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Abstract
The receptor for advanced glycation end-products (RAGE) is involved in the onset and pro-

gression of several inflammatory diseases. The RAGE primary transcript undergoes numerous

alternative splicing (AS) events, some of which are species-specific. Here, we characterize the

mouse-specific mRAGE_v4 splice variant, which is conserved in rodents and absent in pri-

mates. mRAGE_v4 derives from exon 9 skipping and encodes a receptor (M-RAGE) that

lacks 9 amino acids between the transmembrane and the immunoglobulin (Ig) domains. RNA-

Seq data confirm that in mouse lung mRAGE_v4 is the most abundant RAGE mRNA isoform

after mRAGE, which codes for full-length RAGE (FL-RAGE), while in heart all RAGE variants

are almost undetectable. The proteins M-RAGE and FL-RAGE are roughly equally abundant

in mouse lung. Contrary to FL-RAGE, M-RAGE is extremely resistant to shedding because it

lacks the peptide motif recognized by both ADAM10 and MMP9, and does not contribute sig-

nificantly to soluble cRAGE formation. Thus, a cassette exon in RAGE corresponds to a spe-

cific function of the RAGE protein–the ability to be shed. Given the differences in RAGE AS

variants between rodents and humans, caution is due in the interpretation of results obtained

in mouse models of RAGE-dependent human pathologies.

Introduction

The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor
(PRR) that binds numerous ligands, including advanced glycation end-products (AGE), several
S100/calgranulins, amyloid-beta peptide, High Mobility Group Box 1 protein (HMGB1), the
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integrinMac-1 and extracellularmatrix components [1, 2]. In non-pathological conditions,
RAGE is present in the lung at far greater levels compared to other tissues [3, 4]. RAGE expres-
sion is induced by its ligands and is associated to the progression of several acute and chronic
inflammatory diseases [5–10].

Structurally the mature RAGE protein consists of three extracellular Ig-like domains, a sin-
gle transmembrane helix and a short cytoplasmic tail [1]. The RAGE primary transcript under-
goes numerous alternative splicing (AS) events in human, mouse and other species, which
generate both conserved and species- and tissue-specific coding and non-codingmature tran-
scripts [11–13]. The variants hRAGE and mRAGE, in human and mouse respectively, are the
most abundant isoforms and encode the membrane-bound full-length protein (FL-RAGE)
[11–13]. hRAGE_v1 in human, and mRAGE_v1/v3 in mouse, encode the secreted esRAGE
protein, which represents a fraction of soluble RAGE (sRAGE); esRAGE has a unique C-termi-
nal sequence [11, 12, 14, 15]. The variant mRAGE_v4 derives from exon 9 skipping, which
results in the omission of 9 amino acids (ETGDEGPAE) in the extracellular portion of the
receptor, close to the transmembrane domain. AlthoughmRAGE_v4 is a prevalent mouse-spe-
cific RAGE variant [12], the corresponding protein has not been characterized yet.

We and others have demonstrated that soluble RAGE can also arise from the shedding of
FL-RAGE ectodomain by proteases ADAM10 and MMPs [16–19]. Both in human and mouse,
cleavage of FL-RAGE generates soluble cleaved RAGE (cRAGE) and a C-terminal fragment
(CTF-RAGE) [17, 20]. Soluble RAGEs bind ligands with affinity similar to FL-RAGE, and pre-
vent RAGE signaling by functioning as decoy receptors [17, 21–24]. Cross-sectional studies on
human populations have suggested circulating sRAGEs as potential endogenous protective bio-
markers in RAGE-mediated disorders [23, 25, 26].

Since the majority of the studies on RAGE functions have been performed in mouse models,
exploring the differences in RAGE variants between humans and mice is fundamental in order
to better understand the contribution of RAGE to human physiology and pathology.

