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Metabolic crosstalk between the heart and liver
impacts familial hypertrophic cardiomyopathy
Jason A Magida & Leslie A Leinwand*

Abstract

Familial hypertrophic cardiomyopathy (HCM) is largely caused by
dominant mutations in genes encoding cardiac sarcomeric pro-
teins, and it is etiologically distinct from secondary cardiomyopa-
thies resulting from pressure/volume overload and neurohormonal
or inflammatory stimuli. Here, we demonstrate that decreased left
ventricular contractile function in male, but not female, HCM mice
is associated with reduced fatty acid translocase (CD36) and AMP-
activated protein kinase (AMPK) activity. As a result, the levels of
myocardial ATP and triglyceride (TG) content are reduced, while
the levels of oleic acid and TG in circulating very low density lipo-
proteins (VLDLs) and liver are increased. With time, these meta-
bolic changes culminate in enhanced glucose production in male
HCM mice. Remarkably, restoration of ventricular TG and ATP defi-
cits via AMPK agonism as well as inhibition of gluconeogenesis
improves ventricular architecture and function. These data under-
score the importance of the systemic effects of a primary genetic
heart disease to other organs and provide insight into potentially
novel therapeutic interventions for HCM.
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Introduction

Familial hypertrophic cardiomyopathy (HCM) is a disorder affecting

approximately 0.2% of the population and is the leading cause of

sudden death in young people in the United States (Redwood et al,

1999). The R403Q mutation, located in the actin-binding domain of

cardiac myosin heavy chain, is linked to a severe clinical phenotype

(Seidman & Seidman, 2001), and transgenic mice with this mutation

exhibit a number of pathological characteristics of the human dis-

ease, including cardiac hypertrophy followed by a sexually dimor-

phic end-stage phenotype characterized by progressive ventricular

wall thinning, chamber dilation, contractile dysfunction, and heart

failure (Hecht et al, 1993; Freeman et al, 2001; Harris et al, 2006).

Cardiomyopathies generally present an energy-starved state due

to impaired cardiac fatty acid utilization and ATP synthesis, result-

ing in reduced ATP content (Beer et al, 2002; Neubauer, 2007;

Lopaschuk et al, 2010). This energy-deprived condition leads to ele-

vations in the activity of AMPK, a cellular sensor of the energetic

state and a regulator of metabolic processes (Dolinsky & Dyck,

2006). AMPK activity, which is regulated by estrogen, phosphocrea-

tine, adenine nucleotides, and long-chain fatty acids, facilitates cata-

bolic processes to rectify energy starvation (Dolinsky & Dyck, 2006;

D’Eon et al, 2008; Rogers et al, 2009). This process primarily occurs

via (i) stimulation of fatty acid influx through the trafficking of fatty

acid translocase (CD36) to the plasma membrane and (ii) de-repres-

sion of fatty acid oxidation (Dolinsky & Dyck, 2006). Cardiac-specific

CD36-null mice have elevated very low density lipoprotein (VLDL),

as clearance of these triglyceride (TG)-rich lipoproteins by the heart

is substantially reduced (Bharadwaj et al, 2010). While HCM due to

sarcomeric protein mutations is also known to be associated with an

energy-starved state (Crilley et al, 2003), little is known about CD36

and AMPK activities in mouse models of sarcomeric mutations.

However, depressed cardiac CD36 activity, reduced lipid clearance,

and reduced cardiac TG content have been described in idiopathic

HCM patients (Tanaka et al, 1997; Nakae et al, 2010).

Increased circulating lipid levels can result in TG accumulation

in liver in addition to enhancing protein kinase C (PKC) and mito-

gen-activated protein kinase (MAPK) activities (Shinomura et al,

1991; Augustus et al, 2003; Collins et al, 2006). Such pathogenic

signaling events activate the transcription of gluconeogenic genes,

including phosphoenolpyruvate carboxykinase (PEPCK), leading to

increased glucose production and hyperglycemia (Collins et al,

2006; Liu et al, 2007).

In this study, we show that HCM mice expressing a mutant

a-myosin heavy chain (Vikstrom et al, 1996; Freeman et al, 2001)

display impaired AMPK and CD36 activities, as well as a depletion

of high-energy adenine nucleotide and TG. This cardiopathology,

which is distinct from, for example, pressure overload, leads to ele-

vated VLDL TG, as well as excessive hepatic lipid accumulation and

PEPCK activity, culminating in increased glucose production. We

demonstrate that ventricular contractile function can be restored

either by activating AMPK or by inhibiting gluconeogenesis. These
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results provide insight into metabolic crosstalk between a primary

genetic heart disease and the liver as well as novel mediators of

HCM pathogenesis, offering potential therapeutic targets for improv-

ing cardiac function.

Results

Cardiac lipid uptake and content are reduced in male HCM mice

To determine whether an inherited form of HCM results in impaired

cardiac lipid utilization, we began by measuring the mRNA levels of

key regulators of fatty acid clearance and transport in wild-type

(WT) and HCM hearts. mRNAs encoding CD36, lipoprotein lipase,

and VLDL receptor were significantly reduced in 12-month-old HCM

hearts, an end-stage time-point at which HCM ventricular contractile

dysfunction, mass, and chamber dilation are maximal (Fig 1A,B,

Fig S1).

CD36 and lipoprotein lipase activities are integral to cellular lipo-

protein recognition and fatty acid influx (Febbraio et al, 1999;

Goudriaan et al, 2005). Both CD36 protein content and activity were

decreased in the HCM heart (Fig 1C,D). This was accompanied by

reduced VLDL TG hydrolysis by the HCM heart (Fig 1E,F, Fig S2).

