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Genomic selection (GS) has resulted in rapid rates of genetic gains especially in

dairy cattle in developed countries resulting in a higher proportion of genomically

proven young bulls being used in breeding. This success has been undergirded by

well-established conventional genetic evaluation systems. Here, the status of GS in

terms of the structure of the reference and validation populations, response variables,

genomic prediction models, validation methods, and imputation efficiency in breeding

programs of developing countries, where smallholder systems predominate and the

basic components for conventional breeding are mostly lacking is examined. Also, the

application of genomic tools and identification of genome-wide signatures of selection

is reviewed. The studies on genomic prediction in developing countries are mostly in

dairy and beef cattle usually with small reference populations (500–3,000 animals) and

are mostly cows. The input variables tended to be pre-corrected phenotypic records and

the small reference populations has made implementation of various Bayesian methods

feasible in addition to GBLUP. Multi-trait single-step has been used to incorporate

genomic information from foreign bulls, thus GS in developing countries would benefit

from collaborations with developed countries, as many dairy sires used are from

developed countries where they may have been genotyped and phenotyped. Cross

validation approaches have been implemented in most studies resulting in accuracies

of 0.20–0.60. Genotyping animals with a mixture of HD and LD chips, followed by

imputation to the HD have been implemented with imputation accuracies of 0.74–0.99

reported. This increases the prospects of reducing genotyping costs and hence the

cost-effectiveness of GS. Next-generation sequencing and associated technologies have

allowed the determination of breed composition, parent verification, genome diversity,

and genome-wide selection sweeps. This information can be incorporated into breeding

programs aiming to utilize GS. Cost-effective GS in beef cattle in developing countries
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may involve usage of reproductive technologies (AI and in-vitro fertilization) to efficiently

propagate superior genetics from the genomics pipeline. For dairy cattle, sexed semen

of genomically proven young bulls could substantially improve profitability thus increase

prospects of small holder farmers buying-in into genomic breeding programs.

Keywords: genomic selection, indicus cattle, GBLUP, sexed semen, accuracy

INTRODUCTION

Genomic selection (GS) has resulted in rapid rates of genetic
gains especially in dairy cattle in developed countries with
the consequence that a higher number of currently artificial
insemination (AI) active sires are genomically proven young
bulls in the USA (Hutchison et al., 2014). The authors reported
that young bulls accounted for 28 and 25% of Holstein and
Jersey inseminations in 2007, respectively. These percentages
increased to 51 and 52%, respectively, in 2012 due to the use of
genomically proven young bulls. Well-established conventional
genetic evaluation systems have provided the strong foundation
for the success of GS in these countries. Furthermore, the
existence of well-developed breeding structures, particularly
breeding companies, has made enormous contribution to the
success. In the dairy and beef industry, for example, the
genotyping infrastructure for bulls and associated costs has
mainly been undertaken by AI companies such as CRV in the
Netherlands (https://www.crv4all.com/), ABS in the USA (http://
www.absglobal.com/us/) and Semex in Canada (http://www.
semex.com/). In addition, these companies provide an efficient
system for delivering superior genetics from the genomics
pipeline.

In developing countries especially in Africa and Asia, most
of the production occurs in small holder systems which
are characterized by small herd sizes, lack of performance,
and pedigree recording and therefore, the non-existence of
conventional genetic evaluation systems (Kosgey and Okeyo,
2007). However, in some countries like Brazil in Latin America,
the existence of breed associations have resulted in the
establishment of some degree of data and pedigree recording
and genetic evaluation (Silva et al., 2016; Boison et al., 2017),
but there is still the lack of breeding structures such as AI
companies, to drive breed improvement programs. Therefore in
the era of genomics, most genotyping activities in developing
countries are undertaken by breed organizations or associations,
such as in Brazil (Carvalheiro, 2014; Silva et al., 2016), or are a
result of several development projects, such as the East Africa
Dairy Development Project (Brown et al., 2016), and the African
Dairy Genetic Gains Cattle project (https://www.ilri.org/node/
40458). Consequently, the number of genotyped animals tend
to be limited; are mostly females, and this has major influence
on both the size and structure of the reference and validation
populations.

Given these characteristics, this paper examines the current
status of GS and use of molecular tools in breeding programs
for dairy and beef cattle in developing countries and offers
some future perspectives. The basic principle of GS is that

single nucleotide polymorphisms (SNPs) are assumed to be
at linkage disequilibrium (LD) with QTLs in the genome.
Therefore, the use of SNPs as markers enables all QTLs in
the genome to be indirectly identified through the mapping
of chromosome segments defined by adjacent SNPs. The
implementation of GS usually involves estimating the SNP effects
in a reference population which consists of individuals with
phenotypic records and genotypes. This is then followed by
prediction of genomic estimated breeding values (GEBV) for
selection candidates (validation data set) with no phenotypes
of their own (Meuwissen et al., 2001). Therefore, the current
status of GS in developing countries is presented under the
broad subtitles of the stages involved in the implementation
of GS such as structure of the reference and validation
populations, definition of input variables, genomic prediction
models, validation methods, imputation efficiency, genotyping
strategies, and routine genomic evaluation. A section on the use
of molecular genomic tools and identification of genome-wide
signatures of selection is then presented.

