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Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with
kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions,
the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal
proteins like podocin, podocalyxin, CD2-associated-protein (CD2AP) and proteins of regeneration/repair
like beta-catenin, Oct3/4, WT1 and Pax2 in renal tissue from normoglycemic obese Zucker-fatty rats (ZFs)
have not been reported.

Treatment with hemin reduced renal histo-pathological lesions including glomerular-hypertrophy,
tubular-cast, tubular-atrophy and mononuclear cell-infiltration in ZFs. These were associated with
enhanced expression of beta-catenin, Oct3/4, WT1, Pax2 and nephrin, an essential transmembrane
protein required for the formation of the scaffoldings of the podocyte slit-diaphragm, permitting the
filtration of small ions, but not massive excretion of proteins, hence proteinuria. Besides nephrin, hemin
also enhanced other important podocyte-regulators including, podocalyxin, podocin and CD2AP.
Correspondingly, important markers of renal dysfunction such as albuminuria and proteinuria were
reduced, while creatinine clearance increased, suggesting improved renal function in hemin-treated ZFs.
The renoprotection by hemin was accompanied by the reduction of inflammatory/oxidative mediators
including, macrophage-inflammatory-protein-1α, macrophage-chemoattractant-protein-1 and 8-iso-
prostane, whereas HO-1, HO-activity and the total-anti-oxidant-capacity increased. Contrarily, the HO-
inhibitor, stannous-mesoporphyrin nullified the reno-protection by hemin.

Collectively, these data suggest that hemin ameliorates nephropathy by potentiating the expression
of proteins of repair/regeneration, abating oxidative/inflammatory mediators, reducing renal histo-
pathological lesions, while enhancing nephrin, podocin, podocalyxin, CD2AP and creatinine clearance,
with corresponding reduction of albuminuria/proteinuria suggesting improved renal function in hemin-
treated ZFs. Importantly, the concomitant potentiation regeneration proteins and podocyte cytoskeletal
proteins are novel mechanisms by which hemin rescue nephropathy in obesity.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

The escalation of obesity and kidney disease is all segments of
the population, including children is a challenging health concern
[1–4]. In obesity, excessive inflammatory/oxidative insults may
result to morphological defects in important components of the
filtration apparatus of the kidney such as the glomerulus, leading
to proteinuria and renal insufficiency [5–8]. Thus, a healthy
glomerulus is essential for effective filtration. Generally, the
aperture of the renal filtration barrier is regulated by the podocyte
slit-diaphragm of the glomerulus, allowing small molecules like
ions to selectively pass through, but not larger protein molecules
B.V. This is an open access article u

ang).
[9–13]. The major constituents of the podocyte slit-diaphragm
include nephrin, podocin, podocalyxin and CD2-associated protein
(CD2AP) [12]. Defects in these fundamental podocyte proteins
cause proteinuria [9–13]. Therefore, novel strategies capable of
potentiating the expression of nephrin, podocin, podocalyxin,
CD2AP and abating inflammatory/oxidative insults would be
beneficial in renal insufficiency.

Heme oxygenase (HO) is an important cytoprotective enzyme
with two main isoforms HO-1 (inducible) and HO-2 (constitutive)
that catalyzes the breakdown of pro-oxidant heme to produce
biliverdin/bilirubin and carbon monoxide with anti-oxidant and
anti-inflammatory effects, while the iron formed enhances the
synthesis of ferritin with anti-oxidant properties [14]. Although we
recently reported the renoprotective effects of the HO system
[15–18], the mechanisms are not completely elucidated. Whether
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the HO system enhances proteins of repair/regeneration like beta-
catenin, Oct3/4, WT1 and Pax2 [19–23] in obese normoglycemic
Zucker rats (ZF) to improve renal function remains unclear.
Similarly, the effects of the HO system on important podocyte
regulators such as podocin, podocalyxin and CD2AP in ZFs have
not been reported. Therefore, this study was designed to investi-
gate the effects of the HO-inducer, hemin on beta-catenin, Oct3/4,
WT1, Pax2, podocin, podocalyxin, CD2AP, nephrin, inflammation,
oxidative stress and correlate changes in these factors to renal
function in ZFs. Moreover, the effects of the HO system on the
expression of beta-catenin, Oct3/4, WT1, Pax2, podocin, podoca-
lyxin, CD2AP in the kidney of normoglycemic obese ZF rats have
not been reported. Therefore, our findings will offer novel insights
on the role of hemin therapy in kidney dysfunction in obesity.
Materials and methods

