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Background. The FFAR1 receptor is expressed mainly in pancreatic beta cells and is activated by medium to long chain free
fatty acids (FFAs), as well as by thiazolidinediones, resulting in elevated Ca2+ concentrations and promotion of insulin
secretion. These properties suggest that FFAR1 could be a mediator of lipotoxicity and a potential candidate gene for Type 2
diabetes (T2D). We therefore investigated whether variations at the FFAR1 locus are associated with T2D and beta cell
function. Methodology/Principal Findings. We re-sequenced the FFAR1 region in 96 subjects (48 healthy and 48 T2D
individuals) and found 13 single nucleotide polymorphisms (SNPs) 8 of which were not previously described. Two SNPs located
in the upstream region of the FFAR1 gene (rs1978013 and rs1978014) were chosen and genotyped in 1929 patients with T2D
and 1405 healthy control subjects. We observed an association of rs1978013 and rs1978014 with insulinogenic index in males
(p = 0.024) and females (p = 0.032), respectively. After Bonferroni corrections, no association with T2D was found in the case-
control material, however a haplotype consisting of the T-G alleles conferred protection against T2D (p = 0.0010).
Conclusions/Significance. Variation in the FFAR1 gene may contribute to impaired beta cell function in T2D.
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INTRODUCTION
Deterioration of beta cell function is a hallmark of Type 2 diabetes

(T2D) and is considered to contribute to worsening of glucose

tolerance with time [1–4]. While the underlying causes are not fully

understood, chronic exposure of beta cells to high concentrations of

glucose (glucotoxicity) and free fatty acids (FFAs) (lipotoxicicity)

have been suggested to induce irreversible changes in islet function

[5–7]. The pathways by which glucose enters into beta cells are well

described but less is known by which mechanisms elevated FFAs

might affect beta cells and their function.

The free fatty acid receptor FFAR1 (GPR40–G protein-coupled

receptor 40) is the first gene product identified to act as an

extracellular membrane receptor for FFAs. It was recently shown to

be activated in pancreatic beta cells in vitro by medium to long chain

free fatty acids (FFAs) [8–10] as well as by thiazolidinediones

(Rosiglitazone and MCC-555) [9], causing elevated Ca2+ concen-

trations and subsequent promotion of insulin secretion. FFAR1 is

located in the 19q13.1 chromosomal region, which has been linked

to T2D [11,12] and T2D-related phenotypes [4,13] in several

genome wide scans. The open reading frame of the gene

encompasses a single exon of 903 bp encoding seven trans-

membrane domains, characteristic of G protein-coupled receptors

(GPCRs) [14]. Studies in rodents and humans have shown that the

FFAR1 is expressed mainly in pancreatic beta cells, but also in the

brain [8–10]. Mice with overexpression of FFAR1 show impaired

beta cell function and develop diabetes, whereas disruption of the

gene reduces FFA-stimulated insulin release [15] and, according to

Steneberg et al., protects from diabetes [16]. These properties make

FFAR1 an interesting candidate for mediating lipotoxicity in beta

cells although its role in this process is not fully unravelled. To

investigate whether variation in the FFAR1 locus is associated with

human T2D, we re-sequenced the FFAR1 gene and tested two of the

identified SNPs for association with T2D and beta cell function.

MATERIALS AND METHODS

Study subjects
To identify SNPs in the FFAR1 region, 48 T2D patients (31 male,

17 females, age 5166, BMI 25.461.7) and 48 healthy glucose-

tolerant control subjects (20 males, 28 females, age 6267, BMI

23.262.1) from the Botnia study [17] were selected for initial

sequence analysis.

The case-control material genotyped consisted of 1929 patients

with T2D and 1405 control subjects from Finland and Sweden

(Table 1). In addition, we studied whether SNPs in the FFAR1

gene influenced insulin secretion and FFA levels measured during

oral glucose tolerance test (OGTT) in 1011 non-diabetic

individuals participating in the Botnia study (Table 1) [17]. Study

subjects were unrelated except 354 sibling pairs (each pair from

different family) included in the cohort of 1011 healthy individuals.

