
enteric pathogenic bacteria exist such as Shigella flexneri, Citrobacter rodentium, Listeria 
monocytogenes and Salmonella enterica serovar Typhimurium.20-23 Changes in the gut microbiome 
can significantly impact human health. For example, patients with Crohn's disease exhibit a 
significant decrease in microbial diversity compared to control individuals.24,25 Additionally, 
differences in the specific gene content due to strain specific differences can also greatly 
impact human health by altering the contribution of genes and metabolites to the host.26,27

FACTORS THAT AFFECT THE COMPOSITION OF THE GUT 
MICROBIOME
Many factors impact the composition and function of the gut microbiome including 
ethnicity, geographic location, age, gender, genetic background, and diet.28,29 In a study 
investigating the specific ethnic differences amongst individuals who live in the same 
geographic location it was found that individuals of the same ethnic background had a more 
similar gut microbiome composition than individuals from different ethnic backgrounds 
with Dutch individuals exhibiting the largest α-diversity and the South-Asian Surinamese 
exhibiting the smallest α-diversity. However all individuals had 21 microbial taxa that were 
present regardless of their ethnicity.30 In another study in which 7,000 individuals from across 
Guangdong province in China were surveyed, it was found that differences in composition of 
the microbiome between individuals could be explained based on the individuals geographic 
location.31 Other studies have also found that both age32 and gender33-35 can significantly 
impact the composition of the gut microbiome. For example, the newborn microbiome can 
be dramatically effected by birthing method and diet, and this microbiome has a considerably 
different composition compared to the microbiome observed amongst adult individuals.36,37 
Additionally, studies have shown that there are gender specific differences in the composition 
of the gut microbiome, but the full extent and significance of these changes is unclear.38,39

Genetics may also play a role in the composition of the gut microbiome. One study using 
31 female monozygotic pairs, 23 dizygotic twin pairs and 43 of their mothers found 
that the gut microbiome was similar amongst family members, but each individual had 
specific bacterial lineage differences. The type of twin did not significantly impact the gut 
microbiome with both monozygotic and dizygotic twins displaying a similar degree of 
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co-variation.40 In contrast, a separate study investigating fecal samples from the TwinsUK 
population found that there was more similarity in composition between monozygotic 
twins than dizygotic twins, additional operational taxonomic unit relative abundances were 
more highly correlated in monozygotic twins.41 Therefore, whilst genetics can impact the 
composition of the microbiome, the full extent of the impact of conserved microbial profiles 
on host physiology remains an area where more research is needed.42 Recently studies have 
suggested that diet may have a more substantial impact on the gut microbiome than genetic 
factors43 and can significantly influence and alter its composition.44,45 This mainly depends 
on macronutirents such as fat and carbohydrate content,44,46 but also on metals such as iron, 
copper and zinc.47-51

GUT MICROBIOME AND DIET

Diet is an important factor that can rapdily alter the composition of the gut microbiota, and 
since mammals are constantly eating, diet continiously shapes the alpha and beta diversity 
of intestinal bacterial communities.44,52 Ingested foods provide not only nourishment to the 
host, but also supply fermentable substrate for gut bacteria, which is required to sustain 
specific enteric microbes. In response to ingested substrates that enter the intestinal lumen, 
gut bacteria produce metabolites from digested food components influencing host health.53 
Studies demonstrate that diet can have both acute and long-term effects on the composistion 
of the gut microbiome. The impact of single dietary compounds and widely used dietary 
patterns like vegetarian, Mediterrean, and Western diets on gut bacteria and host health have 
been assessed in humans.54