Animals, treatment groups and biochemical assays

Our experimental protocol was approved by the Animal Ethics
Committee of University of Saskatchewan and is in conformity
with the Guide for Care and Use of Laboratory Animals stipulated
by the Canadian Council of Animal Care and the National Institutes
of Health (NIH Publication no. 85-23, revised 1996). Twelve-week
old male Zucker fatty (ZF) rats and sex/age-matched littermates
Zucker lean (ZL) rats were purchased from Charles River Labora-
tories (Willington, MA, USA). The animals were housed at 21 °C
with 12-h light/dark cycles, were fed with standard laboratory
chow and had access to drinking water ad libitum.

The HO-inducer, hemin (30 mg/kg i.p., Sigma, St. Louis, MO)
and the HO-inhibitor, stannous mesoporphyrin [(SnMP) 2 mg/100 g
body weight i.p., Porphyrin Products (Logan, UT, USA)] were pre-
pared as we previously reported and administered biweekly
for 8 weeks [10,35,36]. At 16 weeks of age, the animals were
randomly divided into the following experimental groups (n¼6
per group): (A) controls (ZF and ZL), (B) hemin-treated ZF and ZL,
(C) ZFþheminþnMP and (D) ZFþvehicle dissolving hemin and
SnMP.

During the treatment period we measured body-weight and
fasting glucose on a weekly basis. Body-weight was determined by
means of a digital balance (Model Mettler PE1600, Mettler Instru-
ments Corporation, Greifensee, Zurich, Switzerland), while fasting
glucose was measured by means of a diagnostic auto-analyzer (BD,
Franklin Lakes, NJ) after 6 h of fasting as we previously reported
[35,37]. After the 8-week treatment period, the animals were
placed in metabolic cages for 24 h urine collection. Proteinuria,
albuminuria and creatinine were measured as previously reported
[15,16,18]. On the day of killing, the animals were weighed,
anesthetized with pentobarbital sodium (50 mg/kg i.p.), and the
kidneys removed and weighed with an analytical balance (Precisa
Instruments Ltd., Dietikon, Switzerland) as we previously reported
[24,25].

Renal HO activity was determined spectrophotometrically as
we previously reported [10,38,39], while ELISA kits were used for
the determination of HO-1 (Stressgen-Assay Design, Ann Arbor,
MI, USA), macrophage inflammatory protein-1α and macrophage-
chemoattractant protein-1 (OmniKine™, Assay Biotechnology
Company Inc., Sunnyvale, CA) and EIA kits for 8-isoproatane and
total-anti-oxidant capacity (Cayman Chemical, Ann Arbor, MI,
USA) as we previously reported [15,16,26].
Histology, morphological and immunohistochemical analyzes of
kidney tissue

Histology and morphometric analyzes of the kidney were done
as we previously reported [16,27]. In brief, whole kidney sections
of 5 mm thickness were cut from paraffin embedded tissue, treated
with hematoxylin and eosin staining and examined using a virtual
microscope (Aperio Scan Scope Model CS, Aperio Technology Inc.,
CA). The images were magnified at 100� and 200� . Morpholo-
gical evaluation was done by a blinded researcher who randomly
took 20 snaps shots per slide per group (n¼6, 120 images per
experimental group). The images were analyzed using Aperio
Image Scope V11.2.0.780 software (Aperio, e-Pathology Solution,
CA) and scored semi-quantitatively [16,17,27,28].

