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Abstract. Classic Hodgkin Lymphoma (cHL) has a unique histology since only a few neoplastic cells 

are surrounded by inflammatory accessory cells that in the last years have emerged as crucial 

players in sustaining the course of disease. In addition, recent studies suggest that the abnormal 

activity of these inflammatory cells (such as deregulation in regulatory T cells signaling, expansion 

of myeloid derived suppressor cells, HLA-G signaling and natural killer cells dysfunction) may 

have prognostic significance. This review is focused on summarizing recent advanced in 

immunological defects in cHL with translational implications. 

Introduction. In the classic Hodgkin's lymphoma 

(cHL) microenvironment, a few neoplastic cells - 

Hodgkin and Reed-Stemberg (HRS) cells- grow in a 

contest of a tissue rich in immune system cells, 

including fibroblasts, eosinophils, lymphocytes, 

histiocytes, neutrophils and monocytes.
1
 These immune 

system cells are unable of mounting effective anti-

tumor immune responses and, on the contrary, even 

stimulate and promote the growth of HRS cells. 

The strong correlation between classic HL (cHL) 

and Epstein-Barr virus (EBV) infection strengthens the 

hypothesis that alterations in the mechanisms involved 

in viral clearance (antigen presentation, innate natural 

killer cell-dependent immune response) may influence 

the onset of cHL. 

For its peculiar histology cHLis an extremely 

interesting study model for the assessment of 

immunogenetic factors that may confer susceptibility 

to tumours or, alternatively, facilitate tumour immune 

escape mechanisms. 

After the demonstration of the prognostic 

significance of Interim-2-[18F]Fluoro-2-deoxy-D-

glucose Positron Emission Tomography (PET-2) 

performed in the mid of chemotherapy, the role of 

accessory cells in cHL has been evaluated with 

increased interest. In fact, it has been demonstrated that 

PET-2 positivity is mainly due to the Fluoro-2-deoxy-

D-glucose uptake by the accessory cells rather than the 

HRS cells.
2
 

Inflammation-related accessory cells can be 

indirectly evaluated in the peripheral blood as well: 

several reports investigated the prognostic impact of 

the ALC/AMC-DX ratio, obtained by dividing the 

absolute lymphocyte count (ALC) over the absolute 
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monocytes count (AMC) from the complete blood 

count, as a surrogate of host immune homeostasis and 

tumour-associated macrophages (TAM) respectively, 

with contrasting results.
3, 4

 

This review is focused on the novel advances about 

the role of myeloid and lymphoid subsets involved in 

sustaining HRS and favouring immune-escape. 

 

NK Dysregulation. Natural killer (NK) cells represent 

a key component of the innate immune system against 

cancer.  

Together with NK cells, a subset of CD1d-restricted 

Natural Killer-T cells (NKT) exhibits direct anti-

tumour activity and enhances cytotoxicity of NK and 

CD8+ T cells. NKT cells are distinct lymphocyte 

population characterized by the expression of CD3 and 

CD56 and an invariant T-cell receptor (TCR) formed 

by the Ja18-Va24 and Vb11 rearrangements specific 

for glycosphingolipids presented by the non-classical 

MHC Class-I molecule CD1d.
5
 

A common immune escape strategy of HRS cells is 

to down-regulate the expression of human leukocyte 

antigen (HLA) -A,-B and -C (classic: MHC Ia) and to 

modify the expression of HLA-G and E (no classical: 

MHC Ib), as seen in about 20% and 80% of primary 

cases of EBV+ and EBV- cHL, respectively. However, 

because communication through MHC Ia-specific 

inhibitory receptors on NK cells is lacking, 

downregulation of MHC Ia generally leads to the 

activation of NK cells.
6
 

The paucity of NK cells in the reactive infiltrate of 

cHL and the systemic NK cell deficiency observed in 

cHL patients prompted further investigation into the 

immune-modulatory mechanisms of NK receptors such 

as the NKG2D activating receptor of the C-type lectin 

superfamily, killer immunoglobulin-like receptors 

(KIRs), immunoglobulin-like transcript 2 (ILT2) 

inhibitory receptors, immunoglobulin-like transcript 4 

(ILT4) and the NKG2A inhibitory receptor. New 

evidences continue to emerge that a reduced activity of 

NK cells may be related to the prevalence of inhibitory 

over activating KIR genes.
7
 

Therapeutic strategies aimed at interfering with the 

crosstalk between HRS cells and their cellular partners 

have inspired the development of new 

immunotherapies targeting different 

cellular components of the microenvironment. 