We next asked whether this reduced capacity for fatty acid release

and uptake resulted in diminished myocardial lipid levels. We found

decreases in cardiac TG and fatty acid content at 12 months

(Fig 1G,H).

Plasma lipid content reflects cardiac pathology in HCM mice

We hypothesized that reduced lipid clearance by the HCM heart,

which occurs at least in part via a reduction in CD36 activity and

VLDL TG hydrolysis, would result in unused TG accumulation in

plasma (Febbraio et al, 1999; Goudriaan et al, 2005). There was, in

fact, increased circulating VLDL TG in male HCM mice (Fig 2A,B).

Furthermore, oleic acid that was reduced in the TG stores of the dis-

eased heart accumulated in unutilized VLDL (Fig 2C,D). The loss of

cardiac TG and increase in VLDL TG were not accompanied by

changes in circulating LDL TG, catecholamines, and non-esterified

fatty acids or body weight (Fig S3).

An alternative source of plasma lipid accumulation would be

increased TG-rich particle secretion by the liver (Zhang et al, 2004).

However, VLDL TG secretion rates and markers of hepatic VLDL

production (e.g., apolipoprotein B) were unaltered in HCM males

(Fig 2E–I, Fig S4).

Unique metabolic defects of end-stage HCM

To gauge the importance of the loss of CD36 activity to disease

progression, we examined the hearts of both younger HCM males

and age-matched (12-month-old) HCM females that remain in a com-

pensated hypertrophic state (Stauffer et al, 2006). In the absence of

ventricular dilation and dysfunction, 12-month-old HCM females did

not exhibit reduced CD36 expression or increased circulating TG

(Fig S5A–D). HCM males first developed left ventricular dysfunction

and dilation at 6 months of age, corresponding to the onset of CD36

downregulation and increased circulating TG, but preceding a loss of

cardiac lipid content (Fig S5E–I). As an activator of CD36 expression

and fatty acid uptake, we hypothesized that altered forkhead tran-

scription factor FoxO1 activity could play a role in the lipid clearance

deficiency associated with genetic heart failure (Bastie et al, 2005).

In fact, FoxO1 was downregulated in the male HCM heart (Fig S6A).

To form a basis for comparison of this HCM model with other

induced forms of cardiac pathology, we also assessed a pressure-

overload model of heart failure induced by transverse aortic

constriction. In contrast to end-stage HCM, cardiac CD36 protein

and TG levels increased during pressure-overload-induced heart

failure (Fig S6B–G). Furthermore, FoxO1 was upregulated by pres-

sure overload (Fig S6H). Taken together, these data suggest that

diminished CD36 activity in end-stage genetic heart disease

contributes to reduced TG clearance by the failing myocardium.

AMPK agonism improves cardiac function in HCM mice

Ventricular CD36 downregulation correlates with increased patho-

logical gene expression (as exemplified by b-myosin) at 12 months

of age (Fig 3A). Because of an established role for AMPK in regulat-

ing CD36 expression and activity (Chabowski et al, 2006), we

hypothesized that the loss of CD36 activity in the end-stage HCM

heart was due to insufficient AMPK activity. The HCM heart did, in

fact, display a progressive reduction in AMPK activity, paralleling

CD36 downregulation (Fig 3B, Fig S7A–D). To demonstrate the sig-

nificance of AMPK inactivity specifically to HCM males with con-

tractile dysfunction, we assessed ventricular AMPK phosphorylation

in 12-month-old HCM females or WT males subjected to pressure

overload and found no decrease in AMPK activation (Fig S7E,F).

Because contractility and fatty acids enhance AMPK activity

(Dolinsky & Dyck, 2006), the decrease in AMPK activity in HCM

males with contractile dysfunction may be due to the observed

decreases in ventricular lipid load and contractile rate associated

with genetic heart failure, but not pressure overload (Fig S7G). We

then examined whether the loss of CD36 and AMPK activities was

accompanied by corresponding pathological insults, such as high-

energy phosphate depletion. Like the dilated human heart (Beer

et al, 2002), we observed progressive ATP exhaustion in the

end-stage HCM male heart (Fig S7H).

Finally, we tested whether the AMPK agonist 5-aminoimidazole-

4-carboxamide 1-b-D-ribofuranoside (AICAR) would neutralize the

ventricular energy deficit and dysfunction in this normotensive

model of heart failure (Fig S8A,B). AICAR administration restored

AMPK activity, upregulated CD36, and increased TG and oleic acid

content in the HCM heart (Fig 3C,E, Fig S8C–E). AICAR also

increased cardiac ATP content, reduced pro-apoptotic cleaved

caspases-3/9 levels, normalized the expression of fetal genes that

are considered a hallmark of cardiac pathology (e.g., b-myosin,

ANP), and reduced ventricular chamber dilation without impacting

cardiac glycogen content or circulating insulin, glucose, non-

esterified fatty acid, and TG levels (Fig 3F–J, Fig S8F–J). Most

importantly, AICAR restored contractile function in HCM mice, as

demonstrated by increased ejection fraction (Fig 3J).

Hepatic lipid accumulation in HCM

Because the liver sequesters excess circulating lipoproteins (Augus-

tus et al, 2003), we analyzed hepatic lipid load. We found that the

loss of ventricular CD36 and lipoprotein lipase expression paralleled
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hepatic lipid accumulation as early as 6 months of age (Fig S9A–F).

In contrast to the HCM heart, the HCM liver exhibited increased

neutral lipid levels and oleic acid content at 12 months of age,

independent of gene expression promoting lipid clearance or bio-

synthesis (Fig 4).