Immunohistochemistry was done as we previously described
[15,18,26,29]. Sections of 5 mm of whole kidney were treated with
bovine serum albumin in phosphate buffered saline to avoid non-
specific staining and incubated overnight with ED1 antibody (1:5
dilution, Santa Cruz Biotechnology, CA), and subsequently with
goat anti-mouse IgG for 30 min (1:200 dilution; Jackson Immu-
noResearch Laboratories, Inc., ME, USA). Immunohistochemical
staining was done using the standard avidin–biotin complex
method. The chromogen, 3,3′-diaminobenzidine (DAB) was used
at the final detection step. Thereafter, the kidney sections were
scanned using a virtual microscope (Aperio Scan Scope, Model CS,
Aperio Technology Inc., CA) and macrophages (brown from im-
mune-stained sections) quantified by counting the positively-
stained ED1 cells by a blinded researcher under 200� magnifica-
tion in 15 randomized non-overlapping fields. Only distinct ED1-
stained cells from the different experimental groups were taken
into consideration.

Western immunoblotting

The kidney was homogenized (1:10, w:v) in 10 mM Tris-
buffered saline (20 mM Tris–HCl, pH 7.4, 0.25 M sucrose, and
1 mM EDTA) in the presence of a cocktail of protease inhibitors
as we previously reported [30]. Thereafter, proteins were ex-
tracted, quantified and aliquots of 100 mg loaded on a 10% SDS-
polyacrylamide gel for October 3/4, pax-2, beta-catenin, WT1,
nephrin, podocalyxin, podocin and CD2AP. The fractionated pro-
teins were electrophoretically transferred into nitrocellulose paper
and non-specific bindings blocked with 3% non-fat milk.

The blots were incubated overnight with primary antibodies
[Santa Cruz Biotechnology, Santa Cruz, CA, USA, c-kit (sc-365504),
October 3/4 (sc-5279), pax-2 (sc-130387), WT1 (sc-192), nephrin
(sc-377246), podocalyxin (sc-10506), podocin (sc-21009) and
CD2AP (sc-9137)] and with beta-catenin ([E247] ab32572, Abcam
Inc., Cambridge, MA, USA). After washing in milk, the blots were
incubated with anti-rabbit IgG conjugated to horseradish peroxide
(Bio-Rad, CA, USA), and the immuno-reactivity visualized using
enhanced horseradish peroxide/luminol chemiluminescence re-
agent (PerkinElmer Life Sciences, Boston, MA, USA) and densito-
metric analysis was done using UN-SCAN-IT software (Silk
Scientific, Orem, Utah, USA). Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) antibody (g8795) (Sigma, St. Louis, MO, USA)
was used as a control.

Statistical analysis

All the data expressed in the present study are mean7SEM
from at least four independent experiments unless otherwise
stated. Statistical analyzes were done using two-way ANOVA, by
means of Statistical Analysis System (SAS), software, version 9.3
(SAS Institute Inc., Cary, NC, USA) and Student's t-test. In addition
to ANOVA, multiple pairwise comparisons between groups were
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undertaken with Bonferroni corrected p-values to ascertain which
groups differed from each other. Group differences at the level of
po0.05 were considered statistically significant.
Results

Upregulating the HO system with hemin improves kidney function in
obese normoglycemic ZF rats

The administration of hemin to ZFs significantly enhanced HO-
1 and HO-activity (Fig. 1A and B). Interestingly, the potentiation of
the HO system by hemin was associated with marked reduction of
albuminuria and proteinuria, whereas creatinine clearance was
greatly increased, suggesting improved renal function in hemin-
treated ZFs (Table 1). In contrast, the co-administration of the HO-
inducer, hemin together with the HO-inhibitor SnMP nullified the
effects of hemin on HO-1 and HO-activity (Fig. 1A and B), and
correspondingly annulled the renoprotective effects of hemin,
which was evidenced by the restoration of elevated albuminuria
and proteinuria, with reduced creatinine clearance (Table 1).
Hemin also increased HO-1 and HO-activity in ZL-control rats,
although the effects of hemin on were less-intense in ZF.

