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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by multiple
subtypes and variable disease progression. Blood biomarkers have been variably associated with subtype, severity,
and disease progression. Just as combined clinical variables are more highly predictive of outcomes than individual
clinical variables, we hypothesized that multiple biomarkers may be more informative than individual biomarkers to
predict subtypes, disease severity, disease progression, and mortality.

Methods: Fibrinogen, C-Reactive Protein (CRP), surfactant protein D (SP-D), soluble Receptor for Advanced Glycation
Endproducts (sRAGE), and Club Cell Secretory Protein (CC16) were measured in the plasma of 1465 subjects from the
COPDGene cohort and 2746 subjects from the ECLIPSE cohort. Regression analysis was performed to determine whether
these biomarkers, individually or in combination, were predictive of subtypes, disease severity, disease progression, or
mortality, after adjustment for clinical covariates.

Results: In COPDGene, the best combinations of biomarkers were: CC16, sRAGE, fibrinogen, CRP, and SP-D for airflow
limitation (p < 10−4), SP-D, CRP, sRAGE and fibrinogen for emphysema (p < 10−3), CC16, fibrinogen, and sRAGE for decline
in FEV1 (p< 0.05) and progression of emphysema (p< 10−3), and all five biomarkers together for mortality (p < 0.05). All
associations except mortality were validated in ECLIPSE. The combination of SP-D, CRP, and fibrinogen was the best
model for mortality in ECLIPSE (p < 0.05), and this combination was also significant in COPDGene.

Conclusion: This comprehensive analysis of two large cohorts revealed that combinations of biomarkers improve
predictive value compared with clinical variables and individual biomarkers for relevant cross-sectional and
longitudinal COPD outcomes.
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Background
Chronic obstructive pulmonary disease (COPD) is a
global health burden that affects 10% of the world’s
population and results in 3 million deaths and $44 bil-
lion in health care costs annually. Aside from smoking
cessation and oxygen, no available therapies prolong sur-
vival or prevent disease progression, with few promising
novel drugs in the pipeline [1]. One reason for this is the

heterogeneity and complexity of the disease. COPD has
multiple subtypes, including emphysema and the fre-
quent exacerbator subtype [2, 3]. In addition, disease
progression and mortality are variable and difficult to
predict [4, 5]. Although clinical variables such as age,
smoking history, dyspnea, exacerbation history, and
body mass index (BMI) are somewhat useful to model
these subtypes, assess disease severity, and predict dis-
ease progression, [6, 7] a large amount of unexplained
variance remains.
Since the heterogeneity of COPD extends to the

molecular level, there is growing interest in biomarkers
to assess disease heterogeneity and predict progression.
Biomarkers might identify subgroups of patients who
would benefit from specific interventions or may serve
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as surrogate endpoints, thus enhancing statistical power
and reducing the cost of clinical trials. Ultimately, bio-
markers may facilitate prognosis and allow us to cater
therapies to individual patents (i.e., precision medicine).
Moreover, detection of subclinical disease through
biomarkers could lead to interventions (e.g., smoking
cessation) that could prevent the development of
overt COPD. Finally, the identification of biomarkers
associated with COPD subtypes or severity may
stimulate basic research into the mechanisms under-
lying the pathogenesis of COPD and identify novel
therapeutic targets.
Previous studies have identified several blood protein

biomarkers of varying value in predicting COPD out-
comes (Additional file 1: Table S1) [2]. Fibrinogen and
CRP, markers of inflammation, may correlate with dis-
ease severity and risk of exacerbations [3, 4, 8–15].
sRAGE, which dampens inflammation, is inversely cor-
related with emphysema and airflow limitation [5, 16].
These observations have cemented our understanding
that COPD is an inflammatory disease [10]. In fact, both
fibrinogen and sRAGE have been considered by the U.S.
Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) for approval as biomarkers for
COPD. Proteins that derive from lung parenchymal cells
have also been associated with COPD: SP-D and CC16
with airflow limitation [4, 17, 18] and SP-D with emphy-
sema [5]. However, previous biomarker studies have sev-
eral limitations. Most have focused on the relationship
between biomarkers and cross-sectional outcomes such
as subtype and disease severity, information that can be
obtained by routine clinical testing. Perhaps the greatest
clinical utility of biomarkers lies in their ability to pre-
dict disease progression, which is highly variable among
COPD patients [4, 5]. The role of biomarkers in predict-
ing longitudinal outcomes has been addressed in a lim-
ited number of studies. Fibrinogen and CRP tend to be
elevated in patients with frequent exacerbations, but the
extent to which biomarkers can predict future exacerba-
tions is unclear [3, 10, 12, 14, 17, 19]. Decline in FEV1 is
accelerated but highly variable amongst COPD patients;
[4, 20, 21] some evidence suggests that CC16 [4, 22] and
sRAGE [23] may be predictive. sRAGE and SP-D have
been linked to progression of emphysema [5]. CRP,
fibrinogen, CC16, and SP-D have been shown to be as-
sociated with mortality, although there are conflicting
reports [2, 9–12, 15, 24, 25]. Another limitation of previ-
ous biomarker studies is that most examined a single
biomarker. Just as combined clinical variables are more
highly predictive of outcomes than individual clinical
variables, [6, 26] we hypothesized that multiple bio-
markers may be more powerful than individual bio-
markers. Some precedent exists for the use of multiple
biomarkers in COPD [10, 11, 14] and other diseases

[27]. Finally, most COPD biomarker studies examined
only one cohort, [5, 10, 11, 14] sometimes a small,
single-site cohort, raising the possibility that findings
may not be broadly applicable.
As most biomarker studies have been limited to asses-

sing the relationship between individual biomarkers and
cross-sectional outcomes and have been performed on a
single cohort of patients, we aimed to determine
whether a panel of a several biomarkers combined, as
measured in two large, independent cohorts, would be
more strongly predictive of important disease outcomes,
particularly longitudinal outcomes, than individual
biomarkers and clinical variables alone. Based on the
literature, we evaluated the efficacy of five biomarkers -
sRAGE, SP-D, fibrinogen, CC16, and CRP - both
individually and in combination, at predicting airflow
limitation, severity of emphysema, exacerbations, decline
in FEV1, progression of emphysema, and mortality in
the COPDGene and ECLIPSE cohorts.