STRUCTURE OF THE REFERENCE AND
VALIDATION POPULATIONS

As indicated earlier, the lack of major AI companies to drive
the initial breed improvement and genotyping activities in
developing countries has meant smaller number of animals
are genotyped and most of these are females. Firstly, it
becomes very difficult to clearly define separate reference and
validation populations, consequently studies have been designed
to optimally use the available information. In general, these
reported studies on genomic prediction in dairy and beef cattle
are characterized by small reference populations (500–3,000
animals, Table 1) and most validations are undertaken in test
data sets created by either random or structured sampling from
all genotyped animals. A few of these reference populations are
a combination of both bulls and cows (Boison et al., 2017) but
most are cows (Brown et al., 2016; Silva et al., 2016). This has
implications in terms of the accuracy of genomic prediction,
which has tended to be lower compared to those obtained
in developed countries, given the limited information of the
response variable when using cow records.

However, the inclusion of cows in the reference population
has resulted in up to 5-fold increase in the size of the reference
population in some cases and increases of up to 12% in accuracy
compared to using only bulls (Boison et al., 2017). In some of
the studies (Neves et al., 2014; Silva et al., 2016; Boison et al.,
2017), the accuracy of genomic prediction was undertaken in
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validation sets consisting of young bulls born in more recent
years. Thus, the accuracy of genomic prediction was evaluated in
future selection candidates (forward validation) and thus better
reflect the accuracy that will be obtained when selecting young
animals based only on their genotypes.

In the other studies, validation sets were created from all
genotyped animals by either random or structured sampling
such as clustering (Ding and He, 2004) or sampling based on
genomic relationship matrix (Cardoso et al., 2014) or breed
composition (Brown et al., 2016). In such cross validation studies,
the validation sets tend to be contemporaneous to the reference
animals to some degree. Thus, the extent to which such estimates
of accuracy are realized when selecting younger animals for
breeding will be influenced by the degree of the relationship
between the reference and the sampled validation sets. Thus,
cross validation may not necessarily give the best results in terms
of predicting the accuracy of selecting the youngest animals for
breeding.

The influence of the relationships between various validation
sets derived by sampling and the reference set on the accuracy of
genomic prediction has been examined in a few studies. Boison
et al. (2017) observed that the average genomic relationship
for the five top individuals with highest relationships in the
reference and validation data sets varied from 0.321 to 0.410.
Corresponding ranges of estimates considering the top 10
individuals were 0.262–0.362. These values were higher than
estimates reported in other populations (Clark et al., 2012; Neves
et al., 2014). Boison et al. (2017) indicated an increase of 0.1 in
the average genomic relationship for the top five individuals in
the reference and validation sets (roughly equivalent to adding
the sire of a selection candidate to the reference population),
resulted in a substantial increase in accuracy of prediction by
about 0.05. Similarly, Fernandes Júnior et al. (2016) also used
the genomic relationship matrix to examine the relationship
between the reference and 5-fold validation sets. The average
of the maximum relationship was equal to about 0.25 and the
average for the top five and 10 individuals with highest genomic
relationships were 0.19 and 0.17, respectively. These values are
much lower than those reported by Boison et al. (2017) and
approximately correspond to the average value of 0.125 for
distant relationships computed from pedigree information by
Clark et al. (2012). However, Silva et al. (2016) examined the
relationship between the reference animals and three sampled
validation sets (random, young, unrelated) using the pedigree
relationship matrix. The random had the highest relationship
between the reference and validation sets, with 2.14% of the
animals having relationship coefficients ranging from 0.25 to
0.50 in both datasets. Corresponding estimates were 1.17 and
0.53% for the young and unrelated validation sets, respectively.
As expected, the mean accuracy of genomic predictions reported
by Silva et al. (2016) from young validation set was intermediate
to those for the unrelated and random data sets, with the latter
being the highest.

Clark et al. (2012) indicated that the best predictor of accuracy
was an animal’s mean top 10 relationships with the reference
followed by its highest relationship to the reference. Habier et al.
(2010) reported that maximum relationship values of 0.6–0.49

between reference and validation sets gave the best estimates
of accuracy of predictions. In general, the relationship between
the training and validation sets in the genomic prediction
models implemented in developing countries will fall within the
categories of close relationships (0.5) and distant relationships
(0.125) (Clark et al., 2012).