Vegetarian diets comprised of plant-based foods are often considered beneficial for multiple 
host metabolic responses due to increased fiber and lower protein, saturated fat, and 
cholesterol intake. Foods generally consumed by vegetarians include whole-grains, fruits, 
vegetables, nuts, legumes, and soy based products.55 Consumption of a vegetarian diet can 
promote a protective effect from various ailments such as ischemic heart disease, incidence 
from total cancer, metabolic syndrome (MetS), and diabetes.56-58 Despite these enhancements 
in host health, a systematic review found no consistent characteristic gut microbial profile 
in individuals consuming a vegetarian diet when compared to vegans and omnivores.59 High 
microbial individuality, along with differences in methodology have limited conclusions 
to date. For example, differences in the processing of collected stool samples, participants 
tested from various geographical regions leading to environmental and dietary variation, 
variability in time adhered to diet, and differences in data analyses of microbial composition 
using different taxonomic levels in current studies may underlie this inability to uncover 
definitive differences in vegetarians. Importantly, these studies failed to report medication 
intake of the participants. Medications, specifically antibiotic-use, have profound effects on 
the gut microbiota and can ultimately mask any potential differences between groups.60-62 It 
is also possible that vegetarian diets are too variable to find a distinct change in the microbial 
composition and further refinement of specific groups of food is required to produce 
reliable changes in micobial taxa. Vegetarian or plant based diets may however contribute 
to gut health by enhancing gut bacterial diversity and through the production of bioactive 
compounds generated during fermentation refered to as postbiotics.53,63 Further analyses 
examining the gut bacterial metabolome demonstrate plant-based foods are linked with the 
enhanced production of postbiotics such as short chain-fatty acids (SCFAs), isothiocyanates, 
and phytoestrogens compared to meat-based diets which are linked to increased 
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trimethylamine N-oxide and secondary bile acids.64 As well, increased microbial expression 
and protein production for carbohydrate and protein-hydrolyzing enzymes and synthesis of 
essential amino acids and vitamins were associated with vegetarian diets when compared to 
omnivores.65 In the absence of global microbal shifts in composition, the metabolic outputs 
and genetic activity of gut bacteria in a vegetarian diet may contribute to the beneficial health 
effects associated with this dietary practice.

The Mediterranean diet provides host health benefits and produces a charasteristic gut 
microbial profile.66,67 The Mediterranean diet is based on foods typically ingested by countries 
surrounding the Mediterranean Sea such as Italy, Spain and Greece. Plant-sourced foods 
like fruits, vegetables, whole grains, and legumes are mainly consumed with few dairy 
foods and limited red meat, moderate amounts of fish, poultry, wine and olive oil as a main 
dietary unsaturated fat source.68 Consumption of the Mediterranean diet reduces the risk of 
multiple chronic diseases such as diabetes, cancer, cardiovascular and neurodegenerative 
diseases, and reduces all-cause mortality risk based on data generated from clinical trials and 
epidemiological studies.67,69 A few studies demonstrate that consumption of a Mediterranean 
diet promotes changes in the microbiota profile and increased production of bacterial 
metabolites like SCFAs.66,70,71 Participants with high adherence to this diet had a lower 
Firmicutes:Bacteroidetes ratio, increased fecal SCFA content (butyrate, propionate, and 
acetate), and enhanced representation of bacteria known to degrade fiber such as Prevotella 
and Lachnospira.66 Similarly, in an interventional trial using overweight and obese individuals, 
Mediterranean diet increased the presence of the butyrate producer Faecalibacterium 
prausnitzii,72,73 which has been shown to promote anti-inflammatory processes.

Western diets are largely composed of low fiber and high fat, high animal protein, and high 
refined sugar content. Specifically, this diet emphasizes the consumption of processed 
grains, red meat, saturated fats, added sugars with lower intake of fruits, vegetables, 
legumes, and whole grains. Ultra-processed foods are a main feature of this dietary 
practice, and when compared to the consumption of whole foods, a western-style diet can 
alter the gut microbiota.74 The characteristic bacterial profile associated with the Western 
diet can be linked to its low complex carbohydrate content. Bacterial clades of the species 
Prevoltella copri, involved in carbohydrate metabolism, are underrepresented in Westernized 
populations, mainly attributed to diet.73 In addition, microbes associated with polysaccharide 
degradation of porphyran present in edible seaweed species is scarce in Western diets.75 As 
well, there is a reduced abundance of Prevotella and Xylanibacter bacteria involved in cellulose 
and xylan hydrolysis in children fed Western diets compared to fiber-rich diets.76 In a 
cross-sectional study of 517 community-dwelling men, greater adherence to a Western diet 
positively correlated with bacterial families Veillonellaceae and Mogibacteriaceae, and genera 
like Ruminococcus which degrade resistant starches in refined grain products, without any 
significant changes in bacterial phyla.77,78 Gut bacteria inversely associated with adherence 
to the Western diet included relative abundances of orders Clostridiales and Streptophyta, 
family Anaeroplasmataceae, and genera Coprococcus, Faecalibacterium, Haemophilus, Lachnospira, 
Paraprevotella, and Prevotella. In addition, decreased bacterial diversity is also associated 
with consumption of a Western diet when compared to hunter-gatherer or rural farming 
populations.76,79-82 In mice, this reduction in microbial diversity induced by a Western low 
fiber diet over several generations can lead to the irreversible extinction of specific glycoside 
hydrolase producing bacteria, potentially impairing the host's capacity to degrade glycans.82 
Altogether, these results demonstrate the Western diet can impact microbial profile and 
diversity, largely attributed to its low complex carbohydrate content.