Here, we characterize the mouse-specificmRAGE_v4 splice variant. We find that mRA-
GE_v4 corresponds to a membrane-bound protein (that we namedM-RAGE) with a molecular
weight lower than FL-RAGE; both isoforms are expressed at high level in the lung. Contrary to
FL-RAGE, M-RAGE is resistant to proteolytic shedding and hence does not contribute to solu-
ble cRAGE production, as it lacks the stretch of amino acids necessary for ADAM10 and
MMP9 recognition. The transcript mRAGE-v4 is present in other rodents (Rattus norvegicus)
and is absent in other primates (chimpanzee, rhesus macaque). Analysis of the cassette exon 9
in mouse Ager gene revealed splicing regulatory sequences present in rodents but not in
primates.

Our results suggest that, given the differences in the biology of RAGE between rodents and
humans, attention should be paid in the interpretation of results using mouse models for
RAGE-dependent human pathologies.

Materials and Methods

RNA-Seq data

RNA-Seq data frommurine heart and lung tissues were obtained from ENCODE portal
(https://www.encodeproject.org/, released before June 2015). Experiments from the laborato-
ries of Thomas Gingeras (CSHL) and BarbaraWold (Caltech) were chosen because of the
larger number of already aligned reads files (BAM format) available in mm9 and mm10 assem-
blies. More than one BAM file is available for each experiment.We analyzed expression data
from different life stages including embryonic (mm10), postnatal (mm10) and adult (mm9) tis-
sues. ENCODE experiment ID for mouse: heart (ENCSR727FHP, ENCSR691OPQ,
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ENCSR510ADJ, ENCSR035DLJ, ENCSR000BYQ), lung (ENCSR039ADS, ENCSR000BYT).
Cufflinks v2.2.0 [27] was used to estimate the relative abundances of each transcript of the
mouse Ager gene. Ensembl transcripts (release v67 and v79 for mm9 and mm10 respectively)
for mouse Ager gene were provided by a GTF file using default parameters. The expression of
each transcript was measured in Fragments Per Kilobase of exon model per Millionmapped
fragments (FPKM) and represented in a heatmap using R functions (http://www.R-project.
org).

Comparative sequence analysis

Identification of splice junctions was carried out comparing the mRNA and genomic Ager
sequences in in Mus musculus (mm10, NM_007425), Homo sapiens (hg19, NM_001206929),
Rattus norvegicus (rno5, NM_053336), Pan troglodytes (panTro4, XM_009450977.1) and
Macaca mulatta (rheMac3, NM_001205117). Sequence similarity at mRNA and protein level
was determined using BLASTn and BLASTp (http://www.ncbi.nlm.nih.gov/BLAST).

The web-based ESEfinder 2.0 program [28] (http://rulai.cshl.edu/tools/ESE/) was used to
search for all exonic splicing enhancer (ESE) motifs. Input sequences (around exon 9 of the
mouse, rat and human Ager genes) were screened for all possible hexamers, heptamers and
octamers previously identified as putative SR-binding sites using any of the five available matri-
ces in the ESEfinder web server (SF2/ASF, SF2/ASF BRCA1, SC35, SRp40 and SRp55) using
default threshold (1.956 for SF2/ASF, 1.867 for SF/ASF BRCA1, 2.383 for SC35, 2.670 for
SRp40, 2.676 for SRp55). The program scores the input sequences according to their fit to
loose consensus sequences; scores above a default threshold value are predicted as SR protein
binding sites and thus to function as ESEs.

When overlapping putative binding sites of the same SR protein occurs, we keep only one
ESE for the same hexamer (or heptamer or octamer). In mouse exon 9 we detect 2 couples of
overlapping heptamers (ESR A and ESR B).

Molecular modeling

Molecular models of RAGE proteins was performedwith the programModeller [29]. Domains
were oriented with Coot [30] and figures were prepared with PyMol (The PyMOLMolecular
Graphics System, Version 1.7.4 Schrödinger, LLC).

Animals

Studies on Rage-/- [22] and C57BL/6 wild type mice (Charles River Laboratories, Calco, Italy)
were conducted according to a protocol approved by the San Raffaele Scientific Institute Ani-
mal Use Committee, and adhered to the Italian Ministry of Health guidelines.Mice were
housed in standard cages on a 12:12 h light-dark cycle and fed a normal chow diet ad libitum.
Three month-old animals were euthanized by CO2 inhalation; lungs were dissected out,
washed in cold PBS, kept at -20°C and eventually processed as describedbelow.