The small reference population call for collaboration between
developed and developing countries, given that some of the
sires used in the latter could have been imported from the
former. The benefits of including foreign genotypes in estimating
accuracy of genomic prediction for milk, fat, and protein
yields in Brazil Holstein was examined by Li et al. (2015) by
including information from Nordic and French Holsteins. None
of the Brazilian bulls and cows were genotyped, but a bivariate
ssGBLUP approach was implemented incorporating genotypes
of 5,244 and 5,088 Nordic and French bulls, respectively, that
were genotyped with Illumina 50K chip and their de-regressed
breeding values (dEBVs) expressed in a Nordic scale. The first
lactation yield of the Brazilian cows expressed in 305-day yields
was used in the analysis with 115 of the Nordic and 19 of the
French bulls represented as sires of these cows. The inclusion
of only the Nordic sires resulted in increases in sire accuracies
from a cross validation approach of 13, 64, and 4% for milk,
fat, and protein yields, respectively, from the genomic prediction
compared to using the pedigree relationship matrix. Including
both French and Nordic bulls resulted in increases of 2 and
45% in reliability for milk and fat, respectively, but none for
protein. While the expression of the dEBVs for French bulls in
the Nordic scale simplified the analysis to a bivariate model,
it could have limited the realization of all possible benefits
of including information from the French bulls. However, the
increases in cow reliabilities from using foreign genotypes were
rather marginal. While the study demonstrated possible benefits
from incorporating foreign genotypes especially for the Brazilian
bulls, it also stressed the need to undertake some genotyping
in the developing countries especially if the accuracy of cow
evaluations is to increase substantially. Similarly, Haile-Mariam
et al. (2015) demonstrated the benefits of incorporating foreign
information in the genomic prediction for the Jersey breed which
has a small reference population of about 784 Australian bulls.
The inclusion of about 2,000 foreign bulls with only daughter
information in the Netherlands and New Zealand increased
the genomic accuracy by 5% on average across 6 main dairy
traits in the validation bulls relative to the use of only Australia
information. The increase in accuracy resulting from the use of
bulls with foreign information was relatively higher when bulls
and cows in the validation sets were less related to the reference
set.

The small reference populations indicate the need for across
regional genomic prediction systems where this is possible with
data pooled across nearby countries especially in sub-Sahara
Africa, where dairy systems tend to be similar. Several procedures
and approaches for combining data across breeding programs
or countries have been developed and these range from post-
evaluation blending procedures, application of appropriate linear
models, or Bayesian methods (Vandenplas and Gengler, 2015;
Vandenplas et al., 2018). Mrode et al. (2018) analyzed pooled
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data for milk yield from crossbred cattle in Kenya and Tanzania.
The number of cows with genotypes in Tanzania was 539 and in
Kenya there were 1,034. The joint genomic prediction resulted
in increased accuracy of genomic prediction in Tanzania by
more than 20% for most categories of cows with substantial
improvement of the predictive ability of the model for Tanzania.
However, there was nomuch gain in accuracy for Kenyan animals
from the joint analysis compared to the within country analysis
as the Tanzania data was very limited and the average relationship
between both populations was rather low.

GENOMIC PREDICTION MODELS AND
RESPONSE VARIABLES

The large data sets of genotyped bulls available for dairy cattle
in the developed countries has influenced the choice of models
implemented for genomic prediction in developing countries.
In addition, the complex models such as the random regression
models in dairy cattle and multi-trait models in beef cattle
implemented for the conventional genetic evaluation at the
national level in most developed countries has given birth to the
two-step genomic prediction systems especially for dairy cattle
(http://www.interbull.org/ib/nationalgenoforms). This implies
the running of conventional evaluations to compute EBVs, which
are subsequently de-regressed (dEBV) and used as input variables
for SNP-BLUP or GBLUP genomic predictions (http://www.
interbull.org/ib/nationalgenoforms). Recently, some developed
countries have implemented single-step genomic evaluations,
ssGBLUP, mostly in beef cattle (Moore et al., 2018) for the
evaluation of fertility and calf traits.

However, in developing countries, the small data set
of genotyped individuals, in addition to either no or less
complicated conventional genetic evaluation systems, have
resulted in the implementation of GBLUP and various Bayesian
methods and a summary is presented in Table 1. GBLUP has
been commonly utilized with G usually computed by method
1 of VanRaden (2008). Importantly, the computation of G has
enabled the estimation of genetic relationship between different
groups of animals and to undertake genetic evaluations in
the absence of pedigree information (Mrode et al., 2018). The
availability of genotypic information on only a limited proportion
of animals has promoted the implementation of ssGBLUP
(Misztal et al., 2009) enabling the combination of pedigree and
genotypic information in the prediction of the genetic merit,
usually resulting in higher accuracy due to the utilization of all
available data (Cardoso et al., 2014; Silva et al., 2016). Plurality
of Bayesian methods (Table 1) have been utilized, possibly due
to the limited data size. However, no clear advantage of these
methods over GBLUP or ssGBLUP have been demonstrated. It
could be inferred that developing countries do not lag behind
in terms of models used in predicting genomic genetic merit
compared to developed countries.