To pursue the cellular mechanisms underlying these observa-

tions, we asked whether FaO hepatoma cells cultured with plasma

from HCM mice would recapitulate the lipid profile observed in

the HCM liver. Consistent with our observations in vivo, hepato-

cytes cultured with HCM plasma accumulated TG and fatty acids,

in the absence of lipogenic gene activation and cholesterol buildup

(Fig 5A,B, Fig S9G,H). In addition to TG accumulation, both

the VLDL fraction and hepatocytes cultured with plasma from

12-month-old HCM mice displayed increased levels of oleic acid,

representing an overlapping lipid signature between circulating

lipoproteins and hepatocytes cultured with HCM plasma

(Fig 5C, Fig S9I).

Primary heart disease affects hepatic function

Comparable to the circulating VLDL fatty acid profile, oleic acid

was enriched in the TG, diacylglycerol, and free fatty acid frac-

tions of the end-stage HCM liver (Fig 6A, Fig S10A). Diacylglyc-

erol and oleic acid are potent agonists of pathogenic intracellular

signaling mediators, such as PKC and MAPK (Shinomura et al,

1991; Lo et al, 1994; Collins et al, 2006). Western blot analyses

revealed increased PKCa protein levels and p38 MAPK phosphor-

ylation, which were dependent upon the hepatic TG accumulation
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Figure 1. Reduced capacity for lipid clearance in the hypertrophic cardiomyopathy (HCM) heart at 12 months.

A Fed mRNA levels of genes (determined by qRT-PCR) responsible for lipid clearance and handling; Cd36, lipoprotein lipase (LpL), very low density lipoprotein
receptor (Vldlr), fatty acid transport protein (Fatp1), heart-type fatty acid-binding protein (H-Fabp), malonyl CoA decarboxylase (Mcd), diacylglycerol
acyltransferase-1 (Dgat-1), microsomal triglyceride transfer protein (Mttp). Mean � s.e.m.; t-test; n = 5–7.

B Fasted mRNA levels of Cd36, LpL, and Vldlr. Mean � s.e.m.; t-test; n = 3.
C Cardiac CD36 protein immunoblot (normalized to b-actin). Mean � s.e.m.; t-test; n = 5–7.
D Western blot analysis of plasma membrane (PM/LYN+) to intracellular vesicle membrane (IC/LYN-) ratio of CD36. Ratio of fractions normalized to input.

Mean � s.e.m.; t-test; n = 4.
E, F Non-esterified fatty acid (NEFA) release from VLDL by ventricular tissue. Expressed as tissue/VLDL incubation time (E), or area under the curve of a 60-min

incubation in the presence or absence of the lipolytic inhibitor Triton WR1339 (F). Mean � s.d.; t-test (E) or ANOVA (F); n = 6.
G Thin-layer chromatography of cardiac lipid extracts; TG, free fatty acids (FFA), phospholipids (PL). Mean � s.e.m.; t-test; n = 5.
H Enzymatic determination of left ventricular NEFA content (normalized to protein). Mean � s.e.m.; t-test; n = 6.
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found associated with end-stage HCM at 12 months of age

(Fig 6B–E, Fig S10B–G). Supporting a role for PKC in mediating

p38 MAPK activity, was increased PKCa phosphorylation and co-

immunoprecipitation with p38 MAPK in the end-stage HCM liver

(Fig S10H,I).

FaO hepatocytes were cultured with plasma from healthy and

diseased mice to assess the MAPK-activating capacity of circulating

lipids. Incubating hepatocytes with the lipid-enriched end-stage

HCM plasma, from male mice at 12 or 3 months of age, resulted in

oleic acid and TG-dependent increases in p38 MAPK phosphorylation
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Figure 2. Hypertrophic cardiomyopathy (HCM) results in an accumulation of plasma triglycerides (TGs).

A Thin-layer chromatography of whole plasma and very low density lipoprotein (VLDL) lipid extracts from fasted 12-month-old males. n = 3–5.
B Enzymatic determination of VLDL TG levels in 2- to 12-month-old males. Mean � s.d.; t-test; n = 5–8.
C, D Gas chromatographic analysis of pooled left ventricular TG (C) and circulating VLDL fatty acid (D) composition. Mean (C) or Mean � s.d. (D); t-test; n = 5.
E Measurement of TG secretion in plasma and VLDL following inhibition of peripheral lipolysis by Triton WR1339 administration to 12- to 15-month-old males.

Mean � s.d.; t-test; n = 5–6.
F Western blot of ApoB100 secretion in plasma and VLDL following Triton WR1339 administration. n = 2–3.
G Hepatic microsomal TG transfer protein (Mttp) and ApoB100 transcript levels. Mean � s.e.m.; t-test; n = 6.
H, I Western blot analysis (H) and graphical representation (I) of hepatic ApoB protein levels (normalized to PonceauS) in 12-month-old males. Mean � s.e.m.; t-test; n = 5.
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only in response to plasma from 12-month-old mice (Fig 6F–H,

Fig S10J). This effect was largely abolished by the PKC inhibitor

calphostin C (Fig 6H; Gopalakrishna et al, 1992). To further test the

lipid dependence of PKC-mediated p38 MAPK activation, we

cultured FaO hepatocytes with different lipoprotein fractions and

the lipid extracts of those fractions. p38 MAPK was robustly

activated by lipid extracts of VLDL from end-stage HCM plasma

(Fig 6I–J).
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Figure 3. Ameliorating depressed AMPK activity in male hypertrophic cardiomyopathy (HCM) mice improves contractile function.

