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Abstract: Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovas-
cular system. ERax and ER are ligand-activated transcription factors of the nuclear hormone receptor
superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals
by modulating non-nuclear second messengers, including activation of the MAP kinase signaling
cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects
while nuclear localizations are associated with nuclear activities/transcriptional modulation of target
genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex
chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk
increases as women transition to menopause. Estrogen pathways control angiogenesis progression
through complex mechanisms. The classic ERs have been acknowledged to function in mediat-
ing estrogen effects on glucose metabolism, but 173-estradiol also rapidly promotes endothelial
glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte
and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g.,
secretion of cytokines/chemokines/growth factors) that impact macrophage function. The phar-
macological modulation of ERs for therapeutic purposes, however, is particularly challenging due
to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of bi-
ological responses to estrogenic agents at the vascular immune interface and developing targeted
pharmacological interventions may result in novel improved therapeutic solutions.
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1. The Vascular Immune Interface

Maintenance of vascular homeostasis is critical in both physiology and pathology,
and the endothelium plays a significant role in vascular function [1]. Among other risk
factors, low-density lipoprotein cholesterol (LDL-C) plays a central role in the develop-
ment of endothelial dysfunction and atherosclerotic plaques. LDL-C, and probably other
lipoproteins such as the small dense LDL particles and lipoprotein (a), traverse endothelial
cells and undergo oxidative modification by reactive oxygen species. Once oxidized, these
lipoproteins can promote atherosclerosis through several different mechanisms. First,
oxidized lipoproteins facilitate monocyte recruitment. Second, oxidized lipoproteins may
stimulate the expression of adhesion molecules of the vascular endothelium, promoting
the adhesion of these monocytes to the vascular wall, one of the first steps in plaque devel-
opment [2,3]. Third, these monocytes can then enter the vascular intima where they take
up oxidized lipoproteins via scavenger receptors, converting them to foam cells. Finally,
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the oxidized lipoproteins can directly damage endothelial cells, further enhancing the rate
of LDL penetration into the vessel [2,3].

Accumulation of inflammatory cells is a critical step in the development and pro-
gression of atherosclerotic lesions [4]. Monocytes are released from bone marrow into the
circulatory system and they reach target tissues in response to injury, where they differ-
entiate into mature macrophages. In the vessel wall, monocyte-derived macrophages are
involved in the initiation of atherogenesis and formation of fatty streaks [5]. The focal
attachment of monocytes to the endothelium and their subsequent transendothelial migra-
tion are important components for atherosclerotic lesion formation and progression [4,5].
Pro-inflammatory leukocytes are recruited to the site of atherosclerotic plaque develop-
ment through interaction with several adhesion molecules expressed by endothelial cells.
Through several mechanisms, monocytes perpetuate the inflammatory response to noxious
stimuli, form foam cells and produce locally released cytokines (interleukin (IL)-6, TNF-c),
which are important for plaque formation [6]. Subsets of activated monocytes are also
necessary for the initiation and modulation of the immune response, mainly through acti-
vation of nuclear factor kappa B (NF-«kB)-related transcription, leading to the production
and secretion of proinflammatory signaling mediators and cytokines [7,8].

In summary, atherosclerosis can be considered as both a lipid metabolism disorder
and a chronic inflammatory disease. Macrophages play a central role in atherogenesis
through the accumulation of cholesterol and the production of inflammatory mediators and
cytokines. This series of events occurs at the vascular immune interface, which represents
a critical site for targeted pharmacological intervention [2,9].