Methods
Study design
Details of the COPDGene and ECLIPSE study proto-
cols, including recruitment, data collection, and longi-
tudinal follow-up are described in the online
supplement (Additional File 3) and previous publica-
tions [28, 29]. COPDGene (NCT02445183) enrolled 10,300
subjects ages 45–80, of which plasma was collected from
1465 subjects. ECLIPSE (NCT00292552) enrolled 2746
subjects with complete data including biomarkers. Spirom-
etry and high resolution CT scans were performed, and
sRAGE, SP-D, high sensitivity (hs) CRP, fibrinogen, and
CC16 levels were measured [10, 16–18].

Clinical subtypes
COPD was defined by post-bronchodilator forced ex-
piratory volume in the first second (FEV1) to forced vital
capacity (FVC) ratio of <0.70. Smoker controls were
current or former smokers without evidence of airflow
limitation (FEV1/FVC ≥ 0.70). Emphysema was defined
by the percent of voxels with Hounsfield Units (HU) <
−950 (%LAA) on CT. Severity of emphysema was classi-
fied as none (LAA < 5%), mild (LAA 5–10%), moderate
(LAA 10–20%), or severe (LAA > 20%) [30, 31]. Air trap-
ping was measured by 3D Slicer. Air trapping was
defined by the percent of voxels with HU < −856 on ex-
piratory images. Airway wall thickness at an internal per-
imeter of 10 mm (pi10) was calculated as described
previously [32]. Subjects were classified as having
chronic bronchitis if they reported cough productive of
sputum present daily for at least 3 months per year, at
least 2 years in a row. Longitudinal follow-up (LFU) in-
terviews by telephone or internet were conducted every
six months. The number of exacerbations per year was
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determined. Moderate exacerbations were defined as
those treated with steroids and/or antibiotics; severe exacer-
bations were defined as those resulting in hospitalization.
Decline in FEV1 (ml/year) was calculated. Progression of
emphysema was calculated as change in %LAA per year.
All-cause mortality was determined.

Statistical analysis
Because of non-normality, biomarker values were log
transformed. Additional file 1: Table S2 lists statistical
models and covariates, which were selected based on
previous literature [3–7, 10, 11]. R (v 3.2.0) was used.
Akaike Information Criteria (AIC) was used to deter-
mine how well a model fit. R2 for clinical covariates (no
biomarkers) is reported; the R2 reported for biomarker(s)
refers to the R2 of the biomarkers(s) over clinical covari-
ates alone. p-values were determined by two-sided t-tests
(or z-tests for the beta, negative binomial and logistic
regression, and Cox proportional hazards) for the null
hypothesis that β coefficients for biomarker-outcome
associations were zero. Biomarker(s) were considered to
improve the model if the AIC was lower than clinical
covariates alone and p ≤ 0.05. The best combination
of biomarkers for a given outcome in the COPDGene
cohort was considered to be validated by ECLIPSE if
the same combination of biomarkers statistically sig-
nificantly improved the AIC over clinical covariates
alone.

Results
Demographics
Baseline characteristics of the COPDGene and ECLIPSE
cohorts are shown in Additional file 1: Tables S3 and S4.
All analyses performed on the COPDGene and

ECLIPSE cohorts are shown in Additional file 2:
Figure S5 and S6, respectively, with the best model in
each cohort highlighted in yellow. The best model in
COPDGene is shown in red font on the ECLIPSE
analysis (Additional file 1: Table S6).

Airflow limitation (FEV1/FVC and FEV1)
In the COPDGene cohort, CC16, sRAGE, and CRP were
each individually associated with FEV1/FVC after adjust-
ment for clinical covariates (Additional file 1: Tables S7
and S5). However, the best model (lowest AIC) in the
COPDGene cohort was the combination of CC16, SP-D,
CRP, and sRAGE (additional R2 = 0.086 over clinical co-
variates), and this combination also statistically signifi-
cantly improved the model in ECLIPSE (Additional file 1:
Tables S7 and S6). In both cohorts, every individual bio-
marker was significantly associated with FEV1, but the
combination of all five biomarkers was the most highly
associated (Table 1, Fig. 1, Additional file 2: Figure S1,
Additional file 1: Tables S5 and S6).

Emphysema
In the COPDGene cohort, SP-D and sRAGE were each
individually associated with emphysema after adjusting
for clinical covariates (Table 2, Additional file 1: Table S5,
Additional file 2: Figure S2). The best model was SP-D,
sRAGE, CRP, and fibrinogen combined (Table 2 and
Fig. 1). Both the role of SP-D and sRAGE individually and
the combination of SP-D, sRAGE, CRP, and fibrinogen
were validated in ECLIPSE (Table 2, Additional file 1:
Table S6 and Fig. 1).

Exacerbations
In both cohorts, the combination of sRAGE and CRP
best modeled total exacerbation frequency over the pre-
vious 12 months (Additional file 1: Tables S5, S6 and
S8A), whereas SP-D, CRP, sRAGE, and fibrinogen
together best modeled previous severe exacerbations
(Additional file 1: Tables S5, S6 and S8B, Fig. 1). In the
COPDGene cohort, no biomarker(s) was significantly
predictive of future total or severe exacerbations after
adjustment for prior exacerbations and other clinical co-
variates (Additional file 1: Tables S5 and S9, Fig. 1).

Decline in FEV1
In COPDGene, fibrinogen predicted decline in FEV1; the
best model was CC16, sRAGE, and fibrinogen (Table 3,
Additional file 1: Table S5, Fig. 1). In ECLIPSE, these
findings were validated but the combination of all five
biomarkers was most highly predictive of decline in
FEV1 (Table 3, Additional file 1: Table S6, Fig. 1).

Progression of emphysema
After controlling for BMI, female gender, and ongoing
cigarette smoking, factors which have previously been
identified as risk factors for decline in CT density, [5]
the combination of CC16, fibrinogen, and sRAGE was
most highly predictive in the COPDGene cohort. This
combination was validated in the ECLIPSE cohort, but
the combination of all five biomarkers together was
more highly predictive (Table 4, Additional file 1:
Tables S5 and S6, Fig. 1).