We also measured fasting glucose levels in all experimental
groups (Table 1). ZFs and ZL-controls were normoglycemic. Treat-
ment with hemin slightly reduced fasting glucose levels in ZFs,
while co-treatment of hemin with SnMP reversed the effect
(Table 1). Hemin also slightly reduced fasting blood glucose levels
in ZL-controls.

The administration of hemin and SnMP caused loss of body-
weight in ZFs and ZL-controls (Table 1). In hemin-treated ZLs,
hemin-treated ZFs and the heminþSnMP treated ZFs the loss of
body weight were 5.1%, 6.8%, and 8.7% respectively (Table 1). The
loss of weight may not be due to toxicity because our previous
study indicated that indices of toxicity such as plasma gamma-
glutamyltransferase, aspartate aminotransferase and alanine ami-
notransferase were within normal range [31,32].

The vehicle dissolving hemin and SnMP had no effect on the
measured parameters.
Fig. 1. Effects of the heme oxygenase (HO)-inducer hemin and the HO-inhibitor sodiu
Treatment with hemin robustly increased (A) HO-1 concentration and (B) HO-activity, w
* po0.01 vs ZL-Control; † po0.01 vs ZL-Control; #po0.01 vs ZFþHeminþSnMP or ZF
Hemin abated the elevated levels of 8-isoprostane, macrophage
chemoattractant protein-1 (MCP-1) and macrophage inflammatory
protein-1 alpha (MIP-1α) in the kidneys of ZFs

Given that elevated levels of MCP-1, MIP-1α and excessive
oxidative stress are implicated in nephropathy [6–8], we measured
the levels of MCP-1, MIP-1α and 8-isoprostane, an index of
oxidative stress [33].

Our results indicate that in ZFs, the basal levels of MCP-1 and
MIP-1α were significantly elevated (Fig. 2A and B). Interestingly,
treatment with hemin greatly attenuated the levels of MCP-1 and
MIP-1α in ZFs. The effect of hemin was more effective against
MCP-1 than MIP-1α as hemin restored the levels of MCP-1 to
comparable levels as in ZL-controls while MIP-1α was attenuated
by 48.5% (Fig. 2A and B). On the other hand, co-treatment of hemin
and the HO-blocker, SnMP nullified the effects of hemin on MCP-1
and MIP-1α.

Hemin therapy was also effective against the oxidative stress
marker, 8-isoprostane (Fig. 2C). The basal levels of 8-isoprostane in
ZFs were markedly elevated, but were reduced by hemin, while
the co-administration of hemin and SnMP abolished the effect of
hemin. To further explore the effects of an upregulated HO system
by hemin on oxidative stress we measured the total-anti-oxidant
capacity. In ZFs, the basal level of the total anti-oxidant capacity
was markedly reduced as compared to the ZL-control, but was
robustly enhanced by hemin (Fig. 2D). On the other hand, the co-
administration of hemin and in SnMP annulled the effect of hemin
on the total anti-oxidant capacity.

Hemin also reduced MCP-1, MIP-1α, 8-isoprostane and en-
hanced the total-anti-oxidant capacity in ZL-controls.

Hemin suppressed macrophage infiltration in the kidney

To further explore the effects of hemin on inflammation, we
use the ED-1 antibody to assess macrophage infiltration in the
kidney by immunohistochemistry (Fig. 3A). We observed that
sections of renal tissue from ZL-controls were almost devoid of
the dark brown ED1 positive staining that characterizes macro-
phage infiltration, and thus inflammatory activity. In contrast,
kidney sections from untreated ZF-controls were characterized
by marked increase in the number of ED-1 positive staining for
macrophage (Fig. 3A). Interestingly, treatment with hemin
m mesoporphyrin (SnMP) on HO-1 and HO-activity in the kidneys of ZFs and ZL.
hereas SnMP abolished the effects. Bars represent mean7SEM; n¼6 rats per group.
-control.