Diagnosis of T2D was based according to WHO criteria [18],

GADA negative status and age at onset .35 years (except for

three individuals which were below 35 years). Weight, height,

plasma glucose, plasma insulin, triglicerides, total cholesterol,

HDL cholesterol and blood pressure were measured and oral

glucose tolerance test (OGTT) performed as described by Groop

et al. [17]; plasma FFA levels were determined using an enzymatic

colorimetric method (NEFAC ACS-ACOD Method, Wako

Chemicals, Richmond, VA). Haemoglobin A1c (HbA1c) was
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measured by high-pressure liquid chromatography with a normal

range of 4–6% (Diamat Analyzer, Biorad Laboratories, Germany).

Body mass index (BMI) was calculated as weight (in kilograms)

divided by height (in meters) squared. Insulinogenic index (D
Insulin 30 min-fasting/Glucose 30 min) and homeostasis model

assessment index (HOMA) [19] was used to describe insulin

secretion and insulin resistance, respectively. All subjects gave their

informed consent at the time of entering to the study, which was

approved by local ethics committees at Helsinki and Lund

Universities.

Sequencing of FFAR1
A 2379 bp long DNA including the 903 bp of the coding region in

the FFAR1 gene was re-sequenced. Reference sequence was taken

from the NCBI database (http://www.ncbi.nlm.nih.gov)[20]. In

order to sequence the FFAR1 region, four primer pairs of overlapping

PCR products were designed using program Primer Premier 5.0

(Premier Biosoft International). Standard protocols for PCR were

as follows (59-39 sequences of forward and reverse primers, product

size, annealing temperature): 1) CTCCCCTTCCGGCTCACT,

CTCTCCACCATGTCACCTCTTA, 566 bp, 50uC; 2) CA-

GGAGTCAAACTCCCATTCC, AGGTGTTGCTGTGGTCC-

AG, 901 bp, 62uC (designed by MRC Geneservice, Cambridge,

UK); 3) TTGGGCTACCAAGCCTTC, CTGCAGTTCCTCC-

GAAGC, 658 bp, 60uC; 4) GTGACCGGTTACTTGGGAAG,

CTTTGGGGGAGTCAAAGTCAT, 752 bp, 62uC. PCR reactions

were performed on GeneAmp PCR System 9700 (Perkin Elmer).

Sequencing reactions were performed using BigDye v3.1 kit

(Applied Biosystems) on GeneAmp PCR System 9700 according

to manufacturers protocol. Sequencing products were purified

with DyeEx 96 kit (QIAGEN) and run on ABI Prism 3730 Genetic

Analyzer (Applied Biosystems). Sequencing data were analyzed

with program Sequencher 3.1.2 (Gene Codes Corporation, Ann

Arbor, MI, USA).

Selected SNPs were genotyped using the SNaPshot assay on an

ABI 3100 DNA sequencer (Applied Biosystems) according to the

manufacturer9s protocol.

Genotyping
PCR fragment for the multiplex SNP genotyping of FFAR1

polymorphisms rs1978013 and rs1978014 with SNaPshot assay was

amplified in 20 ml reaction volume at an annealing temperature

of 55uC, primers (59-39): CTCCCCTTCCGGCTCACT and

CTCTCCACCATGTCACCTCTTA. PCR products were treated

with Shrimp Alkaline Phosphatase (SAP) (USB Corporation) and

Exonuclease I (New England Biolabs). Extension primer sequence

(59-39) for rs1978013 was ACCGTGACATGGATGGGGCC and

for rs1978014–AACTGGGGAGAGCCCAAGGGTCAGC, where

the underlined nucleotides indicate an unspecific primer tail included

in order to produce differently sized products. The minisequencing

reaction was performed on GeneAmp PCR System 9700 according

to manufacturer’s protocol. After SAP/Exonuclease I treatment,

samples where run on ABI Prism 3100 Genetic Analyzer and data

analyzed using the GeneMapper 3.1 software (Applied Biosystems).