Antibodies

Anti-β-actinmonoclonal Ab was purchased from Sigma-Aldrich (1 μg/ml; cat. A2228;
St. Louis, MO, USA), goat anti-human RAGE (α-RAGE N-term1; recognizesmouse and rat
RAGE as well) from R&D Systems (cat. AF1145; Minneapolis, MN, USA) was used for western
blot (WB; 1 μg/ml) and Immunofluorescence (IF; 4 μg/ml) and rabbit anti-human RAGE (α-
RAGE N-term2; recognizesmouse and rat RAGE as well) from Santa Cruz Biotechnology
(0.4 μg/ml; cat. Sc-5563; Santa Cruz, CA, USA) was used for WB. Rabbit polyclonal antibody
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against the intracellular domain of human/mouse RAGE was from Abcam (α-RAGE C-term;
1 μg/ml; cat. ab3611-100; Cambridge, UK). Anti-GAPDH was from Santa Cruz Biotechnology
(0.4 μg/ml; cat. sc-468).

Cell culture

ImmortalizedMEFs from Adam10−/− (A10 ko) and Adam10+/+ (A10 wt) mice were
described elsewhere [17, 31] MEFs and R3/1 cells [2] were grown in Dulbecco’s modifiedEagle
medium (DMEM) supplemented with 10% fetal calf serum (FCS) and 1% penicillin/
streptomycin.

Plasmids

We generated the plasmids expressing mRAGE or mRAGE_v4 cDNA under the CMV pro-
moter by cloning into EcoRI sites of the pcDNA3 vector (pcDNA/FL-RAGE and pcDNA/
M-RAGE, respectively). The two cassettes representing mouse RAGE splice variants were pro-
duced as previously described [12]. Briefly, a PCR was performed on the murine lung cDNA,
isolated from a C57BL/6 wild type mice, using the forwardmouse RAGE 5’-UTR [5’-AGGAA
GCACCATGCCAGC-3’] and the reverse mouse RAGE 3’-UTR [5’-GGATGGAATGTGGGG
GAG-3’] primers with the Phusion High-Fidelity DNA polymerase system (Finnzymes,Massa-
chusetts, USA). The resulting PCR product was purified using the Qiaquick PCR Clean-Up kit
(Qiagen, Hilden, Germany) and subsequently cloned into the TOPO TA vector pCR2.1-TOPO
(Invitrogen, California, USA) after addition of 3’ A overhangs using Taq polymerase (Finn-
zymes). Plasmid DNA was purified from 24 randomly selected bacterial colonies, sequenced
using T7 and M13R primers, and the confirmed splice variants were then subcloned.

Western blot (WB) and immunofluorescence (IF)

Lungs isolated from Rage-/- (N = 1) and wild type C57BL/6 (N = 3) mice were lysed in RIPA
buffer (10 mM Tris-HCl, pH 7.2; 150 mMNaCl; 5 mM EDTA; 0.1% SDS; 1% sodium deoxy-
cholate; 1% Triton X-100) in the presence of protease inhibitors (1:100 Sigma protease inhibi-
tor cocktail). After 5 min on ice, samples were centrifuged at 10,000 g for 30 min at 4°C.
Supernatants were recovered, and protein concentration was determined by the Bradford
method (Bio-Rad,Munich, Germany), using BSA as a standard. Laemmli buffer was added to
soluble cell lysates and samples were heated for 5 mins at 95°C before loading on sodiumdode-
cyl sulfate (SDS) polyacrylamideprotein gels (10%).

For detection of soluble RAGE in supernatants, R3/1 cells or MEFs (1x105) were seeded in
6-cm tissue culture plates and transfected with the indicated plasmids using Fugene HD (Pro-
mega,WI, USA) according to the manufacturer’s indications. After 48 hours, the complete
mediumwas replaced with OPTIMEMmedium for 5 (R3/1 cells) or 3 (MEFs) hours and incu-
bated at 37°C.Where indicated, transfected R3/1 cells and MEFs were treated with ADAM10
inhibitor (GI254023X, abbreviated here as GI, 5 μM; Cat. SML0789; Sigma-Aldrich) or PMA
(100 nM; Sigma-Aldrich), respectively. Culture supernatants were centrifuged and then precip-
itated with half a volume of 100% cold acetone and dissolved in 2X Laemmli buffer. Aliquotes
of supernatant were tested for cRAGE by ELISA assay. Cells were washed with PBS and lysed
in RIPA buffer in the presence of protease inhibitors, and processed for testing RAGE expres-
sion with the indicated antibodies as already described [2, 17]. Bands on films were quantified
using ImageJ software (U.S. National Institutes of Health, Bethesda,MD, USA).