The availability of genotypic data, mostly of females, have
influenced the response variable used in genomic prediction
models in developing countries. Most studies have therefore
used corrected phenotypic records of genotyped cows as input

variables for genomic prediction (Brown et al., 2016; Fernandes
Júnior et al., 2016; Silva et al., 2016). This usually involves
an initial genetic evaluation either using the pedigree or the
genomic relationship matrix to obtain the fixed effects solutions
for adjusting the phenotypic records. In some cases, phenotypic
information available on each cow is variable and in some
cases, weights are computed to account for the varying accuracy
associated with each record (Brown et al., 2016). Like developed
countries, dEBVs from conventional genetic evaluations have
been used as response variables in genomic prediction (Cardoso
et al., 2014; Boison et al., 2017). The dEBVs in the study of Boison
et al. (2017) were weighted in the analysis based on the reliability
of the dEBV and heritability of the trait. In some studies, due
to limited information resulting in poor de-regression (Morota
et al., 2014), EBVs have been used as response variables (Table 1);
and in most of these studies the use of EBV have resulted in
lower accuracy of genomic prediction compared to the use of
adjusted phenotypes (Fernandes Júnior et al., 2016; Silva et al.,
2016). The use of EBVs as the response is rarely the case in
developed countries but the tendency is to use dEBVs especially
for traits that have well-established conventional evaluations. In
some cases, especially for novel traits or difficult to measure traits
which are recorded mostly on cows such as feed intake, cow
phenotypes have been utilized (de Haas et al., 2014).

Ideally the dEBVs used as response for the genomic prediction
in the reference should not include information from the
validation data set, otherwise the contribution of the information
from the validation animals could lead to inflated estimates of
reliabilities. However, this could not be achieved in the study by
Boison et al. (2017) and so estimates of reliabilities were reported
to be inflated.

ACCURACY OF GENOMIC PREDICTIONS

Generally, the accuracy of genomic prediction is usually based
mostly on correlations between the direct genomic breeding and
the dEBV or adjusted phenotypes in the validation data set.
When adjusted phenotype is used, the correlation coefficient
is divided by the square root of the heritability of the trait to
measure the correlation between predicted and true breeding
values (Legarra et al., 2008; Pryce et al., 2012). Similar approach
has been employed in most of the studies in developing countries
(Brown et al., 2016; Silva et al., 2016). However, in the studies of
Terakado et al. (2014) and Boison et al. (2017), the estimation
of accuracy of genomic prediction was based on prediction
error variances estimated from the inverse of the mixed model
equations. This is usually termed as the theoretical or expected
estimates of accuracy (VanRaden, 2008) and usually tend to be
higher than the estimates obtained from correlations because
it ignores changes in genetic variance due to drift or selection
(Gorjanc et al., 2015). Further, the theoretical accuracy is based
on the assumption that the used statistical model is the true
genetic model. Taken together, the theoretical accuracies may
often be inflated. The large number of animals in the reference
population in the genomic prediction systems of many developed
countries implies it is not feasible to obtain the inverse of the
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mixed model equations, hence theoretical estimates of accuracy
are not usually computed routinely but it has been implemented
in Canada based on a reduced set of SNPs (http://www.interbull.
org/ib/nationalgenoforms).

The accuracy of genetic prediction in dairy traits ranges
from 0.50 to 0.85 for production traits with medium to high
heritability to about 0.20–0.50 for fertility and survival traits
with lower heritability in developed countries (Moser et al.,
2010; Wiggans et al., 2017). Those for beef traits are slightly
lower (0.33–0.55) due mainly to lower reference population sizes
(Saatchi et al., 2011; Lu et al., 2016). In the case of developing
countries, the accuracies of genomic predictions have rather been
low to medium in the range of 0.21–0.60. The major factors for
these ranges include the small size of the reference populations
and the composition in terms of being mostly cows that have
lower accuracy of phenotype data than progeny tested bulls in
developed countries. The deterministic prediction equations for
genomic accuracy by Goddard (2009) and Daetwyler et al. (2013)
could help explain such lower accuracies arising from having
mainly cows in the reference population. Assuming traits are
influenced by a large number of QTL, Daetwyler et al. (2013) gave
the following formula to predict genomic prediction accuracy
defined as the Pearson correlation (r) of true and predicted
observed values: r =

√
[Nph2 (Nph2 + Me)−1], where Np is

the number of individuals with phenotypes and genotypes in
the reference population, h2 is the heritability of the trait or
reliability of breeding values in the reference population, and Me
is the number of independent chromosome segments. Me can be
computed as Me= 2NeL, with Ne equals the effective population
size and L, the genome length in morgans. Using typical values
of 100 and 30 for Ne and L, respectively, (Daetwyler, 2009), and
assuming Np of 1,000, reliabilities of about 0.80 and 0.3 for de-
regressed breeding values (dEBV) for progeny tested bulls and
individual cows, respectively, the formula indicates that about 4–
5 cows would be needed to provide equivalent information to
one progeny tested bull. Compared to specialized dairy breeds
in developed countries, effective population is likely to higher
in indigenous dairy cattle and crossbreds reared in smallholder
systems. Increasing the value of Ne to 200 in the above formula
to account for this, indicates that the ratio of about 4 to 5 cows
providing equivalent information to one bull still holds.