Statistical and bioinformatic analysis
Linkage disequilibrium (LD) calculations and haplotype analysis

were carried out using Haploview 3.32 software (http://www.

Table 1. Clinical characteristics of patient samples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Association study Healthy Botnia individuals

T2D CONTROLS

n 1929* 1405** 1011

Sex (males/females) 1086/843 652/753 475/536

Age (years) 61.6611.5 52.8613.6 50615

Age of onset of T2D (years) 56.7611.4

BMI (kg/m2) 29.5865.33 25.9263.78 26.864.2

Fasting plasma glucose (mmol/l) 11.3664.19 5.3860.44 5.5960.58

2 hour plasma glucose (mmol/l) 15.5465.7 5.6761.10 6.4761.63

C-peptide (nmol/l) 1.0360.55 ND ND

Fasting plasma insulin (pmol/l) 69.32661.01 40.79624.27 50.95629.95

2 hour insulin (pmol/l) 354.456323.46 205.856165.44 300.226262.66

HOMA 5.8068.51 1.5860.97 2.1561.38

Insulinogenic index 2.8463.77 5.8664.17 5.8463.98

HbA1c (%) 7.7362 5.1960.5 5.4460.49

Triglicerides (mmol/l) 2.462.27 1.2960.76 1.3860.89

Cholesterol (mmol/l) 5.5861.29 5.8361.18 5.6761.12

HDL cholesterol (mmol/l) 1.1660.32 1.3760.41 1.3760.34

Systolic blood pressure (mmHg) 144.55622.05 133.48619.22 132.78619.74

Diastolic blood pressure (mmHg) 81.06610.87 81.21610.57 80.51610.27

Legend to Table 1. Data are mean6SD. ND: not determined.
*1455 T2D patients were measured for C peptide but the rest 451–for fasting plasma insulin (HOMA index was calculated from these). Values of 2 hrs glucose and insulin
were obtained for 256 and 251 individual, respectively. Insulinogenic index could be calculated for 192 T2D patients. Blood pressure information was obtained from
1438 patients.

**Values of 2 hrs glucose and insulin, HOMA, insulinogenic index and HDL cholesterol were available only in 68% of the control group but trigliceride values in 87% of
the individuals.

doi:10.1371/journal.pone.0001090.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

FFAR1 and Beta Cell Function

PLoS ONE | www.plosone.org 2 November 2007 | Issue 11 | e1090



broad.mit.edu/mpg/haploview/)[21,22]. For haplotype recon-

struction and subsequent analysis of metabolic parameters, we

used HAP haplotype analysis system available online at http://

research.calit2.net/hap [23,24]. Power calculations were per-

formed online using Genetic Power Calculator (http://ibgwww.

colorado.edu/,pshaun/gpc)[25,26]. Chi-squared test was used to

compare the general genotype frequency distribution among T2D

and control groups. Odds ratios were calculated using logistic

regression analysis with age, BMI and sex as covariates. Mantel-

Haenszel test was used to test for heterogeneity between the

Swedish and Finnish samples. Differences in insulinogenic index

and FFA levels between different genotype carriers were assessed

using either ANOVA (for equal weight of genotypes) or linear

regression analysis with age, BMI and sex as covariates. A robust

variance estimator was used to adjust for the possible non-

independence due to family clustering. Correlation between

insulin secretion and FFA levels was analysed using multivariate

regression correlation matrix (NCSS software). The standard

errors were adjusted for repeated measurements made on the same

individual by methods of GEE methodology. A p value of ,0.05

was considered statistically significant. Bonferroni adjustments for

multiple measurements were done were appropriate: p-values

were corrected by four in the case-control study (two SNPs tested,

stratified by sex), by eight in the phenotype analysis (two SNPs

tested for insulinogenic index and post-OGTT FFA levels,

stratified by sex) and by eight in the phenotype analysis in

haplotypes (four haplotypes tested for insulinogenic index and

post-OGTT FFA levels). We chose the additive model as the main

hypothesis because it is the model that corresponds better to the

putative biological function of FFAR1 receptor [27–29]. Therefore

p values were not corrected for other genetic models explored

(equal weight, recessive and dominant). To correct for multiple

testing in the haplotype analysis, 10000 permutations were done

using the Haploview software. The 59 upstream region of the

FFAR1 gene was analysed for putative regulatory elements using

the MatInspector program (http://www.genomatix.de/products/

MatInspector/) [30,31].