For IF, R3/1 cells were transfected with the indicated plasmids using Fugene HD and pro-
cessed as previously reported [2]. Images were acquired on a Leica TCS SP5 AOBS confocal
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microscope equipped with a ArgonPlus Ar-ion laser and a HCX PL Apo CS 63x oil immersion
objective/1.4NA.

ELISA assay

Total mouse cRAGE in culture supernatant was determined using a Quantikine ELISA kit spe-
cific for mouse RAGE (cat. MRG00; R&D Systems), according to the manufacturer’s protocol.
The minimum detectable dose of soluble RAGE was 0.031 ng/ml, and linearity was conserved
between 0.031 and 2 ng/ml.

Data analysis

Results are expressed as mean ± SD. Statistical analysis was performed by one-way ANOVA
with post hoc Bonferroni’s multiple comparisons test using GraphPad Prism program. Values
of P< 0.05 were considered significant.

Results

Expression patterns of alternatively spliced mRNA isoforms in the

mouse

We explored by RNA-Seq analysis the relative expression of all coding RAGE splice variants
across embryonic, post-natal and adult mouse heart and lung samples. We confirmed that mul-
tiple alternatively spliced RAGE mRNA isoforms (mRAGE, mRAGE_v4, mRAGE_v1, mRA-
GE_v15) exist in the mouse at all the considered life stages. Expression differs between heart
and lung [12] (Fig 1). It is not possible to define the relative amount for each RAGE splice vari-
ant in both embryonic/postnatal (Fig 1A) andadult (Fig 1B) hearts because the expression is
weak (FPKM< 6) and only detectable with low confidence for some samples. By contrast, the
level of RAGE splice isoforms is remarkably high in embryonic/postnatal lungs (Fig 1A) and
evenmore abundant in adult lungs (Fig 1B). All the analyzed mouse lung samples show a simi-
lar pattern of expression. In particular, the most prevalent pulmonary isoform is mRAGE and
the secondmajor one is mRAGE_v4. mRAGE_v1 has low but uniform expression among the
samples, while mRAGE_v15 is under the detection limit (Fig 1).

Murine RAGE_v4 transcript encodes a membrane-bound RAGE

resistant to shedding

We then characterizedmRAGE_v4 at the protein level. mRAGE codes for the mature mem-
brane-bound full length receptor, while mRAGE-v4 for a similar protein lacking 9 amino acid
in the linker region connecting the C2 domain with the transmembrane helix. We generated
plasmids expressing cDNAs corresponding to mRAGE and mRAGE_v4, and transiently trans-
fected them, or the empty vector (pcDNA) as control, into rat alveolar type I-like R3/1 cells,
which do not express detectable amounts of endogenous RAGE [2]. As expected, both protein
isoforms were localized on the cell membrane (Fig 2A). Cells transfected with mRAGE cDNA
showed inWBs a band of about 58 KDa, and cells transfected with mRAGE-v4 cDNA a band
of about 50 KDa, recognized by antibodies against the intracellular (α-RAGE C-term) or the
extracellular (α-RAGE N-term1) domains of RAGE (Fig 2B; S1 Fig). We named these two iso-
forms FL-RAGE and membrane RAGE (M-RAGE), respectively. Both proteins are expressed
at high and almost equal level in the mouse lung, and they correspond to the two highest mw
protein bands recognizedby both α-RAGE antibodies (Fig 2B; S1 Fig). The third form of
RAGE present in the lung is the soluble cRAGE that derives from the shedding of FL-RAGE;
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Fig 1. Expression of RAGE transcript variants in different life stages of Mus musculus. The heatmap shows the expression level of

indicated transcripts of murine Ager gene in lung and heart tissues in embryonic/postnatal (A) and adult samples (B). Scale varies from white