2. Cardiovascular Risk in Women

Cardiometabolic risk increases with progressing age in both sexes and especially with
menopausal transition in women. This increased risk coincides with the reproductive
hormone loss that occurs as women transition to menopause. Women are protected from
atherosclerosis until menopause, a finding attributed to the shielding effect of estrogens.
173-estradiol (E2) is the major circulating estrogen in pre-menopausal females; several
lines of evidence suggest that E2 has protective effects on the cardiovascular system,
but the molecular mechanisms remain partially unknown [10,11]. Estrogens have been
shown to slow down the development of atherosclerosis both in animal models and in
humans [12]. By contrast, postmenopausal decline of estrogen production along with a
variety of sex-specific risk factors is believed to be responsible for the increased incidence of
cardiovascular disease in women following menopause [13,14]. Cardiovascular disorders
are associated with endothelial dysfunction and the activation of the monocyte-macrophage
system [15,16]. As discussed below, postmenopausal estrogen loss is also associated with
impaired alternative activation in macrophages, which may contribute to the worsening of
cardiovascular risk profile [17].

3. Estrogen Receptors in the Cardiovascular System

Estrogens exert both rapid and long-term actions through their binding with estrogen
receptors (ERs). ERs are ligand-inducible transcription factors and are members of the nu-
clear hormone receptor superfamily. Several ERs have been identified: the nuclear subtypes,
ER«x and ER, and the transmembrane G-protein-coupled receptor 30/ G-protein estrogen
receptor (GPER) [18]. ERx and ERf3 mainly act as transcription factors responsible for many
genomic effects, modulating gene expression by direct binding to DNA at specific estrogen
response elements. Splice variants of the full-length ERx (ERx66) including ERx36 and
ERx46 have been identified in different cell types including human macrophages [19,20]
and appear to mediate rapid anti-inflammatory estrogen actions. There is evidence for
ERp splice variants in peripheral blood mononuclear cells (PBMC) [21] but their functional
role has not been investigated. GPER is mainly involved in mediating rapid intracellular
responses induced by E2 [22]. Membrane localizations of sex steroid receptors are generally
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associated with rapid, non-genomic effects, while intracellular localizations are associated
with nuclear/transcriptional activities.

GPER is a newly discovered 7-pass transmembrane receptor that mediates many of the
acute as well as chronic effects of E2. GPER mediates estrogenic signals by modulating non-
nuclear second messengers, including activation of the mitogen-activated protein kinases
(MAPK) signaling cascade [23]. Since its recognition as an estrogen receptor about 15 years
ago, its roles in the cardiovascular system have been increasingly recognized. For instance,
chronic in vivo GPER activation mimics the antihypertensive effects of estradiol [24]. GPER
moderates many Ca”*-dependent activities that control cardiovascular pressor responses
through a feed-forward loop in which GPER mediates the actions of E2 [25].

The functional role of ER subtypes has been investigated in vivo. For instance, ex-
perimental evidence indicates that targeted deletion of the Esrl gene encoding for ERax
results in several abnormalities, including tissue inflammation and insulin resistance [26].
Mice deficient in the Esr2 gene encoding for ER(3 display increased systemic arterial blood
pressure [27]. Increased vasoconstrictor tone has been observed in Gper-deficient mice [28].
We previously reported that rapid relaxion of precontracted arterial tissue is triggered
by ERa- but not ER(3-selective agonists [29]. However, dissection of specific estrogen
signaling mechanisms is complicated by tissue specific estrogen regulation of transcription,
membrane-delimited signaling that synergizes in mediating transcriptional changes and
ligand-independent ER regulation of transcription [18]. In addition, cross talk between
ERs has been reported for a number of endpoints. For example, E2-induced NO release
is substantially reduced in the presence of the GPER-selective antagonist G36, suggesting
that both ERx and GPER are involved in this process [30,31].

4. Sex Differences and Estrogenic Pathways Regulate Endothelial Angiogenesis

Gender dependence of endothelial biology, either through the action of sex hormones
or sex chromosome-related factors, is becoming increasingly evident. Sex genotype and
exposure to sexual hormones are relevant in angiogenesis outcomes. The hormonal mi-
croenvironment (i.e., estrogen exposure) and sex chromosomes modulate human umbilical
vein endothelial cell (HUVEC) functional phenotypes and signaling involved in angiogen-
esis, demonstrating that the two features are important in conditioning the angiogenic
response [32,33].

E2 stimulates endothelial cell proliferation in vitro [34] and in vivo [34-36], and in-
hibits spontaneous as well as TNF-«-induced apoptosis [37,38]. Furthermore, E2 enhances
adhesion of HUVECs to matrix proteins and increases cell migration, thus promoting
angiogenesis [34,39]. The mechanisms responsible for the proangiogenic effect of E2 have
been widely investigated and appear to be mediated at least in part by ER« activation [40].
In particular, E2 regulates actin remodeling and cell movement in HUVECs through the re-
cruitment of focal adhesion kinase (FAK) [40]. Analysis of ERx knockout mice suggests that
functional ERs are essential for the augmentation of basic fibroblast growth factor-induced
angiogenesis by exogenous E2 [41].

Estrogenic pathways control angiogenesis through complex mechanisms [42]. An
emerging regulatory mechanism is suggested by the observation that angiogenic signaling
pathways converge onto metabolism [43]. The classic ERs have been acknowledged
to function in mediating estrogen effects on glucose metabolism [44]. In addition, E2
rapidly promotes glycolysis in healthy endothelial cells by increasing glucose transporter
1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels.
By interacting with GPER, E2 and the GPER agonist G1 enhance endothelial PFKFB3
stability and tubulogenesis by increasing deubiquitinase USP19 levels, thereby reducing
PFKFB3 ubiquitination and proteasomal degradation. This involves a novel mechanism of
estrogenic regulation of PEKFB3 mediated by GPER. E2 and G1 also increase endothelial
GLUT!1 protein expression via GPER through different mechanisms [45,46]. These findings
suggest that ERs represent potential targets to afford selective modulation of endothelial
function and angiogenesis.
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Angiogenesis is an in vivo phenomenon of multiple cell types: both endothelial and
vascular smooth muscle cells can show the network formation in vitro. Targeting these
pathways with ER selective agents might be a more rewarding strategy than current
angiogenesis inhibitors, which induce remarkable cardiovascular side effects. Clinical
aspects/complications risk that come with widespread angiogenesis blockade include
stroke, pulmonary embolism and renal failure [47]. In view of the role of ER pathways at
the crossroads of progression of certain cancer types and control of vascular function, ERs
may represent promising targets for selective pharmacological modulation and personal-
ized medicine.

5. Estrogenic Pathways in the Monocyte-Macrophage System
5.1. Patterns of Estrogen Receptor Expression in Monocytes and Macrophages

ER expression has been investigated in human monocytes and macrophages. These
cells express all ERs. In primary monocyte-derived human macrophages and monocytic
THP-1 cells, transcripts for both ERx and ERf3 were identified [17,19,20,48]. In primary
human monocytes, ERx36 and GPER appear to be predominant [20]. Expression of ER«
is greater than ERf3 in monocytes, while macrophages express higher levels of ERx and
lower levels of ERB than monocytes. Full length ERx66 and the ERx46 splice variant
are expressed in primary human monocytes and macrophages [19]. E2 induces ER«46
in macrophages, but has no effect on ERx expression in monocytes. Monocytes and
macrophages also differ in the pattern of ERa66 and ERo46 expression: monocytes express
equivalent levels of the two proteins, while in macrophages ERx46 is more highly expressed
than ER«66 [19]. ERp transcript and ER3 protein are not regulated by estrogen levels, sug-
gesting a lack of autoregulation [49]. Many immune effects attributed to E2 in monocytes
and macrophages are thought to be mediated through ERx and not ER( [19,49,50]. In fact,
ERx and ERf target genes differ substantially. Campesi and colleagues [51] assessed the
ability of lipopolysaccharide (LPS) to modulate in a sex-specific manner the expression
and activation status of ERx and ERf} in blood monocyte-derived macrophages. In basal
conditions, ERx and ER3 were significantly higher in female than in male monocytes-
derived macrophages. LPS upregulated ERx and its phosphorylation in both sexes, with a
significantly higher effect observed in male macrophages, and downregulated ER{ level
in female macrophages only [51]. Also, GPER is expressed in human monocytes and
macrophages, where it mediates E2 anti-inflammatory actions [20].

5.2. Estrogenic Pathways at the Vascular Immune Interface

The role of monocytes and the effects of estrogen/ER pathways on these cells are
especially relevant in atherogenesis. E2 induces a particularly robust modulatory effect on
monocyte chemotaxis by reducing expression of monocyte chemotactic protein-1 (MCP-1,
also known as CCL2), which results in decreased macrophage recruitment to the vessel
wall [52]. E2 directly targets monocytes and inhibits monocyte adhesion under flow
conditions [53]. Prior studies have shown that estrogens might indirectly affect monocyte
adhesion by inhibiting adhesion molecule expression on the endothelial surface [50,53,54].

As noted in Section 1 above, some LDL enters the arterial wall, where it undergoes
modification (e.g., oxidation). Modified LDL induces expression of MCP-1, which re-
cruits monocytes into the artery wall and stimulates their differentiation into macrophages.
Macrophage uptake of the modified LDL results in formation of foam cells, the hallmark
cell of atherosclerosis. Estrogens have a protective effect in the arterial wall through
enhanced cellular cholesteryl ester hydrolysis and reduced LDL accumulation and degra-
dation, processes dependent on foam cells (or lipid-loaded macrophages). Estrogens also
inhibit oxidation of LDL by macrophages and can induce a direct antioxidative effect, thus
reducing macrophage activation by oxidized LDL and preventing atherosclerosis progres-
sion [12,48-50,55]. Impaired ER«x action in macrophages is causal for the development of
aspects of the metabolic syndrome and increased atherosclerotic lesion formation in female
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mice [56], consistent with the notion that the atheroprotective effects of estradiol are largely
mediated by ER« [57].

Estrogens may also affect expression of other members of the nuclear receptor su-
perfamily with a relevant role in atherosclerosis. In particular, the liver X receptor (LXR)
is a sterol sensor that regulates intracellular cholesterol homeostasis and macrophage
cholesterol efflux [58]. LXRs exert atheroprotective effects in the macrophage: in addition
to regulating cholesterol metabolism, LXRs are also negative regulators of macrophage in-
flammatory gene responses [59]. Kramer et al. [48] reported that estrogen removal induces
a significant decrease in the transcript levels of LXRa. As discussed in Section 6 below,
endogenous LXR ligands can also activate ERs. This suggests the occurrence of nuclear
receptor cross-talk in macrophages [49,60], which warrants further investigation.

As described in more detail in Section 5.3 below, estrogens can alter macrophage
phenotype(s) and function. However, beyond the direct effects on macrophages, there
are effects of E2 on other estrogen-responsive cell lineages that can impact macrophage
function (e.g., secretion of a variety of cytokines/chemokines/growth factors). For in-
stance, monocyte/macrophage function is controlled by lymphocytes [61,62]; estrogenic
modulation of these parameters has been found in humans and animals. Lymphocytes
(as monocyte/macrophage function regulators) are also target for estrogens and express
ERs, which may regulate, for example, IL-10 and IL-17 release [63]. Estrogen-mediated pro-
tection from inflammation also depends on the presence of B-cells [64]. Sex differences in
CD4* T cell and monocyte proportions are relevant and affected by ageing [65]. Of note, sex
hormones act as epigenetic modifiers in innate immune cells [66]. It has been reported that
the CD4+/CD8+ ratio is associated with DNA methylation in postmenopausal women [67].
Therefore, ER action on epigenetic reprogramming plays a critical role in lymphocytes and
may contribute to low-grade chronic inflammation as linked to menopause.

5.3. Estrogens: Regulators of the Immune Function of the Monocyte-Macrophage System

ERo has anti-inflammatory actions that ER3 does not possess, consistent with the
notion that overall ERo has greater protective effects than ERf3. In addition to ERx and
ERp, estrogen can activate GPER, which is also found in macrophages. The potential role of
GPER in immune cells and metabolic disease has been reviewed recently [68]. Macrophages
are instructed by estrogens through receptor-mediated mechanisms of action to enable
faster resolution of the inflammatory response and proper tissue remodeling. ERx null
mutation in myeloid cells is an essential tool to dissect the direct versus indirect effects of
E2 in macrophages [56], and reveal the contribution of ERx in maintaining key macrophage
functions such as oxidative metabolism, phagocytosis, cholesterol uptake and phenotypic
activation [56,69,70].

Estrogens are known modulators of monocyte/macrophage functions; however, the
underlying mechanism are still under investigation [20,49,50]. Several studies have shown
that E2 acts as a regulator of the immune function of the monocyte-macrophage system,
especially regarding the production of cytokines: their effects on the monocyte-macrophage
system are primarily repressive [70-73]. Most of these effects are mediated by repression
of gene expression for pro-inflammatory cytokines or other inflammatory mediators by
ER-dependent or nongenomic pathways. The ER-dependent mechanisms mostly involve
regulation of activity of the NF-«kB pathway for transcriptional regulation of cytokines or
other mediator genes. However, conflicting results have been reported from studies investi-
gating the effects of estrogens on macrophage effector functions [20,50,69]. The estrogen-ER
complex has been reported to inhibit binding of the NF-xB complex to regulatory areas of
target genes, or to prevent nuclear translocation and transcriptional activation of the TNF-«
gene [74]. IL-6 is one of the main cytokines involved in chronic inflammation-related mono-
cyte functions. E2 is known to inhibit expression of TNFe, IL-1 and IL-6. However, chronic
exposure of murine macrophages to E2 in vivo increases production of pro-inflammatory
cytokines [69]: in this regard, the literature is discordant with E2 enhancing or inhibit-
ing secretion of TNF and IL-1p likely related to the duration of estrogen exposure and



Int. . Mol. Sci. 2021, 22, 4254

6 of 14

experimental design [72]. Long-term in vivo exposure to estrogens from endogenous or
exogenous origin enhances the LPS-induced transcription of proinflammatory cytokines
(IL-12, TNF-«) by microglial cells through ERx-dependent mechanisms [75]. In one study
the anti-inflammatory effect of short-term in vitro exposure to E2 was reported in murine
resident peritoneal macrophages [76], but chronic administration of E2 to ovariectomized
female mice markedly increases the expression of numerous inflammatory cytokines and
NO to LPS activation ex vivo [69]. In vitro pre-treatment with E2 of human macrophages
inhibits the NF-«kB signaling pathway and the production of TNF-o induced by LPS [20,76].
A significant increase in LPS-induced TNF-« release has been reported in ERx-deficient
macrophages, suggesting a prominent role of ERx in mediating the anti-inflammatory ef-
fects of estrogen. The deletion of ER«x in hematopoietic cells in mice also causes an inability
to induce the alternative phenotype in IL-4-stimulated macrophages as well as high levels
of inflammation and insulin resistance, suggesting that ER« is involved in the control
of inflammation [56,77]. Expression of the proinflammatory mediator IL-8/CXC-motif
ligand8 (CXCLS) is also decreased by E2 in LPS-challenged monocytes, providing evidence
of a direct correlation between ERx expression levels and suppression of LPS-induced IL-8
secretion [78].

E2 can significantly influence CD16 expression, a receptor mediating autoimmune
disease symptoms, and alter monocytic cytokine release after CD16 receptor activation.
E2 reduces CD16 expression and decreases TNF-« and IL-1§3 release after CD16 stimula-
tion [79]. Kramer et al. reported that CD16 expression can be altered by ER activity and
that ERx can associate with a region in the CD16 promoter involved in transcript produc-
tion [80]. ERp agonist treatment also reduces CD16 expression in macrophages [80] and
attenuates the decrease in macrophage IL-6 and TNF-« production by splenic macrophages
after trauma hemorrhage with no effect on the activation of MAPKs and NF-«B [81]. Xing
et al. showed the ability of selective ERf3 activation to inhibit expression of inflammatory
mediators [82]. The main effects of E2 on monocyte-macrophages and endothelial cells are
depicted in Figure 1.
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Figure 1. Estrogen/ER pathways induce protective effects in the vessel wall with specific actions
on endothelial cells and monocytes/macrophages through various pathways. E2 attenuates inflam-
mation by regulating the induction of chemokines and cytokines at the vascular immune interface
that are mediated largely by ER« activation. The interaction between endothelial cells and mono-
cytes/macrophages is relevant in multiple disease settings such as atherosclerosis.

Another major pathway of estrogen regulation of the monocyte-macrophage system
is stimulation of production of members of the immunosuppressive transforming growth
factor (TGF)-f3 family [50]. Functional effects of the endocrine disruptor bisphenol A in
inducing TNF-« and IL-6 production, and inhibiting TGF-3 and IL-10 production via
ERa/ERp/ERK/NEF-kB signaling have been reported in human THP-1 macrophages [83].
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Using a transcriptomic approach, Pepe et al. [84] obtained a comprehensive list of genes that
are differentially expressed in peritoneal macrophages in response to physiological levels
of E2 injected in intact female mice. They reported that E2 promotes an anti-inflammatory
and pro-resolving macrophage phenotype, which converges on the induction of genes
related to macrophage alternative activation and on IL-10 expression in vivo [84].

5.4. Estrogens: Regulators of Macrophage Immunophenotypes

Macrophages can be stimulated to distinct functional phenotypes: M1 (classically
activated) macrophages, M2 (alternatively activated) macrophages and tumor-associated
macrophages based on surface markers and cytokine profiles. M1 and M2, however, repre-
sent the two extremes in a much more complex phenotype series [85]. There is evidence
for an age-relationship of estrogen-macrophage polarization, since cord mononuclear
cells respond and post-menopausal monocytes do not [86-88]. In this regard, E2 (and
progesterone) impair the response of human cord blood mononuclear cells exposed to mi-
crobial products, suggesting that maternal hormones regulate neonatal immune responses.
Newborn monocytes are more sensitive to the effects of E2 and progesterone than adult
peripheral blood mononuclear cells and monocytes [89].

Much earlier on in life, monocytes contribute to atherosclerotic disease by abnormally
trafficking to the vessel wall. By the time menopause arrives, atherosclerosis may be already
established. There is an acceleration of atherosclerosis post-menopause and, in part, this
is secondary to adverse changes in the serum lipid profile with an increase in LDL-C and
decrease in HDL-C. Gene expression changes have been reported comparing the whole
heart gene expression profile for aged rats with and without estrogen replacement or with
late estrogen replacement, which induced paradoxically a pro-inflammatory set of gene
changes [90]. This is consistent with the notion that menopausal hormone therapy may
be beneficial for the prevention of cardiovascular disease in post-menopausal women
when started less than 10 years but not more than 10 years after the menopause, according
to a rigorous Cochrane meta-analysis [91]. We have reported that E2 treatment in vitro
prevents LPS-IFNy-induced downregulation of alternative activation markers and cytokine
production [17]. There is a differential response of post-menopausal versus pre-menopausal
macrophages with a blunted response to M2 stimuli in the latter, suggesting that this affects
the post-menopausal woman'’s cardiovascular risk profile.

Macrophage activation is also functionally relevant in tissues other than the vascular
wall. Macrophages cause activation of several intracellular pathways in breast cancer cells
of which c-Src, protein kinase C and MAPK are essential for loss of ERx expression [92].
Thus, it is possible that one subtype of estrogen receptor (GPER) could actually downreg-
ulate the other type (ERx). Activation of MAPK by GPER (which can cause loss of ER«)
can be described as a feedback inhibition loop for estrogen activation of macrophages and
monocytes, and could regulate the balance between M1 and M2 macrophage develop-
ment. Agents that interfere with ER signaling such as the endocrine disruptor bisphenol A
upregulate M1 type responses in the liver of wild-type mice [93].

Further research studies are needed to unravel relevant signaling cascades leading to
macrophage polarization and the role of estrogen and other second messengers in it.

6. A Possible Role for Estrogens in Constraining Myelopoiesis and
Cardiovascular Risk

Hematopoietic stem cells (HSCs) are pluripotent stem cells that produce mature
blood cells throughout life, nested in a specialized microenvironment in the adult bone
marrow defined “niche” [94]. The niche is as important as the stem cells themselves in
regulating their self-renewal and differentiation [95]. ERc is expressed both in osteoblasts,
which are a component of the niche, and in different subset of hematopoietic progenitors,
even though they lack the expression of ER(3 [96,97]. ER« is dispensable for steady-state
hematopoiesis [97], but data support the idea that E2 could instruct the differentiation
of HSC. Indeed, E2 regulates HSCs self-renewal during pregnancy [97] and improves
hematopoietic recovery and regeneration after transplantation and irradiation [97]. Dia-
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betes is associated with a myeloid-skewed differentiation of bone marrow HSCs, termed
myelopoiesis [98], which is linked to profound alteration of the homeostasis of the bone
marrow [99]. Myelopoiesis is driven by the activation of common myeloid progenitors
by neutrophils-released S100A8/9 or macrophage-derived IL-1f [98,100]. The increased
amount of pro-inflammatory monocytes and neutrophils released by the bone marrow
fuels the progression of atherosclerosis [98] and ultimately contributes to low-grade inflam-
mation and cardiovascular risk. Neutrophils-to-lymphocyte ratio is a marker of systemic
inflammation and myelopoiesis, and has been found to be a strong predictor of mortality
and cardiovascular risk, while being increased in the elderly and in males [101]. Therefore,
it is intriguing to speculate that the effects of estrogens on HSCs might also impinge on
restraining the onset of myelopoiesis to explain the protective effects on the cardiovascular
system. Some early reports, indeed, showed that E2 reduces myeloid differentiation of
HSCs [102-104] and described its role in B lymphocyte development [105]. On the other
hand, E2 could directly stimulate myeloid differentiation of HSCs in vitro [106]. As men-
tioned above, HSCs are entangled in specialized niches that supply metabolic support and
differentiation stimuli [94]. E2 is known to modulate bone turnover by affecting osteoblasts
and osteoclasts, but its effects on these cells as components of the hematopoietic endosteal
niche are unknown. Similarly, endothelial cells are essential in regulating HSCs in the
perivascular niche [94], but the possible effects of E2 on bone marrow endothelial cells are
still unknown. Indeed, E2 can modulate endothelial cell metabolism through GPER [45,46]
and this effect could be exploited to modulate the endothelial cell-HSC cross-talk [107],
restrain myelopoiesis and ultimately improve cardiovascular health.

7. Intricacies of ER Pharmacological Modulation

As noted in Section 3 above, the traditional ERs (ERx and ERf3) are predominantly
nuclear-localized proteins, and classically mediate their effects as transcription factors [108].
GPER is a 7-transmembrane GPCR that activates multiple cellular pathways including cal-
cium mobilization, ERK and PI3K via transactivation of the EGF-R [109]. As E2 binds and
activates all three ERs (ERx, ERf3 and GPER), selective ligands (agonists and antagonists)
are needed to unravel and exploit the functional roles of the individual receptors, particu-
larly GPER [110]. However, diverse ER ligands including phytoestrogens (e.g., genistein),
xenoestrogens (e.g., bisphenol A), the “ERo-selective” PPT and therapeutic anti-estrogens
(e.g., tamoxifen, fulvestrant, raloxifene) act as GPER agonists [111]. Selective estrogen
receptor modulators (SERMs) such as tamoxifen and raloxifene provide some degree of
tissue selectivity. These agents have been reported to affect the monocyte-macrophage
system [50]: for example, raloxifene prevents LDL oxidation and the formation of tyrosyl
radicals by myeloperoxidase [112], as well as caspase-3 dependent apoptosis induced
by TNF-o in carotid artery endothelial cells [113]. More recently, bazedoxifene has been
reported to protect HUVECs from TNF-a-induced inflammatory damage by targeting
CD40 [114]. However, currently used SERMs do not display remarkable ER subtype-
specificity. Thus, none of currently used endogenous or synthetic ER-targeting agents
affords ER subtype selectivity.

We viewed the development of ER subtype-selective therapeutic agents, rather than
experimental tools, as an unmet pharmacological need already 15 years ago [115]. Later
on, we reported that systemic treatment with the ERx agonist propylpyrazoletriol (PPT)
provides cardiovascular protection without undesired ERx-mediated uterine activation
in rodents [116], but a contribution of GPER to PPT effects cannot be ruled out. It is
encouraging that a GPER-selective agonist is poised to start clinical development following
successful preclinical testing [117]. Another pharmacological challenge in the ER field is
the development of agents that uncouple nuclear and membrane ER activation. Estetrol
(E4) has shown such a pattern [118]: this agent is less potent than E2 and shows some tissue
selectivity as it induces limited effects on the liver [119]. E4 is under clinical development
for a few indications including contraception and breast cancer [120,121].
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Adding further complexity to the field, nonestrogenic ligands are known to modulate
ER activity. Several oxysterols including 27-hydroxycholesterol (27HC) not only activate
LXR but also display estrogenic activity [122]. Female murine bone marrow-derived
macrophages (BMDMs) show higher ERx expression with respect to male BMDMs. Because
ERa and ERp target genes differ substantially, the binding of ligands (such as 27HC)
to different ER subtypes may impact the fate of the inflammatory signaling [123]. The
inflammatory effects of 27HC in murine BMDM s are sex-opposed only in the presence of
E2, indicating a key role for estrogen in the 27HC-induced effect on inflammation [123].
This observation is in line with previous findings of Umetani et al. [124], who linked 27HC
to estrogen by identifying 27HC as the first endogenous SERM. Moreover, the angiotensin
AT/ receptor antagonist olmesartan suppresses ischemic brain damage, exaggerated in
estrogen-deficient rats, at least in part via upregulated expression and phosphorylation of
ERc, as well as upregulation of anti-apoptotic genes and of ACE2, resulting in attenuated
activation of the renin-angiotensin system after ischemia [125]. These molecular effects
occurred in an E2-independent manner and were blocked by fulvestrant, which acts both as
a selective ER degrader and as a GPER agonist. Whether off-target ER pathways contribute
to olmesartan therapeutic effects in humans remains to be determined.

8. Conclusions

Declining estrogen levels are associated with a variety of disorders such as osteoporo-
sis, neuroinflammatory diseases, vascular wall degeneration, cardiovascular diseases and
increase the risk of atherosclerosis. Preclinical and clinical evidence suggests that estrogenic
agents interfere with early events in atherogenesis taking place at the vascular immune
interface. Here modified lipoproteins trigger endothelial dysfunction as well as the accu-
mulation of cholesterol and the production of inflammatory mediators and cytokines by
monocyte-derived macrophages. While pharmacological intervention at this site would
be instrumental to prevent atherosclerosis progression, current estrogenic agents lack ER
subtype-, cell type- and, at least in part, tissue selectivity, leading to systemic undesired
effects. Thus, the development of “smart” estrogenic agents targeting the vascular immune
interface would provide a novel treatment solution to reduce cardiovascular risk in women.
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