A Regression analysis of ventricular CD36 protein and b-myosin mRNA at 12 months.
B Western blot analysis of ventricular AMPK phosphorylation (normalized to total AMPK) in 12-month-old males. Mean � s.e.m.; t-test; n = 6–7.
C Western blot analysis of total and phosphorylated AMPK in pooled ventricular lysates from mice treated with vehicle or 5-aminoimidazole-4-carboxamide 1-b-D-

ribofuranoside (AICAR). Mean � s.e.m.; ANOVA;n = 2–8.
D Enzymatic determination of ventricular non-esterified fatty acid (NEFA) content (normalized to protein). Mean � s.e.m.; ANOVA; n = 3.
E Gas chromatographic determination of ventricular oleic acid (C18:1x9) content. Mean � s.e.m.; ANOVA; n = 3.
F Ventricular ATP content following vehicle or AICAR administration. Negative control; H2O2-treated NRVM (neonatal rat ventricular myocytes). Mean � s.e.m.;

ANOVA; n = 4–8.
G, H qPCR of ventricular b-Myhc (G) and ANP (H) expression in vehicle or AICAR-treated mice. Mean � s.e.m.; ANOVA; n = 3–5.
I, J Echocardiographic determination of left ventricular volume in systole (I) and ejection fraction (J) before and after AICAR administration. Mean � s.e.m.; ANOVA;

n = 4–14.
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HCM-induced oleic acid accumulation and MAPK activation in

the liver may facilitate the phosphorylation and stabilization of per-

oxisome proliferator-activated receptor-c coactivator-1a (PGC-1a)
protein, and stimulation of a PGC1a-driven transcriptional program

(Puigserver & Spiegelman, 2003; Collins et al, 2006). Therefore,

we examined PGC1a-dependent activities for evidence of a

myocardium-derived or excluded effector that would alter liver

function. In support of this, the PGC-1a target phosphoenolpyruvate

carboxykinase (PEPCK) was upregulated in FaO hepatocytes

infected with PGC1a-expressing adenovirus and cultured with HCM

VLDL isolates, in an oleic acid-dependent manner (Fig 7A,B,

Fig S11A,B). Notably, increased p38 MAPK phosphorylation and

PEPCK expression occurred independently of adrenergic, oxidative,

hypoxic, or inflammatory stress (Fig S11C–I).

Corroborating the in vitro consequences of oleic acid accumula-

tion (Puigserver & Spiegelman, 2003; Collins et al, 2006) was

evidence suggestive of increased PGC-1a phosphorylation by phos-

pho-p38 MAPK and increased levels of PGC-1a protein, but not

transcripts, in the HCM liver (Fig 7C,D, Fig S12A–E). Consistent

with PGC-1a phosphorylation was increased PGC-1 bound to the

Pepck promoter, and the mRNA levels of the PGC-1a target, PEPCK,

were elevated in the end-stage HCM male liver (Fig 7E, Fig S12F,G).

The activation of a PGC-directed transcriptional program included

hepatocyte nuclear factor-4 upregulation in the HCM liver (Fig 7F,
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Figure 4. Hepatic lipid accumulation in 12-month-old male hypertrophic cardiomyopathy (HCM) mice.

A Representative oil-red-O-stained WT and HCM liver sections.
B, C Thin-layer chromatography (B) and graphical presentation of TG, diacylglycerol (DAG), free fatty acids (FA) and cholesterol (C) of hepatic lipid extracts.

Mean � s.e.m.; t-test; n = 4–5.
D Enzymatic measurement of hepatic triglyceride (TG) content (normalized to protein). Mean � s.e.m.; t-test; n = 5.
E Gas chromatographic assessment of hepatic fatty acid composition. Mean � s.d.; t-test; n = 4.
F qPCR analysis of hepatic lipid clearance and lipogenic gene expression; Cd36, lipoprotein lipase (Lpl), very low density lipoprotein receptor (Vldlr), fatty acid

synthase (Fasn), monoacylglycerol acyltransferase-1 (Mgat-1), diacylglycerol acyltransferases-1/2 (Dgat-1/2). Mean � s.e.m.; t-test; n = 6–8.

Jason A Magida and Leslie A Leinwand Cardiomyopathy and gluconeogenesis EMBO Molecular Medicine

ª 2014 The Authors EMBO Molecular Medicine Vol 6 | No 4 | 2014 487



G, Fig S12H,I). Notably, lipid accumulation and PEPCK upregulation

appeared to be independent of hepatic adrenergic receptor, gluco-

corticoid receptor, or peroxisome proliferator-activated receptor-a
activities and were not detected in the kidneys of HCM males

(Figs S13, 14).

We hypothesized that the induction of hepatic PGC-1a activity

and PEPCK-mediated gluconeogenesis would result in elevated

levels of circulating glucose in HCM mice. We observed elevated

fasting blood glucose levels and gluconeogenic activity in end-

stage HCM males, independently of hepatic glycogen depletion

(Fig 7H–K).

Altered hepatic function is specific to end-stage HCM in males

Age-matched HCM females, which retain ventricular function and

are devoid of gluconeogenic stimuli (e.g., increased plasma/hepatic

lipids and p38 MAPK activity) or PGC-1a target activation, did not

exhibit elevated glucose production or blood glucose levels

(Fig S15). Although pressure overload yielded ventricular dysfunc-

tion, it did not result in increased plasma and VLDL TG, hepatic TG

accumulation and p38 MAPK activation, PGC-1a target upregula-

tion, or elevated glucose levels (Fig S16). Therefore, excessive glu-

cose production appears to be specific to the systemic metabolic

consequences of heart failure due to HCM.