(no expression) to black (highest expression).

doi:10.1371/journal.pone.0153832.g001
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Fig 2. M-RAGE is highly resistant to shedding. (A) Cellular localization of FL-RAGE and M-RAGE. R3/1

cells were transfected with the empty vector (pcDNA), FL-RAGE or M-RAGE and IF staining was performed

using the RAGE N-term antibody (green) that recognizes the extracellular domain. Nuclei were stained with

DAPI (blue). Bars correspond to 25 μm. (B) FL-RAGE and M-RAGE are readily detectable in mouse lung.

Representative WB of twenty μg of lysate from one Rage-/- and one wild type (wt) lung and 35 μg of lysate
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cRAGE is recognizedby α-RAGE N-term1 but not by α-RAGE C-term antibodies (Fig 2B; S1
Fig) [17].

Since analysis of mouse lung lysates revealed only one cRAGE band, we hypothesized that
M-RAGE could not be proteolytically processed. Thus, we tested whetherM-RAGE could be
subject to shedding. FL-RAGE and M-RAGE were detected in the corresponding cell lysates
both with α-RAGE C-term and α-RAGE N-term1 antibodies. Supernatants of R3/1/FL-RAGE,
but not R3/1/pcDNA cells, contained soluble cRAGE, detectable only with α-RAGE N-term1
antibody (Fig 2C; S1 Fig). Interestingly, supernatants of R3/1/M-RAGE cells exhibit an
extremely low amount of cRAGE with a lower molecular weight.

These data demonstrate that, in vivo pulmonaryM-RAGE is not cleaved and that soluble
cRAGE derives from FL-RAGE shedding, while, in vitro, just a small fraction of M-RAGE
undergoes proteolysis.

M-RAGE lacks the MMP9 consensus sequence and the cleavage site

for ADAM10

To explore why M-RAGE is resistant to proteolysis, we analyzed the RAGE protein sequence
for the presence of putative protease recognition sites. As shown previously by our laboratory
and other research groups, human RAGE is cleaved by ADAM10 and MMP9 [16, 17, 19].
MMP9 recognizes the consensus motif X4-P3-X2-X1-Hy1’, where X4 is often a glycine and Hy is
a hydrophobic residue and cleavage occurs betweenX1 and Hy1’. Interestingly, FL-RAGE con-
tains a MMP9 consensus motif G4-P3-A2-E1�-G1’ in the linker region connectingC2 domain
with the transmembrane helix (residues 325 to 329, the star indicates the bond that is cleaved).
This motif is conserved in human RAGE, with G4-P3-T2-A1

�-G1’ as residues 327–331. Notably,
M-RAGE lacks precisely this motif (Fig 3A).

The prediction of the ADAM10 cleavage site in RAGE is not straightforward. In contrast
to MMP9 there is no clear consensus motif recognized by ADAM10 [32]. Nevertheless, com-
parison with bona fide ADAM10 substrates revealed that FL-RAGE contains the sequence
P4-A3-E2-G1

�-S1’, which is identical to the ADAM10 cleavage site in the p75 TNF receptor
[32] (Fig 3A). Notably, soluble RAGE isolated frommurine lung ends at the C-terminus with
Glu 328 [20]. Incidentally, this suggests that in mice RAGE shedding occurs predominantly
via ADAM10, since the C-terminus produced by MMP9 proteolysis should end with Gly
329.