Mortality
BMI, airflow limitation, dyspnea, and exercise capacity
(BODE), are moderately predictive of mortality in COPD
[6, 7]. To determine whether additional clinical variables
improve the model, we performed a stepwise Cox
Proportional Hazards analysis with BODE and other
variables known to be associated with mortality. The
best model in the COPDGene cohort was BODE +
age2 + age + gender + exacerbation history, and this
was validated in ECLIPSE (Table 5, Additional file 1:
Tables S5 and S6).
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In the COPDGene cohort, CC16 and SP-D were each
individually predictive of mortality, and all five bio-
markers was the best model (Table 6, Fig. 1). The
combination of all five biomarkers was not validated in
ECLIPSE (Table 6, Additional file 1: Table S6); however,
the best model in ECLIPSE – the combination of CRP,
fibrinogen, and SP-D – was also significant in COPD-
Gene. Of note, when analyzed by C-statistic, none of the
biomarkers were associated with mortality in either
cohort (Additional file 1: Table S13).

Discussion
COPD is a complex disease, and patients vary greatly
and unpredictably in terms of disease subtype, activity,

and progression. Pharmacologic agents that prevent dis-
ease progression and improve survival are lacking, in
part because specific agents are unlikely to benefit such
a heterogeneous group of patients [4]. An attractive no-
tion is that biomarkers may provide insight into this het-
erogeneity, thus allowing us to cater clinical trials and
ultimately therapies to specific groups of patients and
provide better prognostic information. An extensive litera-
ture on biomarkers in COPD exists [1]. However, most
studies have examined the association between individual
biomarkers and cross-sectional outcomes. In addition, the
field has been plagued by lack of validation in replication
cohorts and inconsistent biomarker platforms, leading to
discrepant reports (Additional file 1: Table S1) [1].

Table 1 Biomarkers associated with FEV1
COPDGene ECLIPSE

Biomarker(s) β R2 AIC β R2 AIC

CC16 13.85* 0.02 13,467* 19.77* 0.02 25,641*

SP-D −12.03* 0.01 13,453* −20.12* 0.03 25,635*

sRAGE 16.43* 0.02 13,332* 48.43* 0.10 22,421*

CRP −12.27* 0.06 13,404* −16.92* 0.09 25,205*

Fibrinogen −47.40* 0.04 13,188* −85.39* 0.11 23,109*

CC16, Fibrinogen, sRAGE, CRP, SP-D 0.13 12,951*a 0.24 19,148*a

Analysis by linear regression. Race was the only covariate. The R2 reported for biomarkers refers to the R2 of the biomarkers(s) over clinical covariates alone.
*p < 10-5 in a two-sided t-test for the null hypothesis that β = 0.
aBest model

Fig. 1 Best Models. The combinations of biomarkers that constituted the best models for each outcome in each cohort are shaded
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Here, we present a comprehensive analysis of the role of
biomarkers, individually and in combination, in predicting
both cross-sectional and longitudinal outcomes using two
large, multi-center cohorts with identical platforms. We
found that individual biomarkers are more closely associ-
ated with most outcomes than clinical covariates alone.
Moreover, multiple biomarkers are more highly predictive
than individual biomarkers for almost all COPD out-
comes. With rare exceptions, the associations, including
directionality, between biomarkers and outcomes identi-
fied in the discovery cohort were validated in the replica-
tion cohort (Fig. 1). Additional file 1: Tables S5 and S6
provide an easily accessible and exhaustive resource for in-
vestigators to ascertain the association between these
biomarkers and almost any clinically important COPD
outcome in these two cohorts. To our knowledge, ours is
the first study to demonstrate an association between
multiple biomarkers and cross-sectional and longitudinal
outcomes in two large, multi-center cohorts.
Overall, our findings build upon prior literature, con-

firming some associations but improving upon existing
knowledge by demonstrating that, in most cases, a

distinct combination of biomarkers is associated with
outcomes. In both cohorts, each of the five biomarkers
studied individually correlated with airflow limitation,
consistent with previous literature [4, 8, 12, 16–18].
However, a panel of five biomarkers together was more
highly predictive of airflow limitation (FEV1) than any
individual biomarker. Similarly, while previous literature
suggested that sRAGE and fibrinogen are individually
associated with emphysema, [5, 16] our analysis revealed
that the combination of SP-D, CRP, sRAGE, and fibrino-
gen was more highly correlated.
Although the relationships between biomarkers and

disease subtype and severity are interesting and may
provide clues into the molecular pathogenesis of the dif-
ferent subtypes, biomarkers will be most useful clinically
if they can predict longitudinal outcomes, such as future
exacerbations, decline in FEV1, progression of emphy-
sema, and mortality. Such risk stratification would allow
clinical trials to be catered to the patients most likely to
progress as well as provide patients with a more accurate
and personalized prognosis. Interestingly, in the COPD-
Gene cohort, no biomarker or combination of biomarkers

Table 2 Biomarkers associated with severity of emphysema

COPDGene ECLIPSE

Biomarker(s) β Pseudo R2 CU AIC β Pseudo R2 CU AIC

None 0.41 1608 0.53 4747

CC16 −0.35 −0.0007 1609 0.26 0.05 4610

CRP 0.28 0.002 1607 −0.02 0.04 4588

SP-D −0.696 0.004 1604* −1.02 0.04 4583*

Fibrinogen 1.07 0.02 1582 0.16 0.13 4276

sRAGE −1.79 0.02 1567* −2.67 0.18 4019*

SP-D, sRAGE, CRP, Fibrinogen 0.04 1550*a 0.30 3470*

Analysis performed by ordinal logistic regression. CU: Cragg & Uhler’s. Covariates were FEV1, age, smoking status, gender, race, CT scanner, and BMI. The R2

reported for clinical covariates (no biomarkers) is given. The R2 reported for biomarkers refers to the R2 of the biomarkers(s) over clinical covariates alone.
*p < 10−3 in a two-sided t-test for the null hypothesis that β = 0
aBest model