RESULTS
We first re-sequenced a 2379 bp fragment of the FFAR1 region in

a screening panel of 96 subjects (48 T2D and 48 healthy subjects).

We identified 13 SNPs and two of these polymorphisms where

located in the coding region of the gene, including one

synonymous (Val) and one non-synonymous (Arg/His,

rs2301151) polymorphism. Five of the SNPs (rs1978013,

rs1978014, rs10418569, rs2301151 and rs1573611) were pre-

viously registered in the NCBI database [20], whereas eight SNPs

are new (Figure S1).

There was no clear linkage disequilibrium between the 13 SNPs

(Figure S2). The minor allele frequencies (MAF) of the eight newly

discovered SNPs were less then 0.02, the other five SNPs had

MAF 0.10–0.48.

Of them, only the frequencies of the two SNPs at positions 598

and 597 bp upstream of the open reading frame (rs1978013 and

rs1978014; Figure S1) differed between the T2D and control

subjects in the screening panel (rs1978013: 13 TT, 25 TC and 10

CC in T2D vs. 15 TT, 31 TC and 2 CC in controls, p = 0.047 and

for rs1978014: 4 AA, 4 AG and 9 GG in T2D patients with

BMI,30 vs. 12 AA, 20 AG and 7 GG in control individuals with

BMI,30, p = 0.024). These two SNPs were then further tested for

association with T2D in a case-control material from Finland and

Sweden consisting of 1929 patients with T2D and 1405 control

subjects. All genotypes were in Hardy-Weinberg equilibrium, both

in cases and in controls.

The Tagger algorithm [32] of the Haploview software showed

that with r2 threshold of 0.3 rs1978013 captures rs10418569 (D’

0.94, r2 0.33) and rs1573611 (D’ 0.89, r2 0.31), whereas rs1978014

captures rs10418569 (D’ 1, r2 0.28) and rs2301151 (D’ 1, r2 0.12)

at r2 threshold 0.1 (Figure S2).

The bioinformatic analysis revealed three potential transcription

factor-binding sites in the vicinity of rs1978013 and rs1978014–

ATF6 (located 216 to 210 bp or 217 to 211 bp upstream of

rs1978013 and rs1978014, respectively), INSM1 (211 to 23 bp/

212 to 24 bp) and NF-kappaB (+24 to +33 bp/+23 to +32 bp

downstream).

There was more than 80% power assuming an additive model

to detect an OR of 1.32 (p = 0.05) in the case-control material.

However, after Bonferroni correction, no odds ratio was

significantly associated with T2D. SNP rs1978014 had an OR

1.26 (95% CI 1.00–1.61) for association with T2D (uncorrected

p = 0.049, corr. p = 0.196, Table 2), while CC genotype of

rs1978013 was more frequent in T2D group only in males (T2D

17.9%, controls 15.5%, OR 1.49, 95% CI 1.07–2.07, uncorr.

p = 0.019, corr. p = 0.076; Table S1).

Haplotype analysis revealed that a haplotype consisting of the

T-G alleles (permutated p = 0.001) of SNPs rs1978013 and

rs1978014 conferred protection whereas the C-A haplotype

conferred increased risk (permutated p = 0.0486) of T2D (Table 3).

Post-OGTT FFA concentration did not significantly differ

between different genotype carriers after Bonferroni corrections

(Table 4, Table S2). Post-OGTT FFA concentration was lower in

the CC/CT carriers (223695 mmol/l) vs. the TT genotype

(2446148 mmol/l) of rs1978013 (uncorr. p = 0.010, corr.

p = 0.08, Table 4). After stratification for sex, post-OGTT FFA

levels of rs1978013 were lower in males (TT = 2686189,

TC = 239696, CC = 2156102 mmol/l, uncorr. p = 0.012, corr.

p = 0.096, Table S2). In addition, the T-G haplotype showed

association with post-OGTT FFA levels which disappeared after

Bonferroni correction (T-G 2316120 vs C-A 225698, T-A

2446139, C-G 210689 mmol/l, uncorr. p = 0.021, corr.

p = 0.168, Table 5).