In order to evaluate the accessibility of the recognition site by the proteases we generated a
structuralmodel of murine FL-RAGE and M-RAGE. In both proteins the C2 domain is con-
nected to the transmembrane helix by a linker region that is predicted to contain no secondary
structure (Fig 3B). The linker comprises 18 residues in FL-RAGE whereas it is shortened to 9
residues in M-RAGE. MMP9 binds its substrates via an extended stretch of at least 9 amino
acid residues (Fig 3B). Our model suggests that the shortening of the linker region in M-RAGE
not only eliminates the putative recognition site for MMP9 and ADAM10 but also reduces the
steric accessibility for the proteases.

from R3/1 cells transfected with the empty vector (pcDNA), FL-RAGE or M-RAGE were probed with the

indicated antibodies against RAGE. Because of different levels of RAGE expression in lung and R3/1 cells,

long and short exposures of the same membranes are shown. GAPDH was used as loading control; (N = 1

Rage-/- mouse; N = 3 wild type C57BL/6 mice). (C) M-RAGE is not shed from cultured cells. R3/1 cells were

transfected with pcDNA, FL-RAGE or M-RAGE, and cell lysates (35 μg) or supernatants were analyzed with

the indicated antibodies against RAGE. Beta-actin was used as loading control. In all panels, nonspecific

bands (*) are indicated.

doi:10.1371/journal.pone.0153832.g002
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Fig 3. M-RAGE lacks a protease recognition site. (A) Sequence alignment of murine FL-RAGE and M-RAGE with human FL-RAGE.

M-RAGE lacks nine amino acid residues relative to FL-RAGE. This stretch of residues comprises an MMP-9 recognition site (red) that

overlaps with a motif recognized by ADAM10 protease (underlined). (B) Three-dimensional models of FL-RAGE and M-RAGE. The three

Ig domains of RAGE (V, C1, and C2) are shown in different colors, the transmembrane helix is shown in green and the location of the

membrane is indicated in grey. The protease recognition site in FL-RAGE is highlighted in red. Clearly, in FL-RAGE the linker between C2

and the transmembrane helix is extended and more easily accessible by proteases such as MMP-9 or ADAM10.

doi:10.1371/journal.pone.0153832.g003
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Shedding of FL-RAGE but not of M-RAGE is enhanced by PMA-induced

ADAM10 activity

Since ADAM10 is likely to be the major sheddase for murine FL-RAGE in the lung [20], we
sought to determine experimentally whethermurine FL-RAGE and M-RAGE are ADAM10
targets. We first treated or not R3/1/pcDNA, R3/1/FL-RAGE and R3/1/M-RAGE cells with the
GI compound, a specific inhibitor of ADAM10 activity. Cell lysates and supernatants of cells
were analyzed for the expression of RAGE isoforms by WB (Fig 4A; S2 Fig). Since we observed
a difference in the efficacy of transfection of R3/1 cells with FL-RAGE and M-RAGE vectors,
cRAGE amount was quantified in the supernatant of cells after adjusting for total RAGE
expression by ELISA (Fig 4B). GI inhibited constitutive shedding of murine FL-RAGE, reduc-
ing the levels of the corresponding cRAGE close to those of cRAGE derived fromM-RAGE
cleavage (Fig 4; S2 Fig). Notably, GI treatment further reduced the small amount of cRAGE
deriving fromM-RAGE proteolysis, although the difference was not statistically significant
(Fig 4B). These data were confirmed using Adam10-/- (A10 ko) MEFs and the corresponding
Adam10+/+ (A10 wt) MEFs (Fig 5; S3 Fig).

PMA is a known activator of ADAM10 [31] and we have previously shown that human
FL-RAGE shedding is induced by PMA stimulation in human cell lines [17]. We treated trans-
fected R3/1 cells or MEFs with PMA. PMA treatment of R3/1 cells did not influence the cleav-
age of both FL-RAGE and M-RAGE (not shown). A10 wt MEFs stimulated with PMA exhibit
an enhanced shedding of FL-RAGE, whereas PMA-treated A10 ko MEFs did not show an
equivalent increase in shedding (Fig 5; S3 Fig). PMA did not significantly affectM-RAGE shed-
ding in either A10 wt and A10 ko MEFs (Fig 5; S3 Fig).

Altogether, these data indicate that murine FL-RAGE is shed mostly by ADAM10, as effi-
ciently as human FL-RAGE, and that in vitro ADAM10 constitutively cleaves a small fraction
of M-RAGE, compatible with the absence of its consensus sequence. However, when ADAM10
activity is induced,M-RAGE proteolysis is not enhanced confirming its resistance to
ADAM10-dependent shedding.

