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Abstract: Mephedrone, a psychoactive compound derived from cathinone, is widely used as
a designer drug. The determination of mephedrone and its metabolites is important for understanding
its possible use in medicine. In this work, a method of capillary electrophoresis for the chiral separation
of mephedrone and its metabolites was developed. Carboxymethylated β-cyclodextrin was selected
as the most effective chiral selector from seven tested cyclodextrin derivates. Based on the simplex
method, the optimal composition of the background electrolyte was determined: at pH 2.75 and
7.5 mmol·L−1 carboxymethylated β-cyclodextrin the highest total resolution of a mixture of analytes
was achieved. For mephedrone and its metabolites, calibration curves were constructed in a calibration
range from 0.2 to 5 mmol·L−1; limits of detection, limits of quantification, precision, and repeatability
were calculated, and according to Mandel’s fitting test, the linear calibration ranges were determined.
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1. Introduction

Mephedrone, a psychostimulant drug first synthesized in the 1920s, is classified as a synthetic
cathinone [1]. According to the European Monitoring Centre for Drugs and Drug Addiction [2],
synthetic cathinones, together with synthetic cannabinoids, are the most abundant substances in the
group of so-called new psychoactive substances. In most cases, these drugs have stimulant entactogenic
effects; however, the biological activity of such substances is difficult to predict and some of these
artificially prepared substances have been shown to have potential therapeutic uses [3], for example,
bupropion is used to treat depression and smoking cessation [4] and diethylpropion is prescribed
as an anti-obesity drug [5]. On the other hand, pyrovalerone has been prescribed for the treatment
of chronic obesity and lethargy but has been withdrawn for its abuse by patients [4,6]. These new
psychoactive substances can also mimic prescription therapeutic psychoactive drugs; for example,
phenmetrazine, modafinil, and methylphenidate, and hence are more available even for healthy people
because they are available on the Internet [7]. So, an intensive study of these compounds is needed.

The most commonly used techniques for isolating new psychoactive substances from biological
samples are liquid-to-liquid extraction (LLE) and solid-phase extraction (SPE) [8]. LLE is a simple
method, but its problems are easy contamination and matrix influence. On the contrary, the SPE is very
selective but time-consuming [9]. A popular method is the QuEChERS method (quick, easy, cheap,
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effective, rugged, and safe) modified in 2012 for the extraction of psychoactive substances from
biological samples [10].

Simple colorimetric tests are used for rapid orientation detection of drugs.
However, the identification is very indicative, detecting only the presence of certain structural
motifs [11]. However, immunological methods that are commercially available are more commonly
used for rapid drug detection. However, there is no sufficiently effective immunoassay on the market
for the detection of cathinones that does not show cross-reactivity between analogs [9,12,13].

Of the advanced chromatographic techniques, gas and liquid chromatography with a mass
spectrometer (GC-MS and LC-MS) are the most suitable for the analysis of synthetic cathinones.
In general, the GC-MS technique is used more for drug analysis, mainly due to shorter elution
times [14–19]. Chiral separation is most often performed in an achiral environment after the previous
conversion of enantiomers to diastereoisomers [20], which, however, brings complications for the
quantification itself [21]. It should be also noted that cathinones are thermodegradable substances
and due to the thermal conditions necessary for separation by GC, their partial decomposition
occurs [5]. Therefore, LC-MS [22–24] and LC-UV [25,26] using a chiral stationary or mobile phase
is often used. Rapid separation of cathinones is also possible by supercritical fluid chromatography
(SFC) [27,28]. Carnes et al. compared the separation of cathinones by ultrahigh efficiency SFC
(UHPSFC), ultrahigh efficiency LC (UHPLC) with a non-polar column, UHPLC with a hydrophilic
column, and GC with a weakly polar column. The combination of GC and UHPSFC, which is the
fastest of the tested methods, seems to be ideal [29].

The first enantioseparation of cathinone derivatives by capillary electrophoresis (CE) was
performed by Mohr et al. in 2012 using sulfated β-cyclodextrin as a chiral selector [30]. As with HPLC,
CE-UV and CE-MS techniques are used [31–33]. For example, to study the incorporation of cathinones
into hair, a CE method was developed in which extraction from hair at an elevated temperature
and pressure into ammonium hydroxide solution was first performed. Subsequently, the extract was
concentrated on a solid phase that was part of the CE capillary (inline coupling of SPE-CE), and analysis
was performed using various cyclodextrins as chiral selectors [34].