Table 1
Effect of the heme oxygenase (HO) inducer, hemin and the HO-blocker stannous mesoporphysin (SnMP) on physiological variables in Zucker fatty (ZF) and Zucker lean (ZL)
rats.

Parameters Animal groups

ZL Control ZLþHemin ZF Control ZFþHemin ZFþHeminþSnMP ZFþVehicle

Body weight (g) 475.877.3 451.576.5 785.9711.6† 732.478.1€ 717.6710.5€ 792.879.3
Fasting glucose (mmol/L) 7.370.5 6.270.1§ 8.570.2† 6.970.4€ 9.270.3€ 8.770.2
Albuminuria (mg/24 h) 1.870.2 1.370.1 19.672.8† 8.971.6n 21.773.1n 18.372.5
Proteinuria (mg/24 h) 4.170.3 3.370.2 72.978.6† 24.573.2nn 80.376.4nn 75.475.3
Creatinine Clearance (ml min/g kidney) 4.370.4 4.670.3 2.470.2†† 3.970.3n 2.270.1nn 2.370.2

§ po0.05 vs ZL.
€ po0.05 vs ZF.
† po0.05.
†† po0.01 vs ZL control.
n po0.05.
nn po0.01 vs ZF-control or ZL-Control, n¼6 per group.

Fig. 2. Effects of the heme oxygenase (HO)-inducer hemin and the HO-inhibitor sodium mesoporphyrin (SnMP) on macrophage chemo-attractant protein-1 (MCP-1),
macrophage inflammatory protein-1α (MIP-1α), 8-isoprostane and the total-anti-oxidant capacity in the kidneys of ZFs and ZL. Treatment with hemin (A) reduced MCP-1, (B)
suppressed MIP-1α, (C) reduced 8-isoprostane, but (D) increased the total-anti-oxidant capacity, whereas SnMP nullified the effects of hemin. Bars represent mean7SEM;
n¼6 rats per group. * po0.01 vs ZL-Control; † po0.01 vs ZL-Control; #po0.01 vs ZFþHeminþSnMP or ZF-control.
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markedly reduced the number of ED-1 stained macrophage,
suggesting reduction of macrophage infiltration and reduced
inflammation in hemin-treated ZFs. Further assessment of
macrophage infiltration by quantitative analyzes revealed that
hemin therapy significantly reduced the ED1 score of renal tissue
sections (Fig. 3B).



Fig. 3. Effect of hemin on macrophage infiltration in the kidney. (A) Representative
images of kidney section from different rats indicating the macrophage infiltration.
ED1-positive cells stained dark brown in renal sections were increased in untreated
ZF-controls (panels A-iii and A-iv) than in ZL-controls (panels A-i and A-ii), but were
reduced by hemin therapy (panels A-v and A-vi) (magnification �200). (B)
Quantitative analyzes per field revealed that macrophage infiltration in untreated
ZF-controls were markedly elevated than in ZL-control, but was significantly reduced
by hemin. Bars represent mean7SEM; n¼6 rats per group (* po0.01 vs all groups).

Fig. 4. Effect of hemin on renal histo-pathological lesions. (A) Representative
images of renal histo-pathological lesions. ZL-controls (panels A-i and A-ii) were
almost devoid of lesions in the cortex and the medulla, but untreated ZF-controls
(panels A-iii and A-iv) had severe histo-pathological kidney lesions including
glomerular hypertrophy, glomerular atrophy, tubular-cast, tubular-atrophy, tubular
fibrosis and mononuclear cell-infiltration. Interestingly, in hemin-treated ZFs
(panels A-v and A-vi), these histo-pathological lesions were greatly reduced. (B)
Semi-quantitative morphological analyzes reveal that hemin significantly attenu-
ated the lesions. Bars represent mean7SEM; n¼6 rats per group (* po0.01 vs all
groups).
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Hemin therapy improve kidney morphology