163https://doi.org/10.12997/jla.2021.10.2.160

Iron-induced Dysbiosis and Metabolic Dysfunction

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



Dietary components associated with these diets, specifically fiber, fat, and sugar, can 
affect the gut microbiota and host health, which have been reviewed elsewhere.44,53,54,64 The 
source of dietary carbohydrates and lipids is a key factor that can differentially affect enteric 
bacteria. Non-digestible carbohydrates like fiber are generally fermented in the colon.83 Fiber 
supplementation in both healthy and specific patient populations enhance the abundance of 
Bifidobacterium spp. and Lactobacillus spp. when compared to lower fiber diets or placebo.84,85 
Also, increased consumption of resistant starches can induce phylum shifts, and increase 
proportions of bacterial species dependent on the type of carbohydrate studied.86 Other 
carbohydrate sources, like simple sugars specifically fructose which is highly prevalent in 
ultraprocessed foods, are easily absorbed in the upper gastrointestinal tract, can alter the 
gut microbial profile and can promote aspects of metabolic disease.87,88 Lastly, ingestion of 
saturated lipids, in a Western diet, compared to unsaturated lipids common in Mediterranean 
and vegetarian diets, have distinctive effects on the gut microbiota.44,89 Women supplemented 
with dietary omega-3 polyunsaturated fatty acids increased both the microbial alpha diversity 
and increased relative abundance of the Lachnospiraceae family, independent of fiber intake.90 
In addition, mice fed saturated fats gained weight, were insulin resistant, had incrased low 
grade circulating endotoxin levels, and higher white adipose tissue inflammation, which 
correlated to a distinctive bacterial profile compared to mice fed unsaturated fats protected 
from these metabolic impairments.91 Altogether, these studies demonstrate diet and dietary 
components are critical factors that can contribute to the gut microbiota and host health.

GUT MICROBIOME IN DEVELOPMENT OF OBESITY

Initial findings highlighting the role of gut microbes in metabolic disease development arose 
from observations using germ-free mice. These mice accumulate less visceral fat compared 
to conventional colonized mice over time, and are protected against diet-induced obesity 
when fed a western-style diet.92-94 This lean phenotype observed in germ-free mice devoid 
of gut bacteria is largely attributed to defective nutrient absorption.95 In addition, germ-free 
mice have improved insulin and glucose tolerance comc, likely both attributed to their lean 
phenotype, possibly due to lower bacterial induced pathogen recognition receptor activation 
by gut microbial compounds.93,95 Altogether, these observations support a link between the 
gut microbiota and host metabolism.

Previous research has shown that there is a significant difference in the microbiome profiles 
of obese and lean individuals with obese individuals having greater bacterial diversity than 
lean.34 As mentioned earlier the 2 predominant populations of microbiota in both rodent and 
human gut are members of the bacterial groups known as the Firmicutes and the Bacteroidetes 
and the relative proportion of these 2 phyla may protect or predispose the host to obesity.96,97 
Metagenomic studies have demonstrated that the proportion of Firmicutes is higher in obese 
individuals as compared to lean controls and this correlates with a higher number of genes 
encoding enzymes that break down otherwise indigestible dietary polysaccharides, more 
fermentation end products and fewer calories remaining in the feces of obese individuals.98-100 
In particular changes in Firmicutes phylum species Blautia hydrogenotorophica, Coprococcus catus, 
Eubacterium ventriosum, Ruminococcus bromii, and Ruminococcus obeum were strongly associated 
with development of obesity.34 While studies have shown that increases in Firmicutes are 
associated with obesity and increases in Bacteroidetes have been associated with weight 
loss,97,102 other studies have contradicted these findings.40,102-104
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Fecal transplantation from lean human donors to obese recipients led to a significant 
improvement in insulin sensitivity in the obese recipients.105 Intriguingly, microbiota 
transplantation studies in germ-free murine models showed that the efficient energy 
extraction traits of obese-type gut flora are transmissible.101 Furthermore both human 
and animal model studies of obesity and MetS have shown that supplementation with 
Lactobacillus can improve glucose tolerance.106-108 In patients with MetS changes in the gut 
microbiome have been linked to a genetic variant in the apolipoprotein A5 gene.109 The 
human gut is populated by at least 1013 microorganisms, mostly anaerobic bacteria.3 The 
metabolic activities of these microbes are comparable to an ‘organ’ particularly adapted to 
human physiology and executing vital functions including the ability to process otherwise 
indigestible nutrients, repressing the growth of harmful microorganisms and training the 
immune system to respond only to pathogens.110