Mephedrone is referred to as a catecholamine reuptake inhibitor [35–37], but it also positively
affects the release of catecholamines into the synaptic cleft [13,38–41]. Therefore, it seems to have
a mixed effect [42–44]. In both cases, the result is an increase in the concentration of catecholamines
in the synaptic cleft, resulting in the typical action of psychostimulants. Acute intoxication with
mephedrone, usually in combination with other drugs and alcohol, has already resulted in hundreds
of deaths across Europe [9].

Mephedrone has a chiral center on the α carbon and exists in two enantiomeric forms (Figure 1).
Both enantiomers have a similar affinity for dopaminergic transporters, but (S)-mephedrone is about
50 times more potent as a serotonergic mediator. Nevertheless, the (R)-enantiomer is primarily
responsible for the euphoric effects [45].
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Figure 1. Structures of (S)- and (R)-mephedrone.

In phase I biotransformation, mephedrone can undergo several reactions: (i) oxidative
N-demethylation, (ii) oxidation of the 4-methyl group, (iii) ω-oxidation at the 3′ position, and (iv)
reduction of the carbonyl group (Figure 2) [46].
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Figure 2. Scheme of phase I biotransformation of mephedrone: (i) oxidative N-demethylation,
(ii) oxidation of the 4-methyl group, (iii) ω-oxidation at the 3′ position, and (iv) reduction of the
carbonyl group.

The major metabolites of mephedrone (1; 4-methyl methcathinone) are 4-methylcathinone
(2; 4-MC) and 4-hydroxymethyl methcathinone (3; 4-OH-MMC). These, together with
4-methylephedrine (4; 4-ME), 4-carboxymethylcathinone (6; 4-CMC), 4-methylnorephedrine
(7; 4-MNE), and normephedrone-ω-carboxylic acid (3′-OOH-4-MC), were identified in
the urine of users by ultra-high-performance liquid chromatography-mass spectrometry
(UHPLC-MS) [47]. Other metabolites, namely 4-carboxyephedrine (5; 4-CE), 4-MNE (7),
4-hydroxymethylcathinone (8; 4-OH-MC) [17], 4-carboxynorephedrine (9; 4-CNE), 4-carboxycathinone
(4-CC), and 4-hydroxymethylnorephedrine (4-OH-MNE) [46] were found in the urine of rats by GC-MS
and LC-MS.

The aim of this work was to find the optimal conditions for the separation of mephedrone
and its metabolites by capillary electrophoresis (for details about this method, see, for example,
Bernardo-Bermejo et al. [48]), using cyclodextrins (CDs) [49] as chiral selectors. The optimization of the
background electrolyte (BGE) was carried out by using the simplex procedure, which was thoroughly
described by Catai and Carrilho [50]. Mephedrone and all its available metabolites, selected on the basis
of current knowledge on the biotransformation of mephedrone, are chiral substances that may undergo
different metabolic pathways and thus have different biological effects for individual enantiomers.

2. Results and Discussion

2.1. Cyclodextrin Optimization

The first optimization step was to select a suitable CD. Based on our previous experience
with CDs [51], analyses were performed in the presence of CDs at a concentration of 10 mmol·L−1,
either in a 50 mmol·L−1 phosphate buffer at pH 2.5 (Figure 3) or in a 50 mmol·L−1 acetate buffer
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at pH 5 (Figure 4). From the measured electropherograms, it was concluded that the separation
proceeds better in the phosphate buffer at a lower pH value. From the selected CDs (Figure 5),
i.e., β-CD, carboxymethylated β-cyclodextrin (CM-β-CD), heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin
(Me-β-CD), 2-hydroxypropylated β-cyclodextrin (HP-β-CD), sulfated β-cyclodextrin (S-β-CD), γ-CD,
and carboxymethylated γ-cyclodextrin (CM-γ-CD), CM-β-CD, which is often used for the separation of
basic nitrogenous substances [52,53], seems to be the most suitable. This may be due to the interaction
of the carboxyl group of CM-β-CD with the NH group of the analyte and also due to the appropriate
size of the β-CD cavity. The inappropriateness of S-β-CD may be due to too many sulfate groups (7–11)
compared to three carboxylic groups of CM-β-CD, see Section 3.1. In its presence, 18 diastereomers
were separated within 30 min, so it was used in all the other work. The advantage of CM-β-CD over
β-CD is its higher solubility in water (50 mg·mL−1 compared to 19 mg·mL−1). Thus, in the search for
optimal separation conditions, it is possible to achieve higher concentrations if necessary.
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2.2. BGE Optimization