Since elevated inflammation and oxidative stress are known to
compromise kidney morphology [5–8], causing renal insufficiency,
we investigated whether the hemin-dependent suppression of
oxidative stress/inflammation (Figs. 2 and 3) would be accompa-
nied by renal morphological amelioration in ZFs. Our results
indicate that kidney sections from control-ZL were almost devoid
of pathological signs in the cortex and the medulla besides a few
areas of mild congestion (Fig. 4A). However, kidney sections from
untreated ZFs were characterized by severe morphological lesions



J.F. Ndisang, S. Tiwari / Redox Biology 2 (2014) 1029–10371034
such as glomerular hypertrophy, glomerular atrophy, tubular-cast,
tubular-atrophy and mononuclear cell-infiltration. Interestingly,
the administration of hemin therapy to ZFs resulted in marked
reduction of these lesions (Fig. 4A). Further evaluation of renal
lesions by semi-quantitative analysis revealed that hemin therapy
significantly abated renal lesions in ZFs (Fig. 4B).
Hemin therapy enhance proteins of regeneration in the kidney

To investigate the mechanisms by which hemin therapy im-
proves kidney morphology, we measured the expression of pro-
teins of regeneration such as beta-catenin, Oct3/4 and Pax2
[19–23] in renal tissue. Our results indicate that the basal protein
expressions of beta-catenin, Oct3/4 and pax2 in ZFs were signifi-
cantly reduced as compared to the ZL-control (Fig. 5A–C). How-
ever, treatment with hemin significantly enhanced the aberrant
expressions of beta-catenin, Oct3/4 and pax2.

Since developing nephrons are positive for WT1 expression
[22,23], we measured this protein (Fig. 5D). In ZFs, the expression
of WT1 was significantly reduced as compared to ZL-controls.
Interestingly, hemin therapy robustly enhanced the expression of
WT1 in ZFs (Fig. 5D).
Fig. 5. Effects of hemin on the expression of proteins of regeneration in the kidney
normalized by GAPDH that reveals that treatment with hemin (A) increased the exp
expression of Pax-2 and (D) increased the expression of WT1 in ZFs. Bars represent me
Hemin therapy potentiates proteins associated with podocyte and
glomerular function in the kidneys of ZFs

Since podocalyxin, CD2AP, podocin and nephrin [9–13] are
important proteins necessary for the formation of the podocyte
slit-diaphragm of the glomerular barrier that regulates filtration,
allowing small molecules to pass through but not larger protein
molecules [9–13], we investigated the effects of hemin on these
proteins. Moreover, defects in these fundamental podocyte pro-
teins cause proteinuria [9–13].

Our results indicate that in untreated ZF-controls, the basal
expressions of nephrin, podocalyxin, podocin and CD2AP were
significantly reduced as compared to the ZL-control (Fig. 6A–D).
However, treatment with hemin robustly enhanced the expres-
sions of nephrin, podocalyxin, podocin and CD2AP in ZFs.
Discussion

The present study suggests that an unregulated HO system
with hemin is a potent renoprotective strategy against obesity-
induced renal abnormalities. In obesity excessive oxidative stress
and elevated inflammation are among the pathophysiological
s. Western immunoblotting and relative densitometry of the expressed proteins
ression of β-catenin, (B) potentiated the expression of oct-3/4, (C) enhanced the
an7SEM; n¼4 rats per group.