Table 3 Biomarkers associated with decline in FEV1

COPDGene ECLIPSE

Biomarker(s) β R2m AIC β R2m AIC

None 0.42 1348 0.34 5611

CC16 −0.003 0.03 1318 0.020 0.03 5358*

SP-D 0.014 0.000003 1358 −0.013 0.08 5289

sRAGE 0.001 0.02 1315 0.016 0.04 4607

CRP 0.006 0.03 1330 0.008 0.00 5400*

Fibrinogen 0.046 0.03 1303* 0.022 0.02 5067

CC16, Fibrinogen, sRAGE 0.06 1268*a 0.07 4026*

Analysis performed by linear mixed model. Covariates were age, time, gender, height, smoking status, pack years, age2, height2. The R2 reported for clinical covariates
(no biomarkers) is given. The R2 reported for biomarkers refers to the R2 of the biomarkers(s) over clinical covariates alone. *p < 0.05 in a two-sided t-test for the null
hypothesis that β = 0
aBest model
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added significant value to predicting an individual’s future
risk of exacerbations over clinical variables including his-
tory of prior exacerbations. This is consistent with previ-
ous studies, which found that certain biomarkers were
associated with exacerbations by univariate analysis but
not by multivariate analysis that included clinical predictive
variables, particularly prior exacerbation history [3, 17, 19].
(Although ECLIPSE was used here as a validation cohort, it
is interesting to note that biomarkers were predicitve of
future exacerbations, and this is likely due to differences in
the subjects, such as in race and severity of disease.) One
limitation of our study is the lack of blood leukocyte values,
which may predict exacerbations [3, 10, 26]. Still, taken to-
gether, our findings and the literature suggest that a history
of previous exacerbations is so strongly associated with
future exacerbations that biomarkers may not provide sub-
stantial additional information.
COPD disease progression is highly variable [4, 5].

CC16 levels have been previously associated with decline
in FEV1 [4, 22]. Here, the combination of CC16, fibrino-
gen, and sRAGE best predicted decline in lung function
in the COPDGene cohort, and this combination was

validated in ECLIPSE, although the addition of SP-D
and CRP further improved the model. Whether pro-SP-
B, previously implicated in decline in FEV1 [33] would
further improve the model should be studied. Progres-
sion of emphysema has previously been associated with
individual abnormal biomarkers [5]. We found that pro-
gression of emphysema, as measured by decline in CT
density, was best modeled by the combination of CC16,
sRAGE, and fibrinogen in the COPDGene cohort. This
model was validated by the ECLIPSE cohort, although
the addition of SP-D and CRP further enhanced the
model. Whether IL-6, previously associated with pro-
gression of emphysema, [5] would further improve the
model should be examined.
Although previous studies revealed that multiple bio-

markers predict mortality, [9, 11] ours is the first to val-
idate such findings in an independent large, multicenter
cohort. However, there were notable discrepancies be-
tween the two cohorts. In both cohorts, the combination
of SP-D, CRP, and fibrinogen improved the model over
covariates and individual biomarkers. However, the best
combination in COPDGene, all five biomarkers together,

Table 4 Biomarkers associated with progression of emphysema

COPDGene ECLIPSE

Biomarker(s) β R2m AIC β R2m AIC

None 0.357 7281 0.49 27,783

SP-D 0.045 0.002 7271 0.1722 0.008 27,042

CRP 0.0023 0.002 7264 −0.0004 −0.006 26,891

CC16 −0.419 0.002 7256* −0.16 0.005 27,056

sRAGE −0.169 0.005 7103 −0.765 0.04 24,804*

Fibrinogen −0.218 −0.004 7066 −0.867 0.006 24,968*

CC16, Fibrinogen, sRAGE 0.005 7010*a 0.043 21,866*

Analysis performed by linear mixed model. Covariates were FEV1, age, time, smoking status, gender, CT scanner, and BMI. The R2 reported for clinical covariates
(no biomarkers) is given. The R2 reported for biomarkers refers to the R2 of the biomarkers(s) over clinical covariates alone. *p < 10−3 in a two-sided t-test for the
null hypothesis that β = 0
aBest model

Table 5 Clinical variables associated with mortality

COPDGene ECLIPSE

Clinical Variable AIC R2 AIC R2

BODE 1604* 0.41 3099* 0.20

BODE + Age2 + Age 1597* 0.45 3068* 0.29

BODE + Gender 1580* 0.50 3099* 0.21

BODE + Severe Exacerbations 1598* 0.44 3091* 0.23

BODE + Gender + Severe Exacerbations 1575* 0.53 3091* 0.23

BODE + Age2 + Age + Severe Exacerbations 1590* 0.48 3061*a 0.31

BODE + Age2 + Age + Gender 1575* 0.53 3069* 0.29

BODE + Age2 + Age + Gender + Severe Exacerbations 1568*a 0.56 3062* 0.31

Analysis performed by Cox Proportional Hazards. The R2 reported for clinical covariates (no biomarkers) is given. The R2 reported for biomarkers refers to the R2 of
the biomarkers(s) over clinical covariates alone. *p < 10−13 in a two-sided t-test for the null hypothesis that β = 0
aBest model
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did not reach statistical significance in ECLIPSE. In
addition, while fibrinogen or CRP alone were signifi-
cantly associated with mortality in ECLIPSE (Table 6)
and other [9, 13, 15] cohorts, fibrinogen and CRP were
not individually predictive of mortality in COPDGene,
although they did improve the model when added to the
other four biomarkers. These discrepancies may be due
to differences between the cohorts, such as in race and
severity of disease. The concordance between the two
cohorts may become stronger with ongoing follow-up,
as the overall mortality rates (9.4% in COPDGene, 8.5%
in ECLIPSE) are low, and 3–5 years is a relatively short
duration of follow-up considering the natural history of
the disease. Future studies should examine mortality
over a longer period of follow-up, the contribution of
additional biomarkers such as IL-6 and leukocyte count
[11] to the model, and disease-specific mortality. Of
note, we also report the important finding that inclusion
of additional clinical variables known to be associated
with mortality (e.g., age) [7] yields a novel clinical model
that is more highly predictive of mortality than estab-
lished models such as the BODE index. In both cohorts,
biomarkers strengthen the model, and a combination of
biomarkers provides enhanced predictive value over
individual biomarkers.
We acknowledge that the amount of variance ex-

plained by biomarkers, as determined by correlation co-
efficients, is relatively low. Longer duration of follow-up
and inclusion of additional biomarkers or persistence of
abnormal biomarkers [10] may strengthen the correla-
tions. However, our findings are consistent with previ-
ously reported weak correlation coefficients (R2 < 0.3) or
relative risks (<1.5) [3, 4, 11, 15, 22, 24, 33]. Therefore,
the field must acknowledge that statistically significant
associations between biomarkers and outcomes that can
be observed in large cohorts may be largely inadequate
to explain remaining variance after strong clinical covar-
iates are included in the models. This suggests that