Importantly, the microbiota contains factors, including unknown molecules, that are 
positioned to influence host metabolism.108 There are now wide-scale efforts to determine 
how the microbiota can be measured and manipulated to improve host metabolism. The 
gut microbiota contains a huge amount of genetic diversity and novel chemical compounds 
that are ripe for developing new therapies. Current approaches focus on measuring bacterial 
nucleic acids (DNA/RNA), proteins (proteomics) and metabolites (i.e., metabolomics) in 
order to define how bacteria associated with important disease related pathways to uncover 
new drug candidates.

ROLE OF IRON IN METABOLIC DISEASES

Iron is an essential nutrient for both the host and the microbiome. The host requires iron 
for oxygen transport, cellular respiration, immune responses, catalytic activities and other 
metabolic functions. Likewise, most bacteria require iron for growth and for essential 
electron transfer and catalytic reactions. The impact of iron on the microbiome has received 
considerable attention and this is highlighted in recent reviews111-113; nevertheless, there are 
still many outstanding questions.

In this review article we focus on iron as a critical node of crosstalk between dietary changes, 
alterations in the microbiome and metabolic dysfunction. The MetS refers to a cluster of 
abnormalities which include obesity, dyslipidemia, insulin resistance and type 2 diabetes 
that collectively increases the risk of developing cardiovascular diseases, including heart 
failure (HF) and non-alcoholic fatty liver disease.114 Research on this topic is extremely 
important since it was estimated that in North America more than 25% of the population 
suffer from MetS115 and this is associated with serious and extensive comorbidity.116 A 
prevalence of mild iron overload in MetS patients is well established by the presence of 
non-transferrin-bound iron in serum117,118 and by the correlation of hyperferritinemia,119,120 
and hepatic iron overload121 with insulin resistance. The combination of iron overload with 
insulin resistance is often referred to as dysmetabolic iron overload syndrome and occurs 
in 15%–30% of MetS patients.122 Thus, at this time the association of iron overload with 
the MetS is well recognized, yet mechanisms leading to metabolic dysfunction are not fully 
understood.123 It is possible that the role of iron as a contributor to the pathogenesis of MetS 
and its complications is still very much underappreciated (Table 1) and that modification 
of microbiome is an important and relatively unexplored mediator of iron's metabolic 
effects.124 In particular, dietary iron levels in the intestinal lumen modify the microbiota 
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composition.111-113 This is expected to subsequently affect the microbiome's functionality 
in regards to its metabolomic profile, including SCFA and branched chain amino acids. 
Consequences of such modifications would be peripheral insulin resistance and metabolic 
dysfunction in the host.

Iron intake varies considerably depending on diet135 and since iron is commonly used in 
supplements this can also increase the variability of iron intake.136,137 Also, higher male 
predisposition to heart and liver disease in MetS patients with higher iron stores, was 
reported.138,139 Whether differential iron states affect the gut microbiota and contribute to this 
varied susceptibility in males and females is unclear. Yet recently, an iron mediated elevation 
of gut luminal glucose levels was proposed to modify an intestinal pathogen to a commensal 
bacterium, indicating that the effects of iron supplementation on the microbiome bare 
still surprises.140 Interventions to reduce iron, such as via venesection or use of chelators, 
improved insulin sensitivity and delayed the onset of type 2 diabetes mellitus (T2DM) and 
HF in some occasions,141-143 but have not always been successful.144 It should also be noted 
that iron deficiency is a frequent finding after prolonged morbid obesity and can likewise 
contribute to T2DM and HF.139,142,145,146 Thus, previous work has shown a bidirectional 
relationship between iron and glucose homeostasis or cardiomyopathy, suggesting a balance 
of optimal iron level is critical.139,142

166https://doi.org/10.12997/jla.2021.10.2.160

Iron-induced Dysbiosis and Metabolic Dysfunction

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis

Table 1. The effect of reducing iron load in MetS
Study Study type No./type of patients Duration of study Main findings
Flores et al.125 Randomized, 

parallel, open-label 
clinical trial

Women with PCOS 
or idiopathic 
hyperandrogenism (n=33)