Also, the lack of a proper breeding program in most
developing countries does not provide the breeding structure
to ensure that good relationship between younger animals in
the validation set are well-related to animals in the reference
population. The levels of accuracy reported in most of the
studies are however higher than would be obtained from the
parental average although they are lower than those estimated in
developed countries, thus providing a basis for the selection of
good bulls that can be used as parents for the next generation.

Similar to the accuracy of genomic predictions, the regression
of the response variable on direct genomic breeding values in
the validation set as a measure of the calibration (inflation or
deflation) of GEBV, have showed great variation (Table 1). In
some of the studies, the regression coefficients were in general
close to 1 as expected for traits of higher heritability except
for lowly heritable traits, which, in most analysis, were over

1, meaning that predictions were underestimated (Fernandes
Júnior et al., 2016; Silva et al., 2016; Boison et al., 2017). The
Bayesian methods (BayesC, BayesCπ, and Bayesian Lasso) have
resulted in underestimated predictions compared to GBLUP in
several of these studies (Neves et al., 2014; Boison et al., 2017).
However, some of these regression coefficients were rather low
and below 0.5 (Table 1) and due mainly to the smaller size of
the reference population. An improvement in the calibration is
expected as more animals are genotyped.

UTILIZING LOW DENSITY CHIP AND
IMPUTATION

A major issue with the implementation of GS is the cost of
genotyping and it constitutes one of the obstacles to GS in
developing countries. Several studies have therefore examined
the use of cheaper low-density Chips or investigated the use
of low numbers of SNPs accompanied by imputation on the
accuracy of genomic prediction.

Boison et al. (2017) examined the use of several LD chips,
using common SNPs between the HD and the Illumina 50K,
GeneSeek super genomic profiler (SGGP-20Ki), and GeneSeek
genomic profiler (GGP-75Ki) in genomic prediction. The
accuracy of genomic prediction they reported when only bulls
were used in the reference population was similar in the LD chips
compared to theHD.However, with a larger reference population
consisting of bulls and cows, they reported an average increase
in reliability of 3.3% across all traits with the HD marker panel
compared with SGGP-20Ki. In addition, Boison et al. (2017)
examined the impact of using un-imputed HD genotypes in
the validation datasets compared to the use of HD genotypes
imputed from LD chips. The imputation accuracy was high
(about 0.96 on average) and the use of imputed genotypes had
no effect on the accuracy of estimates.

Aliloo et al. (2018) investigated the efficacy of imputation
in East Africa crossbred dairy cattle in terms of its impact on
the accuracy of imputation and genomic prediction using four
different commercial chips [Illumina BovineLD v2, BovineSNP50
v3, GeneSeek-Genomic-Profiler (GGP) Bovine 50K, and Indicus
35 k v1.03 (Neogen Corporation, Lincoln, NE, USA)] with
different reference populations and three different imputation
algorithms [FIimpute v2.2; (Sargolzaei et al., 2014), Beagle v4.1
(Browning and Browning, 2016), and Minimac v3 (Das et al.,
2016)]. The highest imputation accuracy was obtained with a
reference population consisting of a mixture of crossbred and
ancestral purebred animals and using Minimac. The accuracies
of imputation, measured as the correlation between real and
imputed genotypes, were around 0.76 and 0.94 for 7 and 40K
SNPs, respectively, when imputed up to a 770K panel. In general,
the accuracies of the imputation from LD chips to HD genotypes
were higher as the genomic relationships increase between target
and reference animals.

In addition to examining the efficiency of imputation from
different commercial chips, the study of Aliloo et al. (2018)
also examined the efficiency of several methods for creating low
density SNP chip panels of varying sizes (3,757 to 37,8216) from
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the HD Illumina chip. The methods examined for SNP selection
included using MAF within intervals, random selection within
intervals, random selection across chromosome, MAF across
chromosome and the covariance method (it accounted for the
covariance between adjacent SNPs and the MAF of SNPs). The
efficiency of each method was determined by the accuracy of
imputing the created LD chips to the HD and the accuracy of
using the imputed HD in genomic prediction. The covariance
method performed best compared to various other methods. The
accuracies of imputation from 7 to 40K panels selected using the
covariance method were around 0.80 and 0.94, respectively. It
also resulted in higher accuracy of genomic prediction at lower
densities of selected SNPs.