Inhibition of gluconeogenesis restores cardiac function
in HCM mice

Increased fasting blood glucose levels correlated with reduced ven-

tricular function in male mice (Fig 8A). Although end-stage HCM

resulted in elevated monoacylglycerol acyltransferase-2 expression

and diacylglycerol levels in the heart, all other indicators of damage

induced by excessive glucose exposure were absent in the HCM

heart (Fig S17; Mostafa et al, 1993; Depre et al, 2000; Chen et al,

2010; Jeong et al, 2011).

To test whether the observed activation of hepatic gluconeo-

genesis and increased blood glucose levels contribute to cardiac

dysfunction in HCM males, and to avoid the systemic compensa-

tory mechanisms of a liver-specific PEPCK null mouse, we

administered 3-mercaptopicolinic acid (3-MPA), a specific inhibi-

tor of PEPCK activity (DiTullio et al, 1974; Jomain-Baum et al,

1976; She et al, 2000; Yang et al, 2008). 3-MPA effectively

reduced elevated glucose production and blood glucose without

influencing heart rate or plasma TG, non-esterified fatty acid, or

catecholamine levels (Fig 8B,C, Fig S18). Although 3-MPA normal-

ized pro-apoptotic cleaved caspase-9, monoacylglycerol acyltrans-

ferase-2, and sarcoplasmic reticulum calcium ATPase levels, it

failed to reduce the expression of fetal genes, including b-myosin

and ANP (Fig S19A–E). Strikingly, the suppression of excessive
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Figure 5. Lipid deposition in FaO hepatocytes cultured with hypertrophic cardiomyopathy (HCM) plasma.

A Left panel: TLC of intracellular lipids in FaO cells following incubation in media alone or fasted plasma from 12-month-old male WT or HCM littermates. Right panel:
graphical presentation of data. Mean � s.e.m.; ANOVA; n = 3–5.

B qPCR analysis of lipogenic gene transcript levels in FaO cells; fatty acid synthase (Fasn), stearoyl CoA desaturase-1 (Scd-1), diacylglycerol acyltransferase-1 (Dgat-1).
Mean � s.e.m.; ANOVA; n = 3.

C Gas chromatographic analysis of fatty acid composition in triglyceride (TG) and free fatty acids extracted from plasma-cultured FaO cells. Mean � s.d.; ANOVA; n = 3.
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PEPCK-mediated gluconeogenesis reversed ventricular chamber

dilation and cardiac dysfunction in HCM mice (Fig 8D,E,

Fig S19F).

Discussion

Cardiac myosin mutations are a primary or cardiac-specific insult,

distinguishing end-stage familial HCM from cardiomyopathies

secondary to pressure or volume overload, coronary disease, infarc-

tion, ischemia, pacing, diabetes, or obesity. Unlike genetic HCM,

these secondary conditions, as well as idiopathic cardiomyopathies,

are often associated with insulin resistance, elevated catecholam-

ines, cachexia, or inflammatory cytokines and may result in ele-

vated plasma non-esterified fatty acids (Redwood et al, 1999;

Seidman & Seidman, 2001; Cambronero et al, 2009; Lopaschuk

et al, 2010). In this study, we demonstrate that genetic HCM results

in impaired cardiac lipid clearance and storage, as well as an

energy-deficient state. In contrast to the reductions in cardiac TG

content observed in hypertensive or volume-overload models of

heart failure, the lipid loss observed in the HCM heart is due to

intrinsic alterations in cardiac metabolism, rather than a secondary

response to elevated catecholamines or inflammatory cytokines and

systemic cachexia (O’Donnell et al, 2008; Kato et al, 2011; Melenovsky
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Figure 6. Altered hepatic signaling in 12-month-old hypertrophic cardiomyopathy (HCM) males.

A Oleic acid (C18:1x9) content in hepatic triglyceride (TG), diacylglycerol (DAG), and free fatty acid (FA) pools, as well as chromatographs of stearic acid (C18:0) and
oleic acid in the hepatic fatty acid pool. n = 5.

B, C Western blot analysis (B) and corresponding quantified data (C) of PKCa (normalized to b-actin) and phosphorylated/total p38 mitogen-activated protein kinase
(MAPK). Mean � s.e.m.; t-test; n = 6–7.

D, E Regression analyses of hepatic phosphorylated p38 MAPK versus PKCa (D) or TG (E) content.
F Western blots of phosphorylated and total p38 MAPK in hepatocytes cultured with media containing no, WT or HCM plasma. Mean � s.e.m.; ANOVA; n = 5.
G Regression analysis of phosphorylated p38 MAPK and TG content in FaO cells.
H ELISA of p38 MAPK phosphorylation when FaO cells were incubated with fasted plasma from 3- or 12-month-old male mice � calphostin C, an inhibitor of PKC.

The ratio of phosphorylated to total p38 MAPK was normalized to cell number (determined by crystal violet staining). Mean � s.e.m.; ANOVA; n = 4.
I, J Western blot analysis (I) and corresponding quantified data (J) of phosphorylated and total p38 MAPK levels in FaO hepatocytes cultured with media containing

very low density lipoprotein (VLDL) lipid extracts from fasted WT or HCM plasma. Graph depicts cellular p38 MAPK phosphorylation and oleic acid content of
VLDL extracts supplemented to the culture media. Mean � s.e.m.; t-test; n = 3.
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et al, 2011a; Table S1A). Energy starvation and reduced fatty acid

extraction from VLDL TG by the murine HCM heart (rather than

increased VLDL particle number) are consistent with descriptions of

diminished lipid clearance and TG storage in the hearts of idiopathic

HCM patients (Tanaka et al, 1997; Tadamura et al, 1998; Beer et al,

2002; Nakae et al, 2010).