Three-month treatment with 35 µg 
ethinylestradiol+2 mg cyproterone 
acetate followed by either (i) 3 scheduled 
bloodlettings or (ii) observation

Bloodletting did not improve insulin 
sensitivity measures in women with functional 
hyperandrogenism

Behboudi-
Gandevani et al.126

Randomized clinical 
trial

Women with PCOS (n=64) Evaluated 3 months after either (i) 
undergoing phlebotomy procedure or (ii) 
using oral contraceptives

Both phlebotomy and contraceptive use 
decreased HOMA-IR, FAI, and FG

Baye et al.127 Randomized 
controlled trial

Overweight/obese, non-
diabetic adults (n=26)

Twelve-week daily intake of either (i) 1 g 
carnosine (iron chelating agent) or (ii) 
placebo

Carnosine supplementation decreased only 
plasma soluble transferrin receptor vs. 
placebo; no metabolic testing completed

Suarez-Ortegon 
et al.128

Systematic review/
meta-analysis

Twenty-one studies 
examining associations 
between ferritin and MetS

Systematic review, studies of varying length High triglycerides and glucose are strongly 
associated with ferritin

Chuansumrit et 
al.129

Clinical trial Subjects with NTDT (n=10) Patients prescribed iron chelator deferasirox 
(10 mg/kg/day) for 6 months

Trend of improving insulin sensitivity and beta 
cell function (reduced fasting glucose)

Lainé et al.130 Randomized 
controlled trial

Nondiabetic dysmetabolic 
iron overload syndrome 
patients (n=274)

Patients randomly assigned lifestyle and diet 
advice with or without bloodletting for 1 year

Iron depletion by bloodletting was associated 
with weight gain; did not improve glycemia, 
hepatic measures (i.e., ALT, AST, fibrosis score, 
fatty liver index, GGT) and enhanced IR

Adams et al.131 Randomized 
controlled trial

Non-alcoholic fatty liver 
disease patients (n=74)

Patients randomly assigned lifestyle and 
diet advice with or without phlebotomy for 
6 months

Iron reduction by phlebotomy does not 
improve hepatic steatosis MRI measures, ALT, 
cytokeratin-18 (liver injury marker), or IR

Valenti et al.132 Randomized 
controlled trial

NAFLD and 
hyperferritinemia patients 
(n=38)

Patients randomly assigned lifestyle advice 
with or without phlebotomy for 2 years

Phlebotomy improved steatosis grade, liver 
enzyme levels (ALT, AST, GGT)

Beaton et al.133 Phase II prospective 
clinical trial

NAFLD patients (n=31) Phlebotomy treatment occurred biweekly/
monthly for 6 months

Phlebotomy improved NAFLD-liver disease 
score compared to baseline

Houschyar et al.134 Randomized 
controlled trial

Patients with MetS (n=64) Patients randomly assigned to iron reduction 
by phlebotomy vs. control; metabolic 
measures taken after 6 weeks

Phlebotomy lowered blood pressure, improved 
glycemic control (i.e., HbA1c, blood glucose) 
and cardiovascular risk (lowered LDL/HDL 
ratio, heart rate)

MetS, metabolic syndrome; PCOS, polycystic ovary syndrome; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; FAI, free androgen index; FG, 
Ferriman-Gallwey score; NTDT, non-transfusion-dependent thalassaemia; ALT, alanine aminotransaminase; AST, aspartate aminotransaminase; GGT, gamma-
glutamyl transferase; IR, ischemia and reperfusion; MRI, magnetic resonance imaging; NAFLD, non-alcoholic fatty liver disease; HbA1c, hemoglobin A1c; HDL, 
high density lipoprotein; LDL, low density lipoprotein.



The critical role of iron metabolism for health is in fact illustrated very well by genetic 
disorders which cause a disruption in iron balance. These include classic genetic diseases 
such as thalassemia and hereditary hemochromatosis resulting in iron overload. Both will be 
discussed below as examples of cardiometabolic disease.