Fig. 6. Effects of hemin on the expression of nephrin, podocalyxin, podocin, and CD2-associated protein (CD2AP) in the kidneys. Western immunoblotting and relative
densitometry of the expressed proteins normalized by GAPDH indicates hemin (A) increased the expression of nephrin, (B) potentiated the expression of podocalyxin, (C)
enhanced the expression of podocin and (D) increased the expression of CD2AP in ZFs. Bars represent mean7SEM; n¼4 rats per group.
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forces that compromise renal morphology and function [5–8].
Importantly, our study unveils for the first time that hemin
therapy potentiates proteins of regeneration/repair such as WT1,
beta-catenin, Oct3/4 and Pax2 [19–23] to ameliorate kidney histo-
pathological lesions such as glomerular hypertrophy, glomerular
atrophy, tubular-cast, tubular-atrophy and mononuclear cell-infil-
tration. Interestingly, the restoration of kidney morphology by
hemin was associated with the concomitant suppression of oxida-
tive/inflammatory insults, alongside the potentiation of several
transmembrane proteins including podocin, podocalyxin, CD2AP
and nephrin which are important for the formation of the
podocyte slit-diaphragm that regulates the aperture size of the
glomerular filtration barrier, selectively allowing small molecules
like ions to filter through, but not larger molecules like proteins
[9–13]. Defects in podocin, podocalyxin, CD2AP and nephrin are
known to cause proteinuria, and thus nephropathy [9–13]. Con-
sistently, our study unveiled aberrant expression of podocin,
podocalyxin, CD2AP and nephrin which was associated with
elevated albuminuria/proteinuria and reduced creatinine clear-
ance, and thus renal insufficiency in ZFs. However, treatment with
hemin potentiated the expression of podocin, podocalyxin, CD2AP
and nephrin in tandem, with corresponding reduction of albumi-
nuria/proteinuria which interestingly was associated with in-
creased creatinine clearance, and thus improved kidney function.
On the other hand, blockade of the HO system with the HO-
inhibitor, SnMP abolished the effects of hemin and re-instating
elevated levels of albuminuria/proteinuria and reduced levels of
creatinine clearance as observed in ZF-controls, suggesting that an
upregulated HO system is renoprotective. Therefore it is possible
that the multifaceted mechanisms by which an upregulated HO
system by hemin rescues nephropathy in ZFs includes: (i) the
amelioration of kidney histo-pathological lesions; (ii) the poten-
tiation of proteins of repair/regeneration such as WT1, beta-
catenin, Oct3/4 and Pax2; and (iii) the potentiation of podocalyxin,
CD2AP, podocin and nephrin.

Hemin administration caused a slight loss of body weight and
also improved glucose metabolism. We recently showed that
upregulating the HO system with hemin potentiates insulin
signaling and glucose metabolism in different diabetic including
non-obese Goto-Kakizaki rats [34,35] and Zucker diabetic fatty rat
[31], a genetically obese leptin receptor-deficient (fa/fa) model
[36,37] and streptozotocin induced diabetes [38]. Similarly, we
also observed improved insulin-signaling/glucose metabolism in
uninephrectomized deoxycorticosterone-acetate (DOCA)-hyper-
tension [39] and in spontaneously hypertensive rats [40,41].
Interestingly, the anti-diabetic effect of hemin was accompanied
by enhanced insulin-sensitivity [31,34,35,38], alongside the po-
tentiation of agents that enhance glucose metabolism, including
adiponectin, adenosine monophosphate-activated-protein-kinase
(AMPK), aldolase-B and GLUT4. Correspondingly, hemin improved
intraperitoneal glucose-tolerance (IPGTT), reduced insulin-toler-
ance (IPITT), lowered insulin resistance (HOMA-IR index), and the
inability of insulin to enhance GLUT4 was overturned
[31,34,35,38].

Although hemin therapy caused a slight loss of body weight,
toxicity is quite unlikely because important toxicity indices such as
plasma gamma-glutamyltransferase, aspartate aminotransferase
and alanine aminotransferase were within normal range [31,32].
Rather, the improved metabolism in hemin-treated animals may
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lead to improved catabolism, better caloric dispensation and loss
of weight.

Collectively, our study suggests that upregulating the HO
system with hemin improves kidney function by ameliorating
histo-pathological lesions, alleviating oxidative/inflammatory in-
sults and reducing albuminuria/proteinuria, while concomitantly
enhancing nephrin, podocin, podocalyxin, CD2AP and increasing
creatinine clearance. Thus HO-inducers may be explored as in the
design of novel drugs against nephropathy, especially when it is
co-morbid with obesity.
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