Since the heart is a principal lipolytic organ, the proposed defects

in lipoprotein clearance caused by mutant myosin expression result

in elevated circulating VLDL TG and oleic acid in HCM males. How-

ever, normal hepatic lipoprotein secretion rates indicate that a rise

in plasma TG is not an artifact of adipose-derived non-esterified

fatty acid release and subsequent re-esterification by the liver in

HCM males. In contrast to the normotensive HCM mouse, many

heart failure models are generated by inducing or mimicking a

hypertensive or pressure-overloaded state. However, these surgical

and dietary manipulations may result in inflammatory cytokine, cat-

echolamine, and free fatty acid surges, as well as substantial dia-

betic complications, increased hepatic fatty acid synthase activity,

and elevated plasma cholesterol levels (Shimizu et al, 2010; Kato

et al, 2011; Melenovsky et al, 2011b). Similarly, idiopathic cardio-

myopathies in human subjects are associated with corresponding

complications, such as inflammatory or hyperadrenergic states,

obscuring the primary etiology and systemic consequences

(Omodani et al, 1998; Cambronero et al, 2009; Lopaschuk et al,

2010). These confounding elements are absent in our hereditary

HCM model of cardiac dysfunction, allowing familial HCM to be dis-

tinguished from secondary cardiomyopathies and any extra-cardiac

phenotypes to be traced directly to the failing heart (Table S1A).
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Figure 7. Hepatic gluconeogenic response to end-stage hypertrophic cardiomyopathy (HCM).

A Pepck expression in FaO cells cultured with whole plasma or very low density lipoprotein (VLDL) and infected with adenovirus expressing PGC-1a or GFP.
Mean � s.e.m.; ANOVA; n = 3–5.

B Regression analysis of VLDL oleic acid (C18:1x9) content supplemented to culture medium and Pepck expression of FaO hepatocytes (infected with PGC1-expressing
adenovirus).

C qPCR of hepatic Pgc1a. Mean � s.e.m.; t-test; n = 6–8.
D Western blot of hepatic PGC-1a (normalized to b-tubulin). Mean � s.e.m.; t-test; n = 7.
E qPCR of hepatic Pepck transcript levels in males. Mean � s.e.m.; t-test; n = 2–6 (2 m), n = 6 (6 m), n = 6 (12 m).
F qPCR of Hnf4a. Mean � s.e.m.; t-test; n = 6–8.
G Western blot of HNF-4a (normalized to b-tubulin). Mean � s.e.m.; t-test; n = 4.
H Timeline of fasting blood glucose levels in HCM males. Mean � s.d.; t-test; n = 7–9 (2 m), n = 8–9 (4 m), n = 6 (6 m), n = 3–5 (10 m), n = 10–11 (12 m).
I Regression analysis of circulating VLDL oleic acid (C18:1x9) content and blood glucose. n = 5–6.
J Blood glucose following pyruvate injection. Mean � s.d.; t-test; n = 4–6.
K Hepatic glycogen-derived glucose levels in 12-month-old males. Normalized to wet tissue weight. Mean � s.e.m.; t-test; n = 5.
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The relationship between disrupted lipid use by the heart and the

pathophysiology of HCM in males is underscored by three observa-

tions. First, the cardiac exclusion and buildup of plasma TG occurs

concomitantly with the deterioration of cardiac structure and func-

tion in HCM mice. Second, HCM females and pressure-overloaded

mice do not exhibit reductions in ventricular CD36 expression or

AMPK activity, increased plasma TG, or the downstream hepatic

repercussions observed in male HCM mice (Table S1A–C). Third,

normalizing lipid uptake by the pharmacological re-activation of

AMPK ameliorates cardiac CD36 and lipid depletion, energy

starvation, dysfunction, dilation, and pathological gene expression

in male HCM mice. While numerous studies of the infarcted, paced,

or pressure/volume-overloaded heart have described the enhance-

ment of cardiac function with the AMPK agonist metformin, these

cardiac disease models display features of neurohormonal, diabetic,

or inflammatory stress and maintained or increased AMPK activity,

indicating an alternative mode of action for metformin and

underscoring the unique features of HCM (Tian et al, 2001;

Dolinsky & Dyck, 2006; Saeedi et al, 2008; Sasaki et al, 2009; Benes

et al, 2011; Wang et al, 2011; Table S2).

An important aspect of our study is the demonstration of a patho-

logical link between the metabolic functions of the heart and liver,

both organs serving as essential VLDL TG clearance sites (Augustus

et al, 2003). Increased TG and oleic acid in the VLDL fraction,

which we posit is the result of a decreased capacity for cardiac lipid

disposal, accumulates in the HCM liver. Accordingly, p38 MAPK

interacts with a lipid-sensitive PKC isozyme in the HCM liver and is

efficiently activated in vitro by HCM VLDL lipid extracts, and its

activity is abrogated by PKC inhibition. Consistent with the accumu-

lation of TG derivatives, particularly diacylglycerol and oleic acid,

genetic heart disease results in a plasma lipid-initiated and PKC-

dependent activation of hepatic MAPK.

We show that the VLDL-initiated and MAPK-mediated activation

of PGC-1a results in excessive gluconeogenesis. The finding that

HCM females and young HCM males, devoid of abnormal cardiac

function and architecture, do not display elevated hepatic PEPCK

expression or circulating glucose levels emphasizes the pathological

implications of hepatic feedback.

In summary, we propose amodel whereby pathological alterations

in cardiac lipid utilization activate a distal PKC-dependent MAPK sig-

naling cascade that promotes excessive hepatic PEPCK expression

and gluconeogenesis in HCM mice, in a sexually dimorphic manner

(Fig S20). We demonstrate that ventricular function can be restored

by the pharmacological rectification of cardiac substrate metabolism

or by inhibition of excessive hepatic gluconeogenesis (Tables S2, S3).