The enantioselective separation of ionic analytes with ionic CDs is controlled by at least two
mechanisms. The first is the interaction of the hydrophobic cavity of the CD derivative with the
analyte; the second is the electrostatic interaction between the ionic groups of the CD derivative and
the analyte [54]. The approximate value of the dissociation constant pKa CM-β-CD is 3.0–3.5 [55].
Cathinones are basic drugs and have high values of dissociation constants; for example, the pKa of
mephedrone is 8.77 [56], for methylated cathinones it is 8.4–9.5 [57], for phenylethylamine it is 10.3 [58],
and for methamphetamine it is 9.9 [59]. In addition to pH, the separation is also affected by the
concentration of cyclodextrin, which affects the amount of complexed analyte and thus affects its overall
electrophoretic mobility [49]. The separation efficiency can be increased at higher voltages, but this
also increases the temperature difference in the middle and at the edge of the capillary, which leads to
a decrease in efficiency. Based on our experience with a similar BGE [51], we have chosen a voltage
(see Section 3.3) such that the current is around 50 µA. In addition to voltage, the current also depends
on the ionic strength of the BGE. Again, we used our previous experience here, and in most cases used
a buffer with a concentration of 50 mmol·L−1.

Thus, the optimization step was to find a suitable concentration of CM-β-CD and a suitable pH
of BGE. In order to monitor both parameters simultaneously, the simplex method was used to find
the optimal conditions [60]. The first step was to construct an initial simplex. The first two points
correspond to the conditions: (1) pH 2.5 and 5 mmolv·L−1 CM-β-CD; (2) pH 3.5 and 5 mmol·L−1

CM-β-CD (Figure 6A). The third point was calculated on the basis of the properties of an equilateral
triangle, i.e., pH3 = 2.5 + 0.5·1 = 3, where 2.5 corresponds to the first point and value 1 to the length
of the simplex edge on the pH axis, and c3 = 5 +

√
3⁄2·5.774 = 10 mmol·L−1, where 5 is the initial

concentration and 5.774 is the length of the simplex edge corresponding to the c-axis, which has been
chosen so that the CM-β-CD concentration is an integer.
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phosphate buffer (46.6 mmol·L−1 HCl at pH 1.5), variable CM-β-CD concentration, variable pH; voltage:
20 kV (10 kV for pH 1.5); temperature: 25 ◦C.
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A mixture of analytes 1–9 (Figure 2) with a concentration of 1 mmol·L−1 was measured twice
under each pair of conditions. Based on the resolution of the peaks of the individual enantiomers,
the average criterion Rkr was calculated (see above), which served as a compared response for the
simplex procedure. Simplex followed the rules of the equilateral simplex procedure. After calculating
the coordinates of point (8), the simplex looped. Thus, the chiral separation proceeded best under the
initial conditions chosen. The simplex procedure is summarized in Figure 6A.

A half-simplex was designed to more accurately determine the optimal chiral separation conditions
(Figure 6B). The first point corresponds to the first determined optimal conditions: (1) pH 2.5 and
5 mmol·L−1 CM-β-CD. The other two points correspond to: (2) pH2 = 2.5 − 0.5·0.5 = 2.25 and c2 = 5 +
√

3⁄2·2.887 = 7.5; (3) pH3 = 2.5 + 0.5·0.5 = 2.75 and c3 = c2, where the values 0.5 and 2.887 correspond to
half the sizes of the edges of the first simplex.

Furthermore, the simplex proceeded according to the rules of the equilateral simplex procedure.
Since points (3) and (4) provide the same response, Rkr = 12.5, it is possible in a situation where the
simplex forms points (3), (4), and (5), to proceed in two directions, namely to point (6) and point (6′),
which gives a small response. Points (3) and (4) also provide the maximum value of the criterion Rkr.
Point (3) was chosen as the point meeting the optimal conditions, as in the second case the analysis
was extended to more than 100 min. The simplex procedure is summarized in Figure 6B. The resulting
optimum was found at pH 2.75 and 7.5 mmol·L−1 CM-β-CD (Figure 7).
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phosphate buffer, pH 2.75, 7.5 mmol·L−1 CM-β-CD; voltage: 20 kV; temperature: 25 ◦C.