The influence of foreign genotypes on imputation accuracy
when imputing from 6, 9, 50, and 77K chips to 45K markers
used in the USA genomic evaluations in 2014, was examined
by García-Ruiz et al. (2014) in Mexican Holstein under three
scenarios: (i) using only 2,018 Mexican genotyped animals; (ii)
animals from scenario (i) plus 886 related North American
animals; and (iii) animals from scenario (i) and 338,073 North
American genotyped animals. High imputation accuracies were
obtained (96, 96, 99, and 99%, when imputing from 6, 9, 50,
and 77K chips, respectively) when using only local genotypes
[scenario (i)]. With scenario (ii), the imputation accuracy
increased by almost 1% for 6 and 9K chips and half a percentage
point for the 77K chip. Comparing results with scenario (i),
there was an increase of ∼2% for 6 and 9K chips, and 1%
point for the 77K chip under scenario (iii). However, no increase
in accuracy was observed for the 50K chip in any scenario
because of the small number of SNPs that actually were imputed
due to the large number of SNPs common in both chips.
Generally, high imputation accuracies have been reported in
developing countries although the reference populations are
smaller compared to the ones in developed countries. This may
be due to the fact that the imputation involves mostly cows and
the limited number of sires may be used in these populations
and hence higher degree of relatedness. However, collaboration
between developed and developing countries could be beneficial
in terms of further increasing imputation accuracies (García-Ruiz
et al., 2014).

A purpose-built LD SNP chip for the purpose of GS in
cross bred populations (Hidalgo et al., 2016) has recently been
developed by the National Dairy Development Board (NDDB)
of India (https://www.nddb.coop/services/animalbreeding/
geneticimprovement/genomic). The SNP chip called the
INDUSCHIP, consisting of 45,700 SNPs, has been developed
from HD genotypes of mostly four indicus breeds (Gir, Sahiwal,
Kankrej, Red Sindhi) and their taurine crosses mostly with
Holstein and Jersey, in India and has been employed for the
determination of breed composition and genomic prediction for
milk yield.

ROUTINE GENOMIC EVALUATIONS

The basis of tremendous genetic progress from GS in developed
countries has been underpinned by routine genomic predictions

several times in a year. Although several studies have been
undertaken in several breeds (see Table 1) in developing
countries, routine genomic prediction is undertaken in only a few
breeds. Several parallel breeding improvement programs exist in
the Nellore beef cattle in Brazil and some GS is currently being
undertaken in some of these breeding programs (Carvalheiro,
2014). The author indicated that several independent Nellore
breeding programs have already developed prediction equations
for usual and difficult/expensive to measure traits, however
some of the programs are using genomic predictions more as a
marketing than a selection tool. Carvalheiro (2014) summarized
the two business models driving GS in the Nellore cattle. In
the first scenario, the breeders or the breeding programs do not
have access to the genotypes and genomic prediction equations
are regarded as intellectual property of the multinational private
companies that invested in their development. Under this
model the genomic breeding values (GEBVs) are produced,
for example, by combining genomic predictions and regular
EBVs as correlated traits in a multi-trait mixed animal model
analyses (Garrick, 2011). Therefore, the breeding programs
become dependent on the company that sells the GEBVs and its
sustainability depends on the interest of the commercial company
to constantly invest in recalibrating the prediction equations. The
second model he described involves breeding programs and the
breeders have full access to the genotypes. He considered this
a very attractive model because no dependencies exist between
any two segments, enabling breeding programs to change their
service providers without any prejudice if they are not satisfied,
for example, with the genotyping cost or with the quality of the
genetic evaluations.

The Africa Dairy Genetic Gains (ADGG) project in Tanzania
and Ethiopia are currently establishing a pipeline for routine
genetic evaluation using the genomic relationship matrix, in
addition to screening and selecting young bulls using the
genomic predictions (https://www.slideshare.net/ILRI/mrode-
wcap). The non-existence of AI companies to drive genetic
improvement programs, implies that genetic and genomic
evaluations would inevitably be linked to either National
Artificial Insemination Centers or breed societies to help
deliver the superior genetics. This is the current approach
being exploited by ADGG while encouraging public-private
partnership in the space. The beef breeds in South Africa are in
the process of implementing GS but current activities are still
limited to defining the reference population and understanding
the population structure.

MOLECULAR GENOMIC TOOLS AND
IDENTIFICATION OF GENOME-WIDE
SIGNATURES OF SELECTION

Genome sequencing and SNP genotyping technologies, and
new statistical tools have prompted a transition from studies
focusing on the analysis of neutral variation to functional
variation. These developments have led to new tools for
addressing fundamental and applied questions in evolutionary
and developmental biology, and animal breeding. Sequencing
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of full genomes and the development of SNP Chip sets has led
to studies on identification and mapping of genes and QTLs,
genome-wide association analysis (GWAS) and genome-wide
signatures of selection, introgression, and/or admixture. The
studies have led to the identification of many genes and some
incorporated into selection schemes. In developed countries,
whole genome sequence analysis and GS are being applied in
breeding schemes of major food animals (cattle, sheep, goats,
chicken, pigs). In developing countries, genomic technologies
are applied to assessing genetic diversity and admixture and
signatures of selection to identify genomic regions and variants
contributing to variation.