Sequence features of the mRNA generating M-RAGE

We performed further cross-species comparisons using both mRNA and the protein sequence.
BLASTn and BLASTp results reveal orthologs of mRAGE-v4 only in rodents (Rattus norvegi-
cus, advanced glycosylation end product-specific receptor variant 3). In terms of exon/intron
structure, no equivalent splice variant was found in human or in other primates (chimp, rhesus;
not shown), as already reported [13].

With the aim to understand the mechanism by which exon 9 is sometimes skipped in
rodents but never in primates, we examined the sequences of the primary RAGE transcript
around cassette exon 9 (Fig 6). The 5’ splicing sites (SS) in all the analyzed mammals have the
obligatory GT at positions 1 and 2, are canonical and differ among each other only for the 8th

nucleotide. The 5’ss of mouse has the weakest score (9.16) relative to the other mammals, but
the rat 5’ ss has the same score as primates (10.07), indicating that the 5’ ss does not justify the
difference in splicing between rodents and primates. Regarding the 3’ ss, mouse and rat have
scores (8.23 and 7.42 respectively) similar to those of primates (8.37), which again do not jus-
tify the splicing differences.

We then examined the sequence features outside the canonical splice sites. We analyzed the
distribution of putative exonic splicing regulators (ESRs), sequences that act as binding sites
for members of the serine/arginine rich family of splicing enhancer proteins [33, 34] Using
ESEfinder [28] we identified 4 putative ESRs in mouse. Interestingly, ESR B was found in
mouse and rat, but not in the other mammals (Fig 6).
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Fig 4. Effect of ADAM10 activity on FL-RAGE and M-RAGE cleavage. (A, B) R3/1 cells were transfected

with the indicated vectors, treated or not with an ADAM10 inhibitor (GI), and processed as described in

Materials and Methods. (A) Representative WB of cell lysates (50 μg) and supernatants of R3/1 cells.

Because of the variable levels of cRAGEs in the supernatants of R3/1 cells, short and long exposures of the

same membrane are shown. Beta-actin and red Ponceau staining were used as loading control for cell

lysates and supernatants, respectively. (B) Quantification of cRAGEs in the supernatant of transfected R3/1

cells by ELISA assay. R3/1 cells were transfected with different efficiency and the volume of supernatants

tested was adjusted accordingly. Data are mean ± SD (N = 3; ***, P�0.0001; ns, not significant; a.u.,

arbitrary units).

doi:10.1371/journal.pone.0153832.g004
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Discussion

AS is a commonmechanism in eukaryotic organisms to expand transcriptomic and proteomic
complexity through production of multiple transcripts and corresponding proteins from a sin-
gle gene [35]. AS is involved in genomic evolution and in development, and its misregulation
may directly cause or contribute to the severity of a given diseases [36].

RAGE has multiple tissue- and species-specificAS isoforms [11, 13, 37]. Major differences
between human and murine RAGE splice transcripts and abundance have been reported [11–
13, 36]. We were most interested in the mouse-specificmRAGE_v4 variant, which encodes a
membrane-bound RAGE protein lacking 9 amino acids in the linker region between the extra-
cellular Ig domains and the transmembrane domain. mRAGE_v4 or equivalent AS forms are
not present in human. In agreement with previous published data [12, 13] our RNA-seq analy-
sis revealed that among the mature transcripts, mRAGE_v4 is the secondmost represented
splice variant in lung after mRAGE (Fig 1) [12, 13]; mRAGE_v1 and mRAGE_v15 were also
found but at very low levels. It was not possible to define the relative amount of RAGE splice
transcripts in heart because of their extremely low expression (Fig 1). The dissimilarities
between lung and heart are not surprising, since in physiological conditions RAGE is present at
high and detectable levels only in lung [3, 4].

We named the protein product of mRAGE_v4 membrane RAGE, M-RAGE, to distinguish
from the mature full-length receptor FL-RAGE, which is encoded by the mRAGE transcript.
As expected,M-RAGE localizes on the cellular surface and has an apparent MW of about 50
kDa, lower than that of FL-RAGE (58 kDa; Fig 2A and 2B; S1 Fig). Peng et al. have reported