NKG2D receptor and the group of natural 

cytotoxicity receptors (NCRs) (NKp46, NKp44, and 

NKp30) are regarded as the major NK cell receptors in 

tumour defence. Immune surveillance via NKG2D and 

the corresponding ligands seems to be particularly 

effective in the early stages of tumour growth.
8
 

However, tumour cells develop escape mechanisms 

to evade NK cell surveillance and NKG2D-ligand 

interaction, which obviously results in either immune 

activation (tumour clearance) or immune silencing 

(tumour evasion).  

Silencing of NKG2D during tumour progression 

results from the persistent exposure of ligands 

expressed on the surface of target cells. Moreover, 

tumour cells release ligands into the environment by 

shedding. The soluble molecules not only block 

NKG2D, but also induce the internalization and 

degradation of the receptor.
9
 

Plasma levels of soluble ligands correlate with 

disease progression in many haematological and solid 

tumours. Former studies on NK cell function in HL 

have shown that peripheral NK cells from patients with 

HL are functionally inactive. The observed NK 

cell dysfunction correlates to elevated serum levels for 

ligands engaging NKG2D (MICA) and NKp30 

(BAG6/BAT3). Low levels of the membranous 

NKG2D-ligands, i.e. MHC class I related chain-A 

(MIC-A) and UL16 binding protein 3 (ULBP3), on 

HRS cells presents another way to escape from 

cytotoxic T-cell responses. These low levels are the 

result of proteolytic cleavage of the NKG2D-ligands by 

ERp5 and a disintegrin and metalloproteinase domain-

containing protein 10 (ADAM10) produced by HRS 

cells and mesenchymal stromal cells. Additionally, T-

cells in cHL tissue have lower NKG2D receptor 

expression levels as compared to T-cells in normal 

lymph nodes, due to TGF-β produced by the 

mesenchymal stromal and HRS cells, which blocks IL-

15-induced expression of NKG2D receptor on 

cytotoxic T-cells. Thus, the anti-tumour activity of 

CD8+ T-cells is blocked by lack of membrane 

NKG2D-ligands, release of soluble NKG2D-ligands 

and reduced NKG2D receptor levels on effector T-

cells.
10

 

Immunotherapeutic strategies targeting NK cells are 

promising because NK cell cytotoxicity could be 

restored in vitro and patients using a novel human 

antibody construct specifically designed for the 

treatment of cHL and other CD30-expressing 

malignancies. In a previous study, a tetravalent 

bispecific antibody construct (AFM13) was used to 

target CD30 on HRS cells with two of its binding sites, 

whereas the activating receptor CD16A on NK cells 

(CD30xCD16A, AFM13) was targeted by the other 

two binding sites, thereby selectively cross-

linking tumour and NK cells.
11

 

Also, epigenetic modifications have been implicated 

in the malignant phenotype of HRS cells. In this 

context, the histone-deacetylase (HDAC) inhibitor 

LBH589 (panobinostat) was shown to be clinically 

effective. LBH589 modulates the crosstalk of 

lymphocytes with HL cell lines. More specifically, 

LBH589 induces cell death, autophagy, and an increase 
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of major histocompatibility complex (MHC) class I 

chain-related genes molecules (MICA/B); that act as 

key ligands for NK cell receptors, and also favourably 

modulates the cytokine network and lymphocyte 

activity in the HL microenvironment.
12

 Studies of 

innovative therapies based on the immune system of 

HL patients treated with chemo/radiotherapy 

and targeting NK cells rather than T cells are, 

therefore, extremely promising. 