Metabolic abnormalities are common in thalassemia major, a hemoglobinopathy that is 
treated with repeated blood transfusions which cause secondary iron overload.147 A study 
with thalassemia major patients showed an increased risk for diabetes, heart disease and 
MetS, particularly amongst women.148,149 Although we now understand much about reasons 
for adverse health outcomes in thalassemia patients, various complications continue to 
impact the life expectancy of patients with thalassemia major, with as many as 50% dying 
before age 35. Heart disease is responsible for more than half of these deaths. Diabetes also 
occurs frequently150-152 in thalassemia patients with one meta-analysis finding the prevalence 
among Iranian thalassemia major patients being 9% and around 12% having impaired fasting 
glucose and glucose tolerance.150 Thus, further understanding the mechanisms responsible for 
cardiometabolic disease in thalassemia patients is essential. Interventions to reduce iron, such 
as via use of chelators, improved insulin sensitivity and delayed the onset of T2DM and HF.141-143 
Important cellular mechanisms via which iron accumulation leads to metabolic disease have 
been characterized, principally mitochondrial dysfunction.153 Indeed, boosting mitochondrial 
function can be beneficial.154 Nevertheless, it is intriguing to speculate that altered iron 
homeostasis in thalassemia impacts the microbiome composition and contributes to metabolic 
complications. In keeping with this train of thought, a very recent study agreed that the adverse 
effect of iron accumulation in gut is not frequently mentioned in thalassemia. The study went 
on to show that gut iron accumulation in thalassemic mice caused a defect in gut-permeability 
which the authors noted impacted sepsis susceptibility.155 It is also very likely that this has 
important metabolic consequences and this should be further studied.

Hereditary hemochromatosis is caused by inactivation of the iron hormone hepcidin.156 
Interestingly, men are at higher risk of developing hemochromatosis.157 These patients exhibit a 
high frequency of diabetes with evidence for both destruction of pancreatic β cells and insulin 
resistance.158 Several mechanisms have been shown to potentially contribute to various clinical 
metabolic manifestations in hemochromatosis,159 with an emphasis on hepatic consequences. 
In addition to currently available evidence, we also believe that the contributory role of iron-
induced dysbiosis must be more carefully examined. In support of our proposal, a very recent 
study has demonstrated that hereditary hemochromatosis causes gut dysbiosis.160 This study in 
Hfe−/− mice, a model of mild hemochromatosis, documented profound changes in the colonic 
microbiome in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7, 
together with loss of function of the intestinal/colonic barrier. Nevertheless, another study in 
Hfe−/− mice found increased adiponectin expression and improved glucose tolerance which 
was explained via reduced iron content specifically in adipose tissue, despite systemic iron 
overload.161 We must also be careful in translating studies in mouse models to clinical relevance 
since in mouse models of hemochromatosis excess iron accumulates in pancreatic acinar 
but not β cells, yet this is dissimilar to findings in human hemochromatosis patients.161 This 
is an intriguing area of research that will require further investigation to clarify under which 
circumstances hemochromatosis and the consequent reshaping of the gut microbiome is 
associated with adverse, or favourable, outcomes.
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IMPACT OF IRON ON THE COMMENSAL MICROBIOME

Previous research studying the impact of iron on the gut microbiome has produced 
conflicting conclusions. Within bacteria iron can play a crucial role in growth and 
proliferation, for example iron can be required for the proper functioning of some bacterial 
proteins and enzymes. Additionally iron can modulate expression of some virulence 
factors.162-164 Therefore, iron has been shown to be an important element required for the 
growth of some but not all gut bacteria including Bacteroides spp.165,166 and Enterobacteriaceae,167 
whilst Lactobacilli species do not require iron for growth.7,8 Interestingly, Lactobacillus plantarum 
299v, and a probiotic (containing Bifidobacterium bifidum W23, B. lactis W51, B. lactis W52, 
Lactobacillus acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lactococcus lactis 
W19, and L. lactis W58) have been shown to increase host iron absorption.168,169 Various 
proteins and enzymes involved in bacterial replication and growth require iron as a cofactor 
to function. Iron is a cofactor involved in the synthesis of DNA (i.e., ribonucleotide 
diphosphate reductase),170-173 electron transfer and generation of ATP (i.e., cytochromes), and 
the neutralization of harmful oxidative species (i.e., superoxide dismutase). Iron deficiency 
can inhibit these bacterial cell processes, which can impair bacterial growth. Microbes that 
require iron for growth and survival have evolved processes to prevent nutrient deficient 
states. During iron deficiency, bacterial iron acquisition gene programs are de-repressed by 
the ferric uptake regulator family (FUR) proteins. FUR proteins act as an iron-dependent 
repressor that controls numerous iron-regulated genes by binding free ferrous (2+) iron to 
prevent transcription when bacteria are exposed to sufficient iron. During iron deficiency, 
FUR proteins de-repress gene programs that enhance iron acquisition from their hosts to 
promote growth.164 Mechanisms to acquire iron include: (i) siderophores formation, (ii) 
cell surface ferric reductases to reduce free ferric (3+) iron to ferrous (2+) iron for bacterial 
utilization and (iii) production of cytotoxins and haemolysins to release iron stores from 
host cells.174-176