The rs1978013 was associated with insulinogenic index only in

males (TT = 6.263.8, TC+CC = 5.363.4, uncorr. p = 0.003, corr.

p = 0.024) while rs1978014 was associated with insulinogenic

index only in females (GG+AG = 6.464.7, AA = 5.262.9, uncorr.

p = 0.004, corr. p = 0.032; Table S2). In the whole sample,

insulinogenic index was associated neither with genotypes (Table 4)

nor haplotypes (Table 5) after Bonferroni corrections were done.

Insulin secretion was lower in C allele carriers of rs1978013

(TT = 6.364.3, TC+CC = 5.663.8, uncorr. p = 0.010, corr.

p = 0.08) and for AA genotype in rs1978014 (GG+AG = 664.2,

AA = 5.363.2, uncorr. p = 0.030, corr. p = 0.24) (Table 4). The C-

A haplotype had the lowest insulinogenic index (C-A 5.563.7 vs

T-G 6.164.3, T-A 663.9, C-G 5.863.8, uncorr. p = 0.008, corr.

p = 0.064, Table 5).

DISCUSSION
The key finding of the present study was that rs1978013 and

rs1978014 polymorphisms located upstream of the coding region of

the FFAR1 gene were associated with beta cell function in males and

females respectively, however, due to the loss of statistical

significance during Bonferroni corrections–not in the whole sample.

Carriers of the CC genotype of rs1978013 had the lowest

insulinogenic index and highest risk of T2D (although not

significant after Bonferroni correction) but rs1978014 associates

with T2D according to chi2 test. Increased T2D risk was discovered

in the C-A haplotype carriers of SNPs rs1978013 and rs1978014.

FFAR1 and Beta Cell Function
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The different association between the two polymorphisms in the

FFAR1 gene and insulin secretion in males and females might

suggest that these polymorphisms may affect insulin sensitivity in

a sex-specific manner in accordance with the finding of Hevener et

al. showing that female rats are protected from lipid-induced

reductions in insulin action [33]. We therefore tested this

hypothesis by performing gender-specfic analyses of the putative

effect of these SNPs on insulin sensitivity (HOMA). There was no

association between HOMA and these polymorphisms, neither in

the whole cohort nor after stratification for sex (data not shown).

Correlation between HOMA and post-OGTT FFA level was also

very weak (males: r2 = 0.17, p = 0.0002, females: r2 = 0.20, p = 0).

This indicates that sex-specific differences in insulin sensitivity did

not influence our results.

Although close to each other, rs1978013 and rs1978014 did not

show any LD. This could possibly be explained by a recombination

hot spot in this particular gene region. However, rs1978013 and

rs1978014 captured the other common polymorphisms in the

sequenced DNA region according to D’ (Figure S2) at a low r2

threshold 0.1–0.3. In addition to association with T2D in the

initial screening panel, lack of LD between the two neighbouring

SNPs made these very close nucleotide positions of particular

biological interest. The findings rather suggested that both SNPs,

rs1978013 and rs1978014, together formed a haplotype, which

increased risk of T2D.

FFAR1 was recently described as a cell-surface bound receptor

for FFAs making it a candidate to mediate the negative effects of

FFAs on beta cell function (lipotoxicity) [8–10]. However, two

recent studies did not find an association between variations in the

FFAR1 coding region and the risk of developing T2D [34,35].

Despite the lack of an association with T2D, Ogawa et al. found

that the Arg211His polymorphism (rs2301151) in the coding

region of FFAR1 influenced serum insulin levels in 327 healthy

Japanese males [34]. Although this polymorphism is in LD with

rs1978013 and rs1978014 according to D’ = 1, however the r2 is

low (0.08 for rs1978013 and 0.12 for rs1978014) (Figure S2)

suggesting an independent association of these two SNPs with

insulin secretion.