These results identify (i) novel mechanisms for ameliorating genetic

heart disease, (ii) metabolic and inflammatory discrepancies between

a genetic cardiomyopathy and other drivers of heart failure, (iii) puta-

tive sources of the clinical heterogeneity associated with HCM, and

(iv) the importance of crosstalk between the heart and liver during

the progression of primary genetic heart disease.

Materials and Methods

Animal use and care

The HCM mouse model used in this study expresses a mutant rat

a-MyHC with expression driven by an a-MyHC promoter on a

C57Bl/6 background (Vikstrom et al, 1996). The transgene coding

region contained twomutations, a pointmutation, R403Q, and a deletion

of 59 amino acids in the actin-binding site bridged by the addition of

nine non-myosin amino acids. All mice were fed a standard rodent

chow diet (Teklad 8640) ad libitum. Mice were anaesthetized with

isoflurane and sacrificed by cervical dislocation between 13:00 and

17:00 h. Exsanguination by cold PBS perfusion was followed by

removal of tissues and immediate freezing in liquid nitrogen.

Quantitative PCR

Total RNA was extracted from ventricles and livers using TRI

Reagent (Life Technologies, Grand Island, NY, USA). Two

micrograms of RNA was reverse-transcribed into cDNA using the
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Figure 8. Inhibition of gluconeogenesis rescues cardiac function.

A Regression analysis of left ventricular function (ejection fraction) and
circulating glucose in 12- to 15-month-old male mice.

B Potent inhibition of phosphoenolpyruvate carboxykinase (PEPCK) activity
by 3-mercaptopicolinic acid (3-MPA) administration is reflected by
decreased circulating glucose. Mean � s.e.m.; t-test; n = 3.

C Pyruvate-induced glucose production following 3-MPA administration
(normalized to pre-injection values). Mean � s.e.m.; ANOVA; n = 5–7.

D, E Echocardiographic determination of systolic left ventricular volume (D)
and ejection fraction (E) in mice treated with vehicle or 3-MPA.
Mean � s.e.m.; ANOVA; n = 8–12.

Jason A Magida and Leslie A Leinwand Cardiomyopathy and gluconeogenesis EMBO Molecular Medicine

ª 2014 The Authors EMBO Molecular Medicine Vol 6 | No 4 | 2014 491



SuperScript III first-strand cDNA synthesis kit (Life Technologies).

Real-time PCR was performed using the ABI7500 system. Gene

expression was normalized to 18S ribosomal RNA and calculated as

relative change. Typically, 20 ng (gene of interest) or 0.4 ng (18S)

of cDNA, 0.25 lM of each primer, and SYBR Green Master Mix (Life

Technologies) were used for qPCR. (See Supplementary Table S4 for

primer sequences and Supplementary Materials and Methods

description of chromatin immunoprecipitation and PCR.)

ATP Content

Left ventricles were homogenized in cold PBS, sonicated, and centri-

fuged at 4°C. Supernatant ATP and ADP contents were measured by

the EnzyLightTM ADP/ATP Ratio assay kit (BioAssay Systems,

Hayward, CA, USA, ELDT-100) according to the manufacturer’s

instructions.

SDS–PAGE and Western blotting

Thirty milligrams of left ventricles and livers was homogenized and

sonicated in RIPA (50 mM Tris–HCl pH 8, 150 mM NaCl, 0.5%

sodium deoxycholate, 1% NP-40, 0.1% SDS) supplemented with

complete EDTA-free protease inhibitor (Roche, Indianapolis, IN,

USA), 1 mM phenylmethylsulfonyl fluoride, 1 mM sodium pyro-

phosphate, 1 mM sodium molybdate, 1 mM sodium orthovanadate,

2 mM sodium fluoride, and centrifuged at 14,000 g for 20 min.

Twenty-five micrograms of lysate (in b-mercaptoethanol-containing

buffer) was resolved in a 9% (or 4–20% gradient for APOB) poly-

acrylamide gel and analyzed by Western blot. For APOB SDS–PAGE,

5 ll plasma or lipoprotein fractions were combined 1:2 with RIPA

and loading buffer, boiled, and run 24 h. (See Supplementary Materials

and Methods for immunoprecipitation protocol and antibodies.)

Plasma membrane fraction

Plasma membrane and intracellular giant sarcolemmal vesicle frac-

tions were isolated as previously described (Han et al, 2007). (See

Supplementary Materials and Methods.)

Enzyme-linked immunosorbent assays

Cytokines were determined by the mouse cytokine Milliplex 13, per-

formed by Biomarker Services at Millipore Bioscience (St. Charles,

MO, USA) on the Luminex xMAP platform. Catecholamine concen-

trations were determined by the 3-CAT or norepinephrine ELISA

(Labor Diagnostika Nord #BAE-5600 or 5200; Nordhorm, Germany),

glucocorticoids measured using the cortisol or corticosterone ELISA

(Arbor Assays #K003-H1 or K014-H1; Ann Arbor, MI, USA), and

insulin measured using a rat/mouse insulin ELISA (Millipore

#EZRMI-13K; Billerica, MA, USA), per manufacturer’s instructions.

Glucose measurements

For glucose and pyruvate tolerance tests, mice were fasted 6 or

18 h and given an IP injection of (2 g/kg body weight) glucose

or pyruvate, respectively, followed by glucose determinations at

0- to 120-min time-points. Blood glucose was determined using a

handheld glucometer (BD Bioscience, Franklin Lakes, NJ, USA) at

16:00 h in the absence of anesthesia. Glycogen was measured as

glucose released by amyloglucosidase as previously described

(Passonneau & Lauderdale, 1974).