COPD is an exceedingly heterogeneous and complex
disease, the extent of which our understanding remains
quite limited. Regardless, the impact of the current study
lies in the demonstration that, combinations of bio-
markers correlate with COPD outcomes much (two to
ten times more) strongly than individual biomarkers.
Limitations of this study, in addition to those dis-

cussed above, include the relatively low number of non-
smokers in the COPDGene cohort and the virtual
absence of Gold 1 subjects in the ECLIPSE cohort.
Neither cohort was population-based. COPDGene re-
sults should be generalizable to non-Hispanic white
and African American smokers. ECLIPSE results are
generalizable to white COPD patients. Although the
current findings are overall generalizable because of
the size of the discovery and replication cohorts, ex-
tensive clinical phenotyping, and adjustment for mul-
tiple relevant covariates, these findings should be
validated in a third large cohort. Future studies should
elucidate the repeatability of biomarker measurements,
although most are stable over time [26].

Conclusions
In conclusion, for the first time to our knowledge, we
have demonstrated, using two large, multi-center co-
horts, that multiple biomarkers are much more strongly
predictive than individual biomarkers of almost all
important cross-sectional and longitudinal COPD out-
comes. The amount of variance explained by biomarkers
is lower than clinical variables. Still, we remain optimis-
tic that biomarkers will be useful to limit clinical trials
to subgroups of patients likely to benefit from a given
intervention and/or serve as surrogate endpoints if they
are prospectively demonstrated to correlate with clinic-
ally relevant outcomes. As the FDA and EMA have con-
sidered approving fibrinogen and RAGE individually as
biomarkers for COPD, approval of a panel of multiple
biomarkers should be considered.

Table 6 Biomarkers associated with mortality

COPDGene ECLIPSE

Biomarker(s) β R2 AIC β R2 AIC

None 0.56 1568 0.31 3062

CC16 −0.91 0.01 1565* 0.06 0.02 2874

SP-D 0.96 0.02 1565* 0.79 0.03 2868*

sRAGE 0.43 0.00 1555 0.45 −0.03 1754

CRP 0.21 0.00 1569 0.36 0.01 2900*

Fibrinogen −0.59 0.00 1528 1.61 0.02 2502*

CRP, Fibrinogen, SP-D 0.04 1523* 0.06 2249*a

CC16, CRP, Fibrinogen, SP-D, sRAGE 0.04 1509*a −0.02 1276

Analysis performed by Cox Proportional Hazards. Covariates were BODE, age2, gender, and severe exacerbations. The R2 reported for clinical covariates (no biomarkers)
is given. The R2 reported for biomarkers refers to the R2 of the biomarkers(s) over clinical covariates alone. *p< 0.02 in a two-sided t-test for the null hypothesis that β= 0
aBest model
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Additional files

Additional file 1: Table S1. Association Between Biomarkers and COPD
Outcomes. Table S2. Statistical Models. Table S3. Demographics of
Subjects at Baseline: COPDGene Cohort*. Table S4. Demographics of
Subjects at Baseline: ECLIPSE Cohort*. Table S5. Analysis of COPDGene
cohort. Grey shading indicates each model with lines for each biomarker
in that model. Columns are beta coefficient in model (B), odds ratio, standard
error (SE), correlation coefficient (R2) or pseudo R2 Cragg and Uhler’s (CU) or
R2m (the marginal portion of the R2), Akaike Information Criteria (AIC), and
number of subjects analyzed (N). The type of model is listed on top right of
table. The best model highlighted in yellow. Table S6. Analysis of ECLIPSE
cohort. Best model in ECLIPSE cohort highlighted in yellow. Grey shading
indicates each model with lines for each biomarker in that model. Columns
are beta coefficient in model (B), odds ratio, standard error (SE), correlation
coefficient (R2) or pseudo R2 Cragg and Uhler’s (CU) or R2m (the marginal
portion of the R2), Akaike Information Criteria (AIC), and number of subjects
analyzed (N). The type of model is listed on top right of table. Best model in
COPDGene cohort in red font. Table S7. Biomarkers Associated with FEV1/
FVC. Table S8. Biomarkers Associated with (A) Total (Moderate and Severe)
Exacerbations and (B) Severe Exacerbations in the Previous 12 Months.
Table S9. Biomarkers Associated with (A) Prospective Total (Moderate and
Severe) Exacerbations or (B) Prospective Severe Exacerbations. Table S10.
Enrollment Centers. Table S11. Baseline Characteristics of Subjects with
Biomarker Data Compared with Entire COPDGene Cohort. Table S12.
Correlation Between Biomarkers. Table S13. Biomarkers Associated with
Mortality. Analysis of COPDGene and ECLIPSE cohorts by C-statistic. Covariates
were BODE, age, age2, gender, and severe exacerbations. (ZIP 485 kb)

Additional file 2: Figure S1. Distribution of Biomarkers. Biomarker
levels were log transformed. Figure S2. Relationship Between Individual
Biomarkers and FEV1. Beeswarm/box plot of biomarker levels in never
smokers, smokers with normal lung function PRISm, and Gold Stage 1–4
COPD patients. Central box bars represent the median and end box bars
represent the first and third quartiles. Analysis by linear regression. *p < 10−5.
Figure S3. Relationship Between Individual Biomarkers and Emphysema.
Analysis performed by ordinal logistic regression. Covariates were FEV1, age,
smoking status, gender, race, and BMI. % Emphysema defined as % of voxels
with HU < −950. *p< 0.01. (PDF 312 kb)

Additional file 3: Supplemental Methods. (DOCX 76 kb)