We have also analysed whether any SNPs in the recent whole

genome association study [36] would cover the FFAR1 gene.

Unfortunately this region was not covered by any informative

SNPs on the Affymetrix chip. The 19q13 chromosomal region

where FFAR1 is situated has shown linkage with T2D as well as

T2D and lipid-related phenotypes [11,37–40]. However, we can

only speculate whether the linkage could be attributed to FFAR1

since the density of markers used in those studies is not high

enough (approximate interval 7–13 cM) to pinpoint FFAR1 gene

as a strong candidate for the reported linkage.

Little is known about the promoter structure and transcription

factor binding sites of the FFAR1 gene. FFAR1 lacks a canonical

Table 3. Association of haplotypes with T2D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Allele Haplotype frequency p value permutation p value *

rs1978013 rs1978014 T2D (n = 1929) Controls (n = 1405)

T G 0.24 0.28 0.0009 0.0010

C A 0.26 0.24 0.0244 0.0486

T A 0.33 0.32 0.2537 0.5397

C G 0.17 0.17 0.8663 0.9973

Legend to Table 3. * To correct for multiple testing, 10000 permutations were done.
doi:10.1371/journal.pone.0001090.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Table 2. Genotype frequencies and odds ratios of the rs1978013 and rs1978014
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Genotypes
and alleles

T2D n (%)
(n = 1929)

Controls n (%)
(n = 1405) P (x

2
test)

Additive model
OR (95% CI) p

Dominant model
OR (95% CI) p

Recessive model
OR (95% CI) p

rs1978013

TT 621 (32.2) 503 (35.8) 1 -

TC 969 (50.2) 673 (47.9) 1.09 (0.90–1.30) 0.317/NS

CC 339 (17.6) 229 (16.3) 0.09/0.36 1.24 (0.97–1.58) 0.082/0.328 1.12 (0.94–1.33) 0.185/0.74 1.18 (0.95–1.47) 0.135/0.54

T 2211 (57.3) 1679 (59.8)

C 1647(42.7) 1131 (40.2) 0.046/0.184

rs1978014

GG 327 (17) 286 (20.4) 1 -

AG 910 (47.3) 676 (48.1) 1.13 (0.94–1.36) 0.204/0.816

AA 686 (35.7) 443 (31.5) 0.01/0.04 1.27 (1.00–1.61) 0.049/0.196 1.18 (0.96–1.46) 0.116/0.464 1.16 (0.98–1.39) 0.085/0.34

G 1564 (40.7) 1248 (44.4)

A 2282 (59.3) 1562 (55.6) 0.002/0.008

Legend to Table 2. Logistic regression results are adjusted for age, sex, BMI and family dependence. Both nominal and the Bonferroni-corrected p-values are shown. NS:
not significant.
doi:10.1371/journal.pone.0001090.t002..
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TATA box, consistent with reports of other TATA-less G protein-

coupled receptors [41,42]. The rs1978013 and rs1978014

polymorphisms apparently do not directly affect any potential

transcription factor-binding motif. However, by sequence analysis,

we identified three potential binding motifs for transcription

factors which could be implicated in T2D development or beta cell

function–ATF6 [43], INSM1 [44] and NF-kappaB [45] in close

vicinity to rs1978013 and rs1978014. We can therefore not

exclude the possibility that polymorphisms in the rs1978013

and rs1978014 might affect FFAR1 expression by altering

transcription or they might be in linkage disequilibrium with

another polymorphism affecting FFAR1 expression or function.

Recently, Tomita et al. reported that insulinogenic index

positively correlated with the FFAR1 mRNA level in human

pancreatic islets [46], however, whether variations in the FFAR1

gene induce up- or down regulation of gene expression remains

unknown. Identification of regulatory region and subsequent

functional studies are necessary to understand the hypothetical

effect of rs1978013 and rs1978014 variants on FFAR1 expression

levels.