The majority of the research on the effects of iron on the gut microbiome has focused on 
changes either during anemia or the effects of iron supplementation in these patients. 
Iron supplementation in pregnant women was not associated with changes in the gut 
microbiome.177 Another study investigating the effects of iron on obese and overweight 
pregnant women found that while there was no significant alteration in the composition 
of the gut microbiome, women receiving low iron supplementation (<60 mg/d iron) had a 
higher prevalence of SCFA producing bacteria than women taking a higher dosage of iron.177 
In a study conducted to investigate the impact of iron supplementation on rat pups, no effect 
on growth or weight gain was observed.178 However, supplementation did slightly alter the 
composition and diversity of the gut microbiome profile. Specifically there were changes 
in the abundance of strict anaerobic bacterial species like Bifidobacterium and Bacteroides.178 
Similarly iron supplementation amongst South African children did not significantly alter the 
composition of the major bacterial groups, or faecal SCFA concentration.48

IMPACT OF IRON ON PATHOGENIC BACTERIA

Under normal conditions pathogenic bacteria must overcome resistance from commensal 
microbial communities in order to colonize. Commensal microorganisms activate immune 
responses which can lead to the elimination of pathogenic bacterial species. However, the 
level of immune activation is important, as instead of leading to elimination of pathogenic 
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bacteria, alternatively intestinal inflammation can promote the colonization of pathogens.179 
One of the hallmarks of intestinal inflammation-induced dysbiosis (Fig. 1) is that of increased 
abunance of enterobacteria species. Due to the differing microbial profile in the inflammed 
gut there is also an association with an altered siderophore profile. As siderophores are 
responsible for metal ion abundance, this altered profile can further influence the type of 
bacteria which survive and grow.180 As such, because iron is an essential element for most 
bacteria to thrive, one key role of the intestinal immune response is to limit the availability of 
iron to pathogenic bacterial species.181

A previous study has shown that dietary iron inhibited growth of the enteric pathogen 
Citrobacter and drove selection of asymptomatic Citrobacter strains; these responses were 
associated with insulin resistance and increased glucose levels that suppressed pathogen 
virulence.140 In addition to promoting insulin resistance dietary iron also increased intestinal 
glucose levels, a key gut environmental change that suppressed pathogen virulence, 
and drove selection of asymptomatic Citrobacter strains.140 However, in contrast, other 
studies have shown that decrease in iron availability is beneficial via reducing growth of 
potentially pathogenic gut bacteria.182,183 Dietary iron supplementation has adverse effects 
such as inducing higher levels of pathogenic gut bacteria and the occurance of intestinal 
injury.111,113,182,184,185 Addionally a study investigating iron supplementation in African 
children found that there was an increase in the number of enterobacteria and a decrease in 
lactobacilli which correlated with gut inflammation.186

In mammals most iron is chelated within the porphyrin structure of heme. As pathogenic 
bacteria require iron for growth, cholera contains genes which enable Vibrio cholerae to 
obtain iron from heme. The cholera toxin increases the bioavailability of luminal heme 
by congesting terminal illeal capillaries, leading to bacterial utilization for growth.187 
Furthermore, Vibrio cholerae produce a siderophore known as vibriobactin. Unlike other 
catecholate siderophores such as enterobactin, this unique coordination helps in evading 
the host immune system.188 Cholera toxin also increases long-chain fatty acid and L-lactate 
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Fig. 1. Illustration of interplay between iron and inflammation. This figure depicts various ways in which interplay 
between iron and inflammation occur. In addition to directly causing inflammation, there is crosstalk with host 
innate immunity. This is predominantly mediated via neutrophil-derived Lcn2 which can sequester iron-laden 
bacterial siderophores. IL-22 is identified as an important mediator of dysbiosis in an inflammatory milieu. 
Lcn2, lipocalin-2; IL, interleukin; ROS, reactive oxygen species.



metabolites within the lumen, which leads to the upregulation of Vibrio cholerae genes 
encoding iron-sulfur cluster containing enzymes of the TCA cycle. As such cholera, and 
production of cholera toxin creates an iron-depleted metabolic niche in the gut, which 
selectively promotes the growth of Vibrio cholerae through the acquisition of host-derived heme 
and fatty acids.187