Abbreviations
AIC: Akaike information criteria; COPD: Chronic obstructive pulmonary disease;
CRP: C-Reactive protein; CC16: Club cell secretory protein; EMA: European
medicines agency; FDA: U.S. Food and Drug Administration; FEV1: Forced
expiratory volume in the first second; FVC: Forced vital capacity; HU: Hounsfield
units; SP-D: Surfactant protein D; sRAGE: Soluble receptor for advanced glycation
endproducts

Acknowledgements
COPDGene Cores:
Administrative Core: James Crapo, MD (PI), Edwin Silverman, MD, PhD (PI),
Barry Make, MD, Elizabeth Regan, MD, PhD, Rochelle Lantz, Lori Stepp, Sandra
Melanson
Genetic Analysis Core: Terri Beaty, PhD, Barbara Klanderman, PhD, Nan Laird,
PhD, Christoph Lange, PhD, Michael Cho, MD, Stephanie Santorico, PhD,
John Hokanson, MPH, PhD, Dawn DeMeo, MD, MPH, Nadia Hansel, MD, MPH,
Craig Hersh, MD, MPH, Peter Castaldi, MD, MSc, Merry-Lynn McDonald, PhD,
Jin Zhou, MD, PhD, Manuel Mattheissen, MD, PhD, Emily Wan, MD, Megan
Hardin, MD, Jacqueline Hetmanski, MS, Margaret Parker, MS, Tanda Murray, MS
Imaging Core: David Lynch, MB, Joyce Schroeder, MD, John Newell, Jr., MD,
John Reilly, MD, Harvey Coxson, PhD, Philip Judy, PhD, Eric Hoffman, PhD,
George Washko, MD, Raul San Jose Estepar, PhD, James Ross, MSc, Mustafa
Al Qaisi, MD, Jordan Zach, Alex Kluiber, Jered Sieren, Tanya Mann, Deanna
Richert, Alexander McKenzie, Jaleh Akhavan, Douglas Stinson
PFT QA Core, LDS Hospital, Salt Lake City, UT: Robert Jensen, PhD
Biological Repository, Johns Hopkins University, Baltimore, MD: Homayoon
Farzadegan, PhD, Stacey Meyerer, Shivam Chandan, Samantha Bragan

Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO:
Douglas Everett, PhD, Andre Williams, PhD, Carla Wilson, MS, Anna Forssen,
MS, Amber Powell, Joe Piccoli
Epidemiology Core, University of Colorado School of Public Health, Denver, CO:
John Hokanson, MPH, PhD, Marci Sontag, PhD, Jennifer Black-Shinn, MPH,
Gregory Kinney, MPH, PhDc, Sharon Lutz, MPH, PhD.
COPDGene Investigators:
Ann Arbor VA: Jeffrey Curtis, MD, Ella Kazerooni, MD
Baylor College of Medicine, Houston, TX: Nicola Hanania, MD, MS, Philip Alapat,
MD, Venkata Bandi, MD, Kalpalatha Guntupalli, MD, Elizabeth Guy, MD, Antara
Mallampalli, MD, Charles Trinh, MD, Mustafa Atik, MD, Hasan Al-Azzawi, MD,
Marc Willis, DO, Susan Pinero, MD, Linda Fahr, MD, Arun Nachiappan, MD,
Collin Bray, MD, L. Alexander Frigini, MD, Carlos Farinas, MD, David Katz, MD,
Jose Freytes, MD, Anne Marie Marciel, MD
Brigham and Women’s Hospital, Boston, MA: Dawn DeMeo, MD, MPH, Craig
Hersh, MD, MPH, George Washko, MD, Francine Jacobson, MD, MPH, Hiroto
Hatabu, MD, PhD, Peter Clarke, MD, Ritu Gill, MD, Andetta Hunsaker, MD,
Beatrice Trotman-Dickenson, MBBS, Rachna Madan, MD
Columbia University, New York, NY: R. Graham Barr, MD, DrPH, Byron Thomashow,
MD, John Austin, MD, Belinda D’Souza, MD
Duke University Medical Center, Durham, NC: Neil MacIntyre, Jr., MD, Lacey
Washington, MD, H Page McAdams, MD
Fallon Clinic, Worcester, MA: Richard Rosiello, MD, Timothy Bresnahan, MD,
Joseph Bradley, MD, Sharon Kuong, MD, Steven Meller, MD, Suzanne Roland, MD
Health Partners Research Foundation, Minneapolis, MN: Charlene McEvoy, MD,
MPH, Joseph Tashjian, MD
Johns Hopkins University, Baltimore, MD: Robert Wise, MD, Nadia Hansel, MD,
MPH, Robert Brown, MD, Gregory Diette, MD, Karen Horton, MD
Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Los
Angeles, CA: Richard Casaburi, MD, Janos Porszasz, MD, PhD, Hans Fischer,
MD, PhD, Matt Budoff, MD, Mehdi Rambod, MD
Michael E. DeBakey VAMC, Houston, TX: Amir Sharafkhaneh, MD, Charles Trinh,
MD, Hirani Kamal, MD, Roham Darvishi, MD, Marc Willis, DO, Susan Pinero,
MD, Linda Fahr, MD, Arun Nachiappan, MD, Collin Bray, MD, L. Alexander
Frigini, MD, Carlos Farinas, MD, David Katz, MD, Jose Freytes, MD, Anne Marie
Marciel, MD
Minneapolis VA: Dennis Niewoehner, MD, Quentin Anderson, MD, Kathryn
Rice, MD, Audrey Caine, MD
Morehouse School of Medicine, Atlanta, GA: Marilyn Foreman, MD, MS, Gloria
Westney, MD, MS, Eugene Berkowitz, MD, PhD
National Jewish Health, Denver, CO: Russell Bowler, MD, PhD, David Lynch,
MB, Joyce Schroeder, MD, Valerie Hale, MD, John Armstrong, II, MD, Debra
Dyer, MD, Jonathan Chung, MD, Christian Cox, MD
Temple University, Philadelphia, PA: Gerard Criner, MD, Victor Kim, MD,
Nathaniel Marchetti, DO, Aditi Satti, MD, A. James Mamary, MD, Robert
Steiner, MD, Chandra Dass, MD, Libby Cone, MD
University of Alabama, Birmingham, AL: William Bailey, MD, Mark Dransfield,
MD, Michael Wells, MD, Surya Bhatt, MD, Hrudaya Nath, MD, Satinder Singh, MD
University of California, San Diego, CA: Joe Ramsdell, MD, Paul Friedman, MD
University of Iowa, Iowa City, IA: Alejandro Cornellas, MD, John Newell, Jr., MD,
Edwin JR van Beek, MD, PhD
University of Michigan, Ann Arbor, MI: Fernando Martinez, MD, MeiLan Han,
MD, Ella Kazerooni, MD
University of Minnesota, Minneapolis, MN: Christine Wendt, MD, Tadashi Allen, MD
University of Pittsburgh, Pittsburgh, PA: Frank Sciurba, MD, Joel Weissfeld, MD,
MPH, Carl Fuhrman, MD, Jessica Bon, MD, Danielle Hooper, MD
University of Texas Health Science Center at San Antonio, San Antonio, TX:
Antonio Anzueto, MD, Sandra Adams, MD, Carlos Orozco, MD, Mario Ruiz,
MD, Amy Mumbower, MD, Ariel Kruger, MD, Carlos Restrepo, MD, Michael
Lane, MD
ECLIPSE Investigators [11].