At pH 2.75, approximately 65–85% of CM-β-CD is in a protonated form. At a low pH, most of the
silanol groups on the capillary wall are protonated, leading to low electroosmotic flow, and CM-β-CD
carries an approximately one-fold negative charge. At pH 2.75, the amine groups of all analytes are
practically 100% protonated. Metabolites 5, 6, and 9 carry a carboxyl group on the aromatic nucleus in
the para position. Upon approximation with benzoic acid, whose pKa is 4.21, it can be assumed that at
pH 2.75 the carboxyl group is 4% deprotonated. Thus, it is clear that pH plays an important role in the
separation. A lower or higher pH than 2.75 affects the degree of deprotonation of the used CM-β-CD,
and thus the separation efficiency.

The concentration of CM-β-CD is also an important factor as it affects how much analyte will
be complexed with CD. For a given racemic mixture, there is an optimal concentration at which the
individual enantiomers will be separated as best as possible [49,61]. This concentration depends on the
stability constants of the individual enantiomers and the given chiral selector. In the case of separation
of a mixture of racemic substances, as in our case, it is necessary to choose a compromise between
these concentrations.
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2.3. Calibration

Calibration solutions were measured under the optimized BGE composition, namely at
7.5 mmol·L−1 CM-β-CD and pH 2.75. Reduced peak areas (area/migration time) were subjected to the
Dean–Dixon test to exclude outliers, which is adapted to small datasets with unknown distributions.

Furthermore, the regression parameters of the calibration curves were calculated. Based on the
test of the significance of the parameter, we assessed whether it is possible to set the intercept a in
the regression equation y = bx + a. In the case of analytes 1, 2, 5, and 7, the size of the intercept is
insignificant according to the test. Subsequently, the confidence intervals for the intercept a and the
slope b of all calibration equations were calculated. If the significance test of the parameter did not
allow for ignoring the intercept, the number of degrees of freedom for calculating tcrit was equal to
n − 2, and in the case of a zero intercept n − 1. Ignoring the intercept improved the values of the
coefficient of determination R2 and thus allowed us to reduce the confidence intervals (Table 1).

Table 1. Calibration dependences of separation of analytes 1–7 (Figure 2) measured under optimal
conditions, where (a ± L (a)) is the intercept and (b ± L (b)) is the slope with a confidence interval at the
significance level α = 0.05; R2 is the coefficient of determination.

Analyte a L(a)
b L(b)

R2
mmol·L−1 mmol·L−1

1 0 32.60 ± 0.27 0.991
2 0 27.76 ± 0.16 0.995
3 −5.47 ± 1.31 23.54 ± 1.14 0.807
4 −5.07 ± 0.65 19.68 ± 0.29 0.967
5 0 26.14 ± 0.21 0.989
6 −3.55 ± 1.07 36.01 ± 0.83 0.959
7 0 21.04 ± 0.20 0.991

According to Mandel’s test, linear concentration ranges were determined and subsequently the
LOD and LOQ of individual analytes were calculated (Table 2). Precision for all studied analytes was
<4.9% and repeatability <4.5%.

Table 2. LOD and LOQ with a linear concentration range of calibration dependences of individual
analytes 1–7 (Figure 2) according to Mandel’s test.

Analyte LOD mmol·L−1 Linear Concentration Range

LOQ mmol·L−1

1 0.35 1.17 − 5.00
2 0.28 0.92 − 5.00
3 0.61 2.02 − 2.20
4 0.53 1.76 − 5.00
5 0.46 1.53 − 5.00
6 0.31 1.04 − 2.20
7 0.21 0.71 − 2.20

3. Materials and Methods

3.1. Chemicals and Materials

The following substances were used: ortho-phosphoric acid (50%), β-cyclodextrin (β-CD,
97%), carboxymethylated β-cyclodextrin sodium salt (CM-β-CD, average degree of substitution ~3,
95%), 2-hydroxypropylated β-cyclodextrin (HP-β-CD, average degree of substitution ~0.5–1.3, 95%),
sulfated β-cyclodextrin (S-β-CD, average degree of substitution ~7–11, 95%), acetic acid (99%), thiourea
(99%) (all Sigma-Aldrich, Praha, Czech Republic), ultrapure water (Milli-Q grade, Millipore, Molsheim,
France), 1 mol·L−1 sodium hydroxide (Tripur, Merck, Darmstadt, Germany), hydrochloric acid
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(30%)(Suprapur, Merck, Darmstadt, Germany), γ-cyclodextrin (γ-CD, 97%, FUJIFILM Wako, Richmond,
VA, USA), carboxymethylated γ-cyclodextrin sodium salt (CM-γ-CD, average degree of substitution
~3–6, 95%, AraChem, Kuala Lumpur, Malaysia), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin
(Me-β-CD, 98%, Fluka, Munich, Germany). Psychoactive amines 1–9 (Figure 2) in the form of
hydrochloride salts were prepared previously [46]. The purity of the salts studied was determined by
UHPLC/MS Agilent 6460 (Waldbronn, Germany) and was higher than 95%.