Genomic technologies have shown that indigenous cattle
in developing countries have high levels of genome diversity
compared to commercial breeds (Kim et al., 2017) due to their
different breeding history (Freeman et al., 2004; Decker et al.,
2014; Flori et al., 2014; Edea et al., 2015). Kim et al. (2017)
also revealed the genomes of indigenous breeds are admixed
which suggests genomic diversity as an efficient adaptation
strategy. SNP genotyping and whole-genome sequencing has
shown the genome admixture is of ancient and recent origin.
An analysis of zebu cattle from Kenya, Uganda, and Nigeria
revealed an even admixed autosomal Asiatic indicine∗African
taurine genome composition as well as European taurine ancestry
(Mbole-Kariuki et al., 2014; Bahbahani et al., 2017) confirming
previous findings (Hanotte et al., 2002; Decker et al., 2014).
The Asian indicine∗African taurine composition is ancient and
decreases westwards and southwards from the Horn of Africa
(Hanotte et al., 2002; Decker et al., 2014) while the European
taurine background arises from recent crossbreeding of local
cattle with European Bos taurus breeds. For example, the Borgou
cattle of West Africa is a stabilized admixed breed with genetic
contributions from four African taurine (Baoulé, Somba, Lagune,
N’Dama) and two African Zebu (Fulani, Bororo) cattle, whose
origin traces back to about 130 years ago (Flori et al., 2014).
The genomes of Kenyan local cattle have contributions from
several B. taurus breeds including Guernsey, Norwegian Red,
and Holstein with the contribution of Holstein-Friesians being
the most substantial (Kim and Rothschild, 2014). The authors
postulate the admixture to have occurred in recent times.
Admixed genomes are also a common feature of indigenous
and locally developed breeds of cattle in South Africa (Makina
et al., 2014). Admixed genomes have also been observed in Asian
(India, Pakistan, China, and Indonesia) Bos indicus cattle which
show evidence of Bos javanicus ancestry (Decker et al., 2014).
Kumar et al. (2003) reported an ancestral influence from taurine
cattle in South Asian Bos indicus cattle, probably of Near eastern
origin and Wangkumhang et al. (2015) observed a Southeast
Asian indicine ancestry in the genomes of Thailand cattle.

Written pedigree records are lacking in most small holder
farms in developing countries which makes it almost impossible
to make informed breeding decisions. Genomic technologies
can be valuable in this case in assessing breed composition
and parentage assignment (Werner et al., 2004; Weerasinghe,
2014). Recently, Strucken et al. (2017) demonstrated such an
application using crossbred cattle in East Africa (Kenya, Uganda,
Ethiopia, Tanzania). The authors identified two marker panels

with 200 SNPs each. One panel predicted best, the dairy breed
compositions and the other resulted in accurate estimates of
parentage assignment. A composite panel incorporating the 400
SNPs achieved sufficient accuracy in estimating breed admixture
proportions but not parentage identification.

The development of new technologies which assess genome
architecture with high resolution (full genome sequences, HD
Chips etc.) has resulted in a large number of studies investigating
genome-wide signatures of selection in indigenous cattle in
developing countries and especially in African cattle. For
instance, 18 candidate regions under selection and intersecting
genes and QTLs associated with production and reproduction
performance and adaptation to environmental stress (e.g.,
immunity and heat stress) were identified in East Africa cattle
from the analysis of SNP genotype datasets (Bahbahani et al.,
2017). Bahbahani et al. (2018) found several dairy trait QTLs
overlapping candidate selection regions in Kenana and Butana
cattle based on the analysis of SNP genotype data. Using whole
genome scans, Gautier et al. (2009) identified 53 genomic
regions that spanned 42 genes with functions related to immune
response, nervous system and skin, and hair properties in West
African cattle. Makina et al. (2015) identified 47 candidate
selection regions which also spanned genes associated with
adaptation to tropical environments, nervous system, immune
response, production and reproductive performance in South
African cattle. In a study that analyzed genome sequences of
indigenous breeds of cattle from East, West and Southern Africa,
Kim et al. (2017) identified signatures of selection including genes
and/or pathways controlling anemia, feeding/drinking behavior
and circadian rhythm in the N’Dama, coat color and horn
development in Ankole, and heat tolerance/thermoregulation
and tick resistance in Boran, Ogaden, and Kenana cattle. The
findings from the selection signature studies spanning genes with
functions related to production, reproduction and adaptation,
suggest that genomes of cattle African indigenous cattle have
been uniquely selected to maximize hybrid fitness for adaptation
to reproduce and perform in stressful environments.