Funding
Grant Support: National Heart, Lung and Blood Institute (NHLBI RO1 HL095432,
U01 HL089856, U01 HL089897, P20 HL113445, HHSN26820090020CP30);
National Center for Research Resources (NCRR UL1 RR025780); Flight Attendant
Medical Research Foundation; GSK funded the biomarker assays.

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Zemans et al. Respiratory Research  (2017) 18:117 Page 8 of 10

dx.doi.org/10.1186/s12931-017-0597-7
dx.doi.org/10.1186/s12931-017-0597-7
dx.doi.org/10.1186/s12931-017-0597-7


Authors’ contributions
RLZ., KK, and RPB designed the study; RLZ, SJ, KK, and R.P.B. analyzed data;
RLZ., JK, KK, and RPB, interpreted data and wrote the manuscript. BEM and
RT were involved in study design and data generation and reviewed the
manuscript. RLZ, SJ, and RPB. had full access to all the data in the study,
interpreted the data and prepared the manuscript independently, and had
final responsibility for the decision to submit for publication. All authors read
and approved the final manuscript.

Competing interests
R.L.Z., S.J., K.K., and J.K. have no financial or personal relationships with people or
organizations that could inappropriately influence this work. B.E.M. and R.T. are
employees and shareholders of GSK. R.P.B. is on the advisory boards of GSK,
Boehringer-Ingelheim, and Astra-Zeneca and has research grants from
Boehringer-Ingelheim and MedImmune.

Consent for publication
N/A.

Ethics approval and consent to participate
Subjects provided informed consent, and institutional review boards of
participating sites approved the study (Additional file 1: Table S10 and [11]).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Division of Pulmonary, Critical Care, and Sleep Medicine, Department of
Medicine, National Jewish Health, 1400 Jackson St., Denver, CO 80206, USA.
2Division of Pulmonary Sciences and Critical Care Medicine, Department of
Medicine, University of Colorado Denver, University of Colorado Anschutz
Medical Campus, Research Building 2, 9th Floor, 12700 E. 19th Ave., Aurora,
CO, USA. 3Department of Biostatistics and Informatics, University of Colorado
Denver, Colorado School of Public Health, Mail Stop B119, 13001 E. 17th
Place, Aurora, CO 80045, USA. 4GlaxoSmithKline R&D, 709 Swedeland Road
#1539, King Of Prussia, PA, USA.

Received: 6 February 2017 Accepted: 25 May 2017

References
1. Sin DD, Hollander Z, DeMarco ML, McManus BM, Ng RT. Biomarker development

for chronic obstructive pulmonary disease. from discovery to clinical
implementation. Am J Respir Crit Care Med. 2015;192:1162–70.

2. Vestbo J, Agusti A, Wouters EF, Bakke P, Calverley PM, Celli B, Coxson H,
Crim C, Edwards LD, Locantore N, et al. Should we view chronic obstructive
pulmonary disease differently after ECLIPSE? A clinical perspective from the
study team. Am J Respir Crit Care Med. 2014;189:1022–30.

3. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, Miller
B, Lomas DA, Agusti A, Macnee W, et al. Susceptibility to exacerbation in
chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.

4. Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, Calverley PM,
Celli B, Coxson HO, Crim C, et al. Changes in forced expiratory volume in
1 s over time in COPD. N Engl J Med. 2011;365:1184–92.

5. Coxson HO, Dirksen A, Edwards LD, Yates JC, Agusti A, Bakke P, Calverley
PM, Celli B, Crim C, Duvoix A, et al. The presence and progression of
emphysema in COPD as determined by CT scanning and biomarker
expression: a prospective analysis from the ECLIPSE study. Lancet Respir
Med. 2013;1:129–36.

6. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA,
Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea,
and exercise capacity index in chronic obstructive pulmonary disease. N
Engl J Med. 2004;350:1005–12.

7. Puhan MA, Garcia-Aymerich J, Frey M, ter Riet G, Anto JM, Agusti AG,
Gomez FP, Rodriguez-Roisin R, Moons KG, Kessels AG, Held U. Expansion of
the prognostic assessment of patients with chronic obstructive pulmonary
disease: the updated BODE index and the ADO index. Lancet. 2009;374:704–11.

8. Dahl M, Tybjaerg-Hansen A, Vestbo J, Lange P, Nordestgaard BG. Elevated
plasma fibrinogen associated with reduced pulmonary function and

increased risk of chronic obstructive pulmonary disease. Am J Respir
Crit Care Med. 2001;164:1008–11.

9. Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG.
C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary
disease. Am J Respir Crit Care Med. 2007;175:250–5.

10. Agusti A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE, Vestbo J,
Lomas DA, Calverley PM, Wouters E, et al. Persistent systemic inflammation is
associated with poor clinical outcomes in COPD: a novel phenotype. PLoS
One. 2012;7:e37483.

11. Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke P, Calverley P,
Coxson H, Crim C, Edwards LD, et al. Inflammatory biomarkers improve
clinical prediction of mortality in chronic obstructive pulmonary disease. Am
J Respir Crit Care Med. 2012;185:1065–72.

12. Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, Lomas DA.
Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease.
Thorax. 2013;68:670–6.

13. Mannino DM, Valvi D, Mullerova H, Tal-Singer R. Fibrinogen, COPD and
mortality in a nationally representative U.S. cohort. COPD. 2012;9:359–66.

14. Thomsen M, Ingebrigtsen TS, Marott JL, Dahl M, Lange P, Vestbo J,
Nordestgaard BG. Inflammatory biomarkers and exacerbations in chronic
obstructive pulmonary disease. JAMA. 2013;309:2353–61.

15. Mannino DM, Tal-Singer R, Lomas DA, Vestbo J, Graham Barr R, Tetzlaff K,
Lowings M, Rennard SI, Snyder J, Goldman M, et al. Plasma fibrinogen as a
biomarker for mortality and hospitalized exacerbations in people with COPD.
Chronic Obstr Pulm Dis (Miami). 2015;2:23–34.

16. Cheng DT, Kim DK, Cockayne DA, Belousov A, Bitter H, Cho MH, Duvoix A,
Edwards LD, Lomas DA, Miller BE, et al. Systemic soluble receptor for advanced
glycation endproducts is a biomarker of emphysema and associated with
AGER genetic variants in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2013;188:948–57.

17. Lomas DA, Silverman EK, Edwards LD, Locantore NW, Miller BE, Horstman DH, Tal-
Singer R, Evaluation of CLtIPSEsi. Serum surfactant protein D is steroid sensitive and
associated with exacerbations of COPD. Eur Respir J. 2009;34:95–102.

18. Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R.
Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort.
Thorax. 2008;63:1058–63.

19. Keene JD, Jacobson S, Kechris K, Kinney GL, Foreman MG, Doerschuk CM,
Make BJ, Curtis JL, Rennard SI, Barr RG, et al.: Biomarkers Predictive of
Exacerbations in the SPIROMICS and COPDGene Cohorts. Am J Respir Crit
Care Med. 2017;15;195(4):473-81.

20. Casanova C, de Torres JP, Aguirre-Jaime A, Pinto-Plata V, Marin JM, Cordoba
E, Baz R, Cote C, Celli BR. The progression of chronic obstructive pulmonary
disease is heterogeneous: the experience of the BODE cohort. Am J Respir
Crit Care Med. 2011;184:1015–21.

21. Nishimura M, Makita H, Nagai K, Konno S, Nasuhara Y, Hasegawa M, Shimizu
K, Betsuyaku T, Ito YM, Fuke S, et al. Annual change in pulmonary function
and clinical phenotype in chronic obstructive pulmonary disease. Am J Respir
Crit Care Med. 2012;185:44–52.

22. Park HY, Churg A, Wright JL, Li Y, Tam S, Man SF, Tashkin D, Wise RA, Connett
JE, Sin DD. Club cell protein 16 and disease progression in chronic obstructive
pulmonary disease. Am J Respir Crit Care Med. 2013;188:1413–9.

23. Iwamoto H, Gao J, Pulkkinen V, Toljamo T, Nieminen P, Mazur W. Soluble
receptor for advanced glycation end-products and progression of airway
disease. BMC Pulm Med. 2014;14:68.

24. Man SF, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive
protein and mortality in mild to moderate chronic obstructive pulmonary
disease. Thorax. 2006;61:849–53.

25. Fibrinogen Studies C, Danesh J, Lewington S, Thompson SG, Lowe GD,
Collins R, Kostis JB, Wilson AC, Folsom AR, Wu K, et al. Plasma fibrinogen
level and the risk of major cardiovascular diseases and nonvascular
mortality: an individual participant meta-analysis. JAMA. 2005;294:1799–809.

26. Thomsen M, Dahl M, Lange P, Vestbo J, Nordestgaard BG. Inflammatory
biomarkers and comorbidities in chronic obstructive pulmonary disease. Am
J Respir Crit Care Med. 2012;186:982–8.

27. Ganz P, Heidecker B, Hveem K, Jonasson C, Kato S, Segal MR, Sterling DG,
Williams SA. Development and validation of a protein-based risk score for
cardiovascular outcomes among patients with stable coronary heart disease.
JAMA. 2016;315:2532–41.

28. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-
Everett D, Silverman EK, Crapo JD. Genetic epidemiology of COPD (COPDGene)
study design. COPD. 2010;7:32–43.

Zemans et al. Respiratory Research  (2017) 18:117 Page 9 of 10



29. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G,
Knobil K, Lomas DA, MacNee W, et al. Evaluation of COPD Longitudinally to
Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J. 2008;31:869–73.

30. Carolan BJ, Hughes G, Morrow J, Hersh CP, O’Neal WK, Rennard S, Pillai SG,
Belloni P, Cockayne DA, Comellas AP, et al. The association of plasma
biomarkers with computed tomography-assessed emphysema phenotypes.
Respir Res. 2014;15:127.

31. Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson
DS, Newell Jr JD, Lynch DA. Relationships between airflow obstruction and
quantitative CT measurements of emphysema, air trapping, and airways in
subjects with and without chronic obstructive pulmonary disease. AJR Am J
Roentgenol. 2013;201:W460–70.

32. Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, Elliott WM,
Hogg JC, Pare PD. The prediction of small airway dimensions using computed
tomography. Am J Respir Crit Care Med. 2005;171:142–6.

33. Leung JM, Mayo J, Tan W, Tammemagi CM, Liu G, Peacock S, Shepherd FA,
Goffin J, Goss G, Nicholas G, et al. Plasma pro-surfactant protein B and lung
function decline in smokers. Eur Respir J. 2015;45:1037–45.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Zemans et al. Respiratory Research  (2017) 18:117 Page 10 of 10


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study design
	Clinical subtypes
	Statistical analysis

	Results
	Demographics
	Airflow limitation (FEV1/FVC and FEV1)
	Emphysema
	Exacerbations
	Decline in FEV1
	Progression of emphysema
	Mortality

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