3.2. Equipment

CE separations were performed with an Agilent CE instrument 7100 (Agilent 3D HPCE, Waldbronn,
Germany) equipped with a UV-Vis diode-array detector. A bare fused-silica capillary of 375/75 µm
od/id and 58.5/50 cm total/effective length was obtained from Polymicro Technologies (Phoenix, AZ,
USA) was used.

3.3. CE Conditions

The BGE used for the optimizing of the chiral selector consisted of 50 mmol·L−1 sodium phosphate
buffer, pH 2.5 (50 mmol·L−1 orthophosphoric acid adjusted to appropriate pH with 1 mol·L−1 NaOH)
or acetate buffer, pH 5.0 (50 mmol·L−1 acetic acid adjusted to appropriate pH with 1 mol·L−1 NaOH),
and 10 mmol·L−1 of the studied CDs (β-CD, γ-CD, CM-β-CD, CM-γ-CD, HP-β-CD, 2-Me-β-CD,
or S-β-CD). The background electrolyte used for the optimizing of the chiral selector concentration
and pH consisted of 46.6 mmol·L−1 hydrochloric acid (pH 1.5) or 50 mmol·L−1 phosphate buffer (pH 2;
2.25; 2.5; 2.75; 3; 3.25; 3.5) and 0–10 mmol·L−1 of CM-β-CD.

A new fused-silica capillary was first rinsed with 1 mol·L−1 NaOH for 30 min, then with H2O for
30 min. Between the runs, the capillary was rinsed at 99.4 kPa first with 0.1 mol·L−1 NaOH for 2 min,
then with H2O also for 2 min, and finally with the running buffer again for 2 min (for the capillary
washing, a different buffer solution than for the subsequent analysis was used). The analytes were
injected hydrodynamically at a pressure of 1.5 kPa for 5 s. Separations were performed at 10 kV, 20 kV
(anode at the injection capillary end), or −20 kV with a voltage ramp time of 12 s. Detection was carried
out at 207 nm during the optimization step and 258 nm for analytes 1, 2, 3, and 6; 236 nm for analyte 5;
and 214 nm for analytes 4 and 7 (i.e., at wavelengths corresponding to the absorption maxima) during
the calibration step. The capillary was thermostated at 25 ◦C during the analyses.

3.4. Sample Preparation

Individual analytes were dissolved in water at a 20 mmol·L−1 concentration. For optimizing the
chiral selector, the analyte solutions were further mixed and diluted with water to a final concentration
of 1 mmol·L−1. For calibration, seven different mixtures of analytes 1–7 (Figure 2) at concentration
ranges from 0.2 to 5 mmol·L−1 (the sum of all analytes’ concentrations was 10 mmol·L−1) were prepared
and each mixture was analyzed five times.

3.5. Simplex Method

For optimizing the BGE composition, the two-dimensional simplex method was used [60].
The optimizing parameters were CM-β-CD concentration and electrolyte pH. As an evaluation
criterion, Rcr was introduced and calculated as follows. For resolution between two neighborhood
peaks i and j, if (Rs,ij) < 0.5 then Rcr,ij = 0, if 0.5 < Rs,ij < 1.5 then Rcr,ij = 0.5, and if Rs,ij > 1.5 then Rcr,ij = 1.
The sum of Rcr,ij = Rcr.

4. Conclusions

In this work, the composition of the basic electrolyte for the chiral separation of mephedrone
and its selected metabolites was optimized. A total of seven cyclodextrin derivatives were selected
as potential chiral selectors. From the seven tested cyclodextrins, carboxymethylated β-cyclodextrin
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was selected as the most suitable. Cyclodextrin concentration and pH were determined based on the
simplex method for two parameters. The optimized pH was found to be 2.75 and the concentration
of carboxymethylated β-cyclodextrin was 7.5 mmol·L−1. A total of nine analytes were present in the
mixture, and 18 distinguishable peaks were found. Thus, all analytes were separated.

Furthermore, the data for the construction of calibration dependences were measured.
According to the Dean-Dixon test, outliers were excluded, and regression parameters of calibration
lines were calculated. Based on the test of significance of the parameter, the intercept on the y-axis was
neglected in some cases. Finally, linear concentration ranges according to Mandel’s test and detection
limits, limits of determination, precision, and repeatability were determined.
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