 

Lymphoid Impairment. Lymphoid anergy is well-

known in the biology and pathogenesis of cHL and T-

cell homing is central in determining the 

immunological regulation of HRS growth and 

survival.
13,14

 The lymphoid infiltrate in HL is different 

from the aspecific one detectable in reactive lymphoid 

hyperplasia (RLH), since the CD3+/CD20+ ratio is 

greater in HL than in RLH,
15

 with augmented 

CD4+CD25+ infiltrate.
15,16

 

Whole-tissue RNA analysis evaluated the specific 

microenvironment characteristics of HL, discovering 

that a great release of cytokines is present alongside 

suppressed expression of apoptotic genes and 

augmented expression of cell-cycle regulatory 

enzymes. HRS cells genotyping analysis showed a 

global suppression of principal tumor suppression 

pathways, including Rb-p16INK4, p27KIP1, p53 and 

an increased expression of components of G1-CDK 

checkpoint.
17,18

 The neoplastic HRS themselves create 

a favorable microenvironment for their survival and 

growth regulating inflammatory infiltrate. In vitro 

studies on KM-H2 HRS cell-line demonstrated that 

HRS cells are able to induce CD4+CD25+ regulatory 

T- cells (Treg),
19

 whose function is to inhibit the 

cytotoxic effects of CD8+ T-cells, the so called 

cytotoxic lymphocytes (CTL).
16,19,20

 

Main factors involved in lymphocyte migration into 

the tumor milieu include CCL20,
21

 CCL5/Rantes, IL-7, 

CCL17 and CCL22.
22

 CXCR3, CXCR4, CXCL13 and 

CCR7, and adhesion molecules including CD62 ligand 

(CD62L),are greatly expressed on T-cells of cHL 

patients.
23

 HRS cells are also able to express 

chemokine receptors useful to T-cell migration into 

tumor milieu, such as CXCL12 (receptor of CXCR4) 

and CXCR5 (receptor of CXCL13).
24

 

T-regs accumulate into the tumor milieu thanks to 

the surface expression of CCR4, the receptor for 

“thymus and activation regulated chemokine” 

(TARC/CCL17),a factor greatly secreted by HRS 

cells.
25

 T cells stimulated with TARC acquire a 

regulatory function, able to silence the cytotoxic 

activity of CTL.
26

 Conversely, CTL are not influenced 

by TARC since they lack the surface expression of 

CCR4.
27

 

Once migrated into the tumor mass, lymphocytes 

are addressed toward Th2 and T-reg differentiation (in 

particular, a Tr1 phenotype)
28

 acquiring the ability 

(together with HRS cells) to produce and secrete TGF-

 and IL-10, able to suppress CTL function. Thus, T-

regs regulate the production of IL-2 and limit CTL 

activation,
23

 while Th2 cells induce the expression of 

several cyclins and cyclin-dependent kinases 
29

 and of 

antiapoptotic markers, such as Bcl-Xl and Mcl1,
30

 with 

overexpression of STAT3 in HRS cells, activation of 

cyclin D1 and Bclx expression, and a down-regulation 

of STAT1, a tumor suppressor factor.
17,18,31

 

CTL are further silenced through the CD95-CD95L 

and PD1-PD1L cell-to-cell contact between HRS cells 

and CTL.
32-37

 Additionally, the production of galectin-

1, tissue inhibitor of metalloproteinase1 (TIMP1), and 

prostaglandin E2 (PGE2) by HRS cells inhibits CTL 

function with impairment of the IFN- production and 

induction of theTh2 and T-reg expansion.
29,38-40

 

 

Myeloid Derived Suppressor Cells. Recent 

investigations suggest that a subset of myeloid cells, 

the so called “myeloid-derived suppressor cells” 

(MDSCs) are the progenitors of tumour associated 

macrophages,
41-43

 that are considered among the most 

important and emerging prognostic factors in HL.
44

 

MDSC have been identified in solid and 

haematological cancers as a heterogeneous population 

of immature and mature cells of myeloid origin able of 

leading the tumour escape from immune-surveillance, 

through depletion of arginin and cystein due to the high 

expression level of arginase (Arg-1), nytrosylation of 

T-cell receptor, reactive oxygen species (ROS) release, 

thus being responsible of cancer progression as 

recently reviewed.
41,45,46

 The term suppressive refers to 

the peculiar ability to elicit T-cell anergy thanks to the 

above-mentioned biochemical pathways.  