FUTURE PROSPECTS

The major factor limiting the application of GS in developing
countries is poor breeding infrastructure that is fundamental
to conventional breeding, lack of routine recording of reliable
phenotypes and good analytical tools to synthesize the data,
providing timely feedback to help improve farmer management
and husbandry techniques. The ADGG has sort to address some
of these major bottlenecks in East Africa by employing recent
developments in information and communication technology
(ICT). In addition, as Ribaut et al. (2010) indicated the revolution
in ICT has also created opportunities to counter some of the
shortcomings in resources through the establishment of global
virtual platforms. For example, the Bill & Melinda Gates
Foundation and CGIAR Generation Challenge Program has
established a public molecular breeding platform (https://www.
gatesfoundation.org/Media-Center/Press-Releases/2010/02/
GCP-launches-Molecular-Breeding-Platform) as a one stop
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shop which centralizes functional access to modern breeding
technologies and marker service laboratory, data management
and analysis for crops. A similar initiative for livestock, or
incorporating livestock requirement to such a center, will
boost genomic activities and increase cost efficiency. The
rapid developments in marker technologies has led to high-
throughput platforms for SNP genotyping and hence reduced
costs. However, in the absence of such centers as described above,
good outsourced cost-effective genotyping services which are
easily accessible are now available. This provides opportunities
to increase the efficiency of implementing advanced genomics in
developing countries.

The provision of bundled services beyond just GS will
accelerate the adoption and use of molecular tools including
GS. Programs for genetic improvement utilizing genomics
approaches should include the development of tools for
parentage verification, breed composition determination, mating
tools that exploit genomic information, traceability, breed
characterization, and tools for computing genomic inbreeding
readily and addressing issues relating to sustainable utilization.
Such approach maximizes the benefits of genotyping and
increases cost-efficiency.

Generally, in the beef industry, GS is expected to generate a
more modest increase in genetic gain for regular traits compared
to dairy cattle partly due to the breeding structure and relatively
limited use of AI. Strategies for optimizing cost-benefits for
the application of GS in beef cattle in developing countries
are still being investigated. Carvalheiro (2014) compared several
scenarios for the application of GS in Nellore cattle using the
current breeding scheme for Nellore as the base standard. This,
in brief, consisted of a breeding program with half of its calves
being born from AI proven bulls and the other half from natural
mating sires and estimated an annual genetic gain of 0.134
genetic standard deviation for growth traits. However, when only
genotyped young sires were used for a fixed time in AI, annual
genetic progress increased by about 58% compared to the base
situation. When a scheme that incorporated GS in addition to
exploring the use of in vitro fertilization (IVF) (with embryos
produced by genotyped donors accounting for 5% of the calves)
was investigated, the annual increase in genetic gain was 79%
relative to the base situation. Carvalheiro (2014) concluded,
more pronounced genetic gains can be realized, if GS is applied
in combination with reproductive technologies, which agrees
with the observations of García-Ruiz et al. (2014). Carvalheiro
(2014) further indicated that the production of embryos through
IVF is becoming very accessible in Brazil, and he indicated a
cost of about US$150 per calf born. This would indicate that
much higher returns from the application of GS in beef cattle
in developing countries would involve pronounced usage of
reproductive technologies incorporating to some degree, both
the widespread use of AI and IVF. Even in dairy cattle, future
investments in the production of high quality genomically proven
embryo for use in medium to large scale farms could be a routine
for the rapid dissemination of superior genetics leading to more
benefits from GS.

Another development in reproductive technologies that is
more likely to have a profound effect in the dairy cattle

industry is the use of sexed semen. In the small holder
system, the cost of purchasing a replacement heifer constitute
a major capital investment not easily affordable to most of
the farmers. Also, the milking of the dairy cow constitutes
the main source of income in the dairy farmer in India,
given the sacred status of cattle. The use of sexed semen of
genomically proven young bulls with a very high probability
of a female calf, could substantially improve productivity
and profitability of small holder farmers and therefore offers
prospect for farmers buying-in into genomic breeding programs.
Thus, continuous improvement in semen sorting technologies
and methods to enhance conception rates with use of
sexed semen opens up future prospects for the application
of GS.

Collaboration between developing and developed countries
will be important in implementing genomic breeding
technologies in the former, especial in dairy cattle, where
there has been a large importation of bulls. It is likely that most
of these bulls have been genotyped in the developed countries
and willingness to share genotypes and some other relevant
performance data will help in enlarging the reference population
and hence the accuracy of genomic predictions in developing
countries. Some of the possible impacts have been demonstrated
by Li et al. (2015).

The ability of Governments to put in place enabling
policies, statutory and regulatory frameworks that encourage
private-public partnerships will be crucial in the long term
in sustaining breeding programs based on conventional or
genomic approaches. Also, the limited genomic data in each
country calls for pooling of data across multiple countries
or geographic regions to maximize the benefits of GS. Initial
possible increases in accuracies, the result of pooling data across
two countries have been demonstrated (Mrode et al., 2018).
However, pooling data across countries could be a sensitive issue
in terms of who has access to the data from other countries.
Thus, there is the need by different government bodies in
developing countries to come up with proper and well-defined
protocols that guide and govern data sharing with adequate
confidentiality.
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