In summary, our study suggests an effect of polymorphisms in

the FFAR1 gene on insulin secretion during an OGTT thereby

making it a potential candidate to mediate lipotoxicicty in T2D.

SUPPORTING INFORMATION

Figure S1 The sequenced region with the detected SNP

positions. A 2379 bp long DNA sequence including the 903 bp

of the coding region (underlined) in the FFAR1. Five SNPs

(framed-rs1978013, rs1978014, rs10418569, rs2301151 and

rs1573611) were registered in the NCBI database before, whereas

eight (highlited) were not. The rs1978013 and rs1978014 SNPs are

located at position 208 and 209, respectively.

Found at: doi:10.1371/journal.pone.0001090.s001 (0.06 MB TIF)

Figure S2 LD structure of the sequenced FFAR1 region. SNPs

are numbered according to their position in the sequenced

region, nucleotide position 208 and 209 correspond to rs1978013

and rs1978014, respectively, and positions 592, 1437 and 2059-

to rs10418569, rs2301151 (Arg211His) and rs1573611, respec-

tively.

Found at: doi:10.1371/journal.pone.0001090.s002 (0.94 MB TIF)

Table S1 Sex-specific genotype frequencies and odds ratios of

the rs1978013. Logistic regression results are adjusted for age, sex,

BMI and family dependence. Both nominal and the Bonferroni-

corrected p-values are shown. NS: not significant.

Found at: doi:10.1371/journal.pone.0001090.s003 (0.04 MB

DOC)

Table S2 Insulinogenic index and post-OGTT FFA levels in

different genotype carriers stratified for sex. Males: n = 475,

females: n = 536. Data are mean6SD. Asterisk (*) indicates results

from linear regression analysis, adjusted for age, BMI and family

dependence. Both nominal and the Bonferroni-corrected p-values

are shown. NS: not significant.

Found at: doi:10.1371/journal.pone.0001090.s004 (0.05 MB

DOC)
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Table 4. Insulinogenic index and post-OGTT FFA levels in different genotype carriers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rs1978013 p rs1978014 p

TT (n = 327) TC (n = 503) CC (n = 181) GG (n = 215) AG (n = 510) AA (n = 286)

Insulinogenic index

Equal weight 6.364.3 5.864 5.363.2 0.022/0.176 5.964 6.164.3 5.363.2 0.030/0.24

Dominant model 6.364.3 5.663.8 0.010*/0.08 5.964 5.864 0.892*/NS

Recessive model 664.1 5.363.2 0.154*/NS 664.2 5.363.2 0.030*/0.24

2h FFA levels (mmol/l)

Equal weight 2446148 226695 213696 0.008/0.064 221692 2306127 2366108 0.379/NS

Dominant model 2446148 223695 0.010*/0.08 221692 2326121 0.363*/NS

Recessive model 2336119 213696 0.038*/0.304 2276118 2366108 0.519*/NS

Legend to Table 4. n = 1011. Data are mean6SD. Asterisk (*) indicates results from linear regression analysis, adjusted for age, sex, BMI and family dependence. Both
nominal and the Bonferroni-corrected p-values are shown. NS: not significant.
doi:10.1371/journal.pone.0001090.t004..
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Table 5. Insulinogenic index and post-OGTT FFA levels in rs1978013-rs1978014 haplotypes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Haplotype n Insulinogenic index score p
Post-OGTT FFA
level (mmol/l) score p

T-G 697 6.164.3 0.076 0.121/0.968 2316120 20.09 0.021/0.168

C-A 623 5.563.7 20.095 0.008/0.064 225698 0.04 0.763/NS

T-A 459 6.063.9 0.022 0.987/NS 2446139 0.026 0.969/NS

C-G 241 5.863.8 20.006 1.000/NS 210689 0.03 0.921/NS

Legend to Table 5. n = 1011. Data are mean6SD. Scores of the linear regression analysis are reported. Both nominal and the Bonferroni-corrected p-values are shown.
NS: not significant.
doi:10.1371/journal.pone.0001090.t005..
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