In mice two distinctive mononuclear (Ly6G-, low 

“side-scattered light”-SSC) and polymorphonuclear 

(Ly6G+, high SSC) tumour-induced MDSC have been 

identified, while the phenotype in humans is still 

controversial.
47

 Overall, current evidence suggests a 

complex alteration of myeloid cell differentiation and 

function in human cancer patients that involves 

polymorphonuclear
48

 and monocytic cells.
49

 A 

frequently used combination of markers for human 

MDSC includes CD33
+
/CD11b

+
/HLA-DR

−
 and 

CD14
+
/HLA-DR

low
 to define monocytic MDSC (mo-

MDSC), CD66b
+
/CD15

+
/CD11b

+
/CD14

− 
or 

CD11b
+
/CD13

+
/CD15

+
/CD14

-
/HLA-DR

-
/Lin

-
for the 

identification of granulocytic MDSC (N-MDSC) and 

CD13
+
/CD14

-
/CD34

+
/HLA-DR

-
 for the immature 

subset MDSC (im-MDSC).  

T cell dysfunction induced by MDSC can reflect the 

recruitment of inflammatory cells and favour the 
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aberrant MDSC production, setting up a pathological 

loop.
45

 

Our group hypothesized that the amount of MDSC 

in peripheral blood of cHL-patients may reflect the 

complexity of cytokine and cell-cell contacts of the 

pathologic neoplastic microenvironment and that the 

myeloid cellular impairment could represent a 

prognostic factor in cHL at diagnosis. Preliminary data 

from our single-centre small series of 60 newly 

diagnosed cHL-patients identify an increase of the 

absolute count of im-MDSC, N-MDSC and mo-MDSC 

in peripheral blood at diagnosis (Romano, manuscript 

submitted). 

Progression free survival of patients carrying high 

levels of MDSC at baseline was poor. In multivariate 

analysis, im-MDSC high levels were an independent 

predictor of inferior outcome despite a PET-2 based 

risk adapted treatment (Romano, manuscript 

submitted).  

 

Soluble Factors.  

TARC. The CC chemokine ligand 17 (CCL17), also 

well-known as Thymus and Activation-Regulated 

Chemokine (TARC),is a member of the CC chemokine 

group constitutively expressed in the thymus. TARC is 

produced by monocyte-derived dendritic cells and 

binds specifically to the CC chemokine receptor 4 

(CCR4), mainly expressed on T-regs and Th2 cells of 

the reactive infiltrate.
50

 TARC is considered a Th2-type 

chemokine because CCR4-expressing T cells mainly 

produce interleukin (IL)-4. 

In more than 90% of cases HL lymph-nodes have a 

positive TARC staining in HRS cells detected by 

immunohistochemistry, with high specificity for HL 

since the low/absent expression in anaplastic large cell 

lymphoma or T-cell-rich B-cell lymphoma. 

In about 85% of patients, TARC is detectable and 

elevated in serum at diagnosis before treatment.
51,52

 

Pre-treatment serum TARC levels correlate with stage 

of disease, erythrocyte sedimentation rate, leukocyte 

and lymphocyte counts,
51,52

 pre-treatment metabolic 

tumor volume, as measured by quantification of 2-

[18F]fluoro-2-deoxyglucose positron emission 

tomography images, and to treatment response.
53

 

HLA-G. The expression of non-classical Human 

leukocyte antigen G (HLA-G) is another strategy 

adopted by HRS cells to evade immune defence and to 

create protected niches where they grow and expand. 

HLA-G is expressed on HRS cells in more than 50% 

of HL patients and is associated with lack of HLA class 

I expression and tumour cell EBV status. HLA-G is a 

non-classical major histocompatibility complex (MHC) 

Class I product with limited sequence variability. The 

HLA-G gene generates seven isoforms by alternative 

splicing encoding HLA-G1, -G2, -G3, and -G4 

membrane-bound protein isoforms and HLA-G5, -G6, 

and -G7 soluble protein isoforms.  

The properties of soluble and membrane-bound 

HLA-G proteins are different, but in general, both are 

regarded as being immunosuppressive.
54

 

HLA-G is a tolerogenic molecule which inhibits 

cytolysis mediated by NK cells or T lymphocytes, 

induces T cell apoptosis and blocks transendothelial 

migration of NK cells and these roles are performed 

upon binding the KIR2DL4 and the ILT2 and ILT4 

ligands.
55

 

It is known that antigen-presenting cells expressing 

membranous HLA-G can induce regulatory T cells in 

freshly isolated peripheral blood mononuclear cells, in 

vitro and that soluble HLA-G induces regulatory 

T cells in an antigen non-specific manner.
56

 

The latter can inhibit CTL responses and is present 

in the cHL reactive infiltrate.
57

 Alterations in HLA-G 

antigen expression and function are often induced in 

tumours and are likely to be mediated by various 

microenvironmental factors. Interestingly, 

immunohistochemistry and flow cytometry evaluations 

have shown expression of HLA-G protein in a large 

number of solid and some hematopoietic malignancies, 

e.g. cutaneous lymphomas, chronic lymphocytic 

leukemia (CLL) and diffuse large B-cell lymphoma. In 

CLL, some B-cell, T-cell non-Hodgkin’s lymphomas, 

and leukemia, plasma levels of soluble HLA-G are 

increased. Soluble HLA-G serum and plasma levels 

have been useful markers for the prediction of some 

of these malignancies.
57

 

A population-based study showed that protein 

expression of HLA-G by HRS cells is common at 

primary cHL diagnosis and that this expression is 

associated with lack of EBV and absence of cell 

surface expression of MHC Ia on HRS cells. The 

consequence of HLA-G expression or sHLA-G is an 

escape from T and NK cell-mediated recognition. 

Thus, alterations of non-classical and classical 

HLA class I antigens and components of the antigen-

processing pathway provide tumour cells with different 

mechanisms to inactivate immune responses resulting 

in tumour growth and evasion from host 

immune surveillance.
7
 

sCD163. Recently, an increasing interest has been 

focused on the amount of CD68+ tumor associated 

macrophages (TAM) infiltration.
44

 The amount of 

TAM is strongly associated with shortened survival in 

cHL, correlated with likelihood of relapse after 

autologous stem cell transplantation and outperformed 

the current International Prognostic Score (IPS) for 

disease-specific survival.
44

 

The functional characterization of TAM is still to be 

performed and, possibly, differences in survival among 

patients could be explained by the macrophages 
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M1/M2 binary on which these cells differentiate, or by 

the histological signature of myeloid derived 

immunosuppression. Increasing evidences in mammary 

tumor model suggests that the most 

immunosuppressive activity is played by TAM derived 

from circulating MDSC, but it is still an open question. 

The antigen CD163 is physiologically expressed on 

the macrophage surface, and it is currently investigated 

as an additional marker of macrophage infiltration in 

HL microenvironment, since the lack of reproducibility 

of CD68 staining. An increased infiltration of 

CD163/CD68 (M2 macrophages) was associated to 

poor outcome, with a rise in treatment-related deaths 

and poor event-free survival, disease-specific survival 

and overall survival.
58

 Recently, the circulating fraction 

of CD163 in serum (s-CD163) has been evaluated in 

patients at diagnosis and relapse, showing not being 

inferior to TARC to identify patients with poor 

outcome.
59

 

 

Conclusions. Despite high initial cure rate, almost 20% 

of cHL patients fails front line therapy and have a 

median overall survival less than three years. 

Increasing evidences suggest that failure to 

conventional therapy is not only due to the intrinsic 

resistance of HRS cell but accessory cells and the so 

called microenvironment play an important role. The 

network and the relationship between the HRS and 

accessory cells are not fully elucidated, but several 

studies have highlighted new pathways that currently 

are under investigation as prognostic markers, 

including HLA-G, s-CD163 and MDSC. In addition, 

new immunological target are emerging in cHL 

microenvironment, including NK, NKT and MDSC 

that in the future could be treated with specific drugs. 

Actually, the introduction of targeted immunotherapy 

has induced an increasing interest about the prognostic 

implication of the microenvironment and its 

manipulation with drugs able to elicit an immune 

response. 
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