Other bacterial species such as Campylobacter jejuni are also able to capture host iron and 
cause infection within the host. Infection with Campylobacter jejuni occurs by eating raw or 
undercooked poultry, seafood, meat and untreated drinking water, as it passes through 
the stomach it must first survive an extreme acidic environment. Its ability to survive an 
acid stress environment is increased by the presence of iron, and as such it contains genes 
involved in iron-mediated acid protection, including flagella biogenesis genes, cell envelope 
biogenesis, heat shock proteins (GroEL, GroES), which aid it it's survival.189

In order to obtain iron, many bacterial species produced compounds known as siderophores 
which bind iron and transport it inside the bacteria.190,191 This is counteracted in the host 
via induction of an immune response which includes the production of lipocalin-2 (Lcn2; 
also referred to as neutrophil gelatinase-associated lipocalin or 24p3), predominantly from 
neutrophils. Lcn2 is a critical component of the host innate immune response192-194 and acts 
via sequestering iron-laden siderophores, thereby preventing bacteria obtaining iron from the 
host.195-198 However, excess or prolonged Lcn2 production mediates proinflammatory effects 
with adverse cardiometabolic implications. Previous clinical data has shown that circulating 
Lcn2 levels are elevated in obese patients with metabolic disorders.199-205 Lcn2 levels are 
also strongly associated with HF.199,201,206-208 For example, Lcn2 is significantly augmented in 
patients with coronary heart disease and myocardial infarction.202,209 In diabetic patients, 
increased Lcn2 has been correlated with cardiac hypertrophy and diastolic dysfunction.210 
Following an ischemic stroke event, measurements of Lcn2, within a few days after the 
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Fig. 2. Graphical abstract showing the link between iron and metabolic function. This illustration highlights 
the main concepts underlying the content of this article in which iron modifies the gut microbiome, leading to 
metabolic consequences in the host.



event, can be used to stratify patients according to mortality risk during the following 
4-year period.211 Lcn2 content in the myocardium itself increases in HF, and after ischemia 
reperfusion from infiltrating neutrophils.212 Furthermore, some pathogens have evolved 
systems to thrive in the inflamamed gut including limited metal (i.e., iron) resources.181 For 
example, intestinal inflammation leads to increased levels of interleukin (IL)-22. However, 
high levels of IL-22 leads to growth suppression of commensal bacteria, while promoting the 
growth and colonization of pathogens such as Salmonella. While IL-22 increases the levels of 
antimicrobioal proteins such as Lcn2 and calprotectin which should limit iron availability, 
Samonella Thyphimurium is able to overcome these conditions by the production of Lcn2 
evasive or “stealth” siderophores. As these siderophores are not bound by Lcn2 this allows 
for the growth of pathogenic bacteria, but surpresses growth of species such as commensal 
Enterobacteriacease, which produce siderophores that are recognized by Lcn2.180

The principal conclusions arising from this review article are summarized in the 
accompanying Figs. 2 and 3. Specifically, the illustration in Fig. 2 highlights the main 
concept of iron-mediated modification of the gut microbiome being a potentially important 
determinant of metabolic consequences in the host. Fig. 3 depicts the various ways in which 
iron overload or deficiency can occur and subsequently re-shape the gut microbiome and 
alter barrier function. The impact of these changes on the host is dictated via cross talk 
mediated by gut-derived factors as shown in the figure. Ultimately, the clinical manifestation 
of this is the syndrome of dysmetabolic iron overload.
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Fig. 3. Illustration of interplay between iron and microbiome. There are various ways in which iron overload or 
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Subsequently, cross talk mediated by gut-derived factors and peripheral metabolic tissues in the host are 
amended. The clinical manifestation of this is the syndrome of dysmetabolic iron overload. 
DIOS, dysmetabolic iron overload syndrome; SCFA, short chain-fatty acid.



CONCLUSIONS

The gut microbiome is now well recognized as a driver of metabolic health status. Well 
established yet less recognized is the strong correlation between iron overload or deficiency 
with adverse cardiometabolic outcomes. As indicated in this review, it is now understood 
that iron can have important effects on reshaping gut microbiome composition and on gut 
barrier function. For example, excess levels of iron can enhance the prevalence of pathogenic 
bacteria. The consequences of these changes are likely to be partly responsible for the 
association of iron status with MetS. This is an intriguing area of research which holds much 
promise and further studies are poised to add new mechanistic knowledge and identify 
suitable interventions.
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