Lipid analyses

Blood was removed after a 6-h fast by retro-orbital eye bleeding at

16:00 h with the use of isoflurane. Tissue, plasma, and lipoprotein

fraction TG and non-esterified free fatty acid content and cholesterol

were measured using thin-layer chromatography and commercial

kits from Wako Diagnostics (Richmond, VA, USA, L-type TG H,

NEFA-HR 2, and Chol-E) per manufacturer’s instructions and nor-

malized to protein content. Lipoprotein fractions were isolated as

previously described (Teupser et al, 2004). VLDL TG hydrolysis was

measured by homogenization of ventricular tissue in buffer

(150 mM NaCl, 10 mM Tris, 2 mM EDTA, pH 7.4), then incubating

lysates with VLDL and buffer or Triton WR1339 for 0–60 min at

37°C. Following incubation period, samples were immediately

frozen for storage, and NEFA was measured by the aforementioned

enzymatic assays. Blood and tissue lipid peroxide levels were deter-

mined by assaying for TBARS (Cayman Chemical #100009055; Ann

Arbor, MI, USA) according to the manufacturer’s instructions and

normalized to protein content. Frozen livers were sectioned and Oil

Red O stained by Premier Histology. (See Supplementary Materials

and Methods for chromatography methods.)

Hepatic triglyceride secretion

Overnight-fasted (12- to 15-month-old) mice were injected with

900 mg/kg body weight Triton WR1339 (Sigma #T0307; St. Louis,

MO, USA ). Blood was drawn at 0, 30, 60, 120 and 200 min post-

injection for enzymatic measurements of total plasma and VLDL

TG, as well as Western blotting for APOB levels in circulation.

Cell culture

FaO hepatoma cells were maintained as specified by ATCC. Cells

were grown to 80% confluence in DMEM containing 20% horse and

5% FBS. Cultures were serum-starved before each experiment,

whereby DMEM contained 10% fasting plasma, lipoprotein fraction,

or reconstituted lipid extracts. qRT-PCR and immunoblot experi-

ments were cultured in 12-well plates for 48 h before being washed

with cold PBS and cells scraped into Trizol or RIPA, respectively.

Cells were alternatively cultured in a 96-well plate when infected

with adenovirus or p38 MAPK activity was measured by a cell-based

enzyme-linked immunosorbent assay (Active Motif #48100; Carls-

bad, CA, USA) according to the manufacturer’s instructions. (See

Supplementary Materials and Methods for cardiomyocyte culture

protocol.)

Pharmacological interventions

Baseline echocardiographic and glucose measurements of 12- to 15-

month-old male mice were taken in the fasted state 2–5 days prior

to 3-MPA or vehicle IP injections, followed by resumption of ad libi-

tum feeding. Mice were then fasted 12 h before an IP injection of 3-

MPA [100 mg/kg body weight] in 1% starch/saline (w/v) suspen-

sion or vehicle alone. Echocardiographic and glucose measurements
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were followed by a second 3-MPA injection [25 mg/kg] and sacri-

fice 2 h later. 12- to 15-month-old male baseline plasma lipid or

blood glucose and echocardiographic measurements were per-

formed 1 day before AICAR [500 mg/kg body weight] in saline was

IP injected. Mice received 5 AICAR or saline injections over the

course of a week, followed by echocardiography and sacrifice on

the 8 days.

Echocardiography, banding, and blood pressure measurements

Measurements of cardiac function and dimensions were made

blinded in M-mode, using a Philips Sonos 5500 with a 15–6 MHz

linear array transducer, three times and then averaged. For blood

pressure measurements, the right carotid artery was dissected and

isolated. A PE50 fluid-filled catheter was placed in the carotid artery.

Steady-state systemic hemodynamics were obtained using the

I-Worx (model #BP-100) fluid-filled catheter system. (See Supple-

mentary Materials and Methods for echocardiographic formulae and

banding protocol.)

Statistics

Error bars represent s.e.m. unless otherwise noted. Statistical analy-

ses were performed using two-tailed Student’s t-test, or one-way

ANOVA (and Bonferroni correction) where appropriate, with a

P-value of ≤ 0.05 considered to be statistically significant.

Study approval

All animal experiments were approved by the Institutional Animal

Care and Use Committee at the University of Colorado at Boulder.

The paper explained

Problem
End-stage familial HCM is due to a cardiac-specific genetic defect.
This pathology can be distinguished from other cardiomyopathies by
the absence of pre-existing metabolic, neurohormonal, and inflamma-
tory confounders. Therefore, the study of familial HCM may offer
insight into metabolic and systemic adaptations stemming directly
from the diseased cardiac myocyte.

Results
We demonstrate that a primary cardiac myocyte defect leads to aber-
rant lipid accumulation and signaling in the liver. These systemic
effects depend upon sex and disease progression. The resulting hepa-
tic phenotypes, particularly the increase in blood glucose levels, signif-
icantly impact cardiac function. Importantly, normalizing lipid delivery
defects in the heart or inhibition of excessive glucose production in
the liver improves ventricular contractile dysfunction in HCM mice.

Impact
Our study illustrates clear metabolic distinctions between heart failure
resulting from the cardiac-specific expression of a sarcomeric mutant
protein and pressure-overload models. Moreover, our findings uncover
a novel crosstalk between a cardiac-specific defect and hepatic
metabolism and provide a basis for a better understanding of the
clinical heterogeneity of HCM. Finally, our data could be used in the
development of better diagnostics and treatments for genetic heart
disease progression.

Supplementary information for this article is available online:

http://embomolmed.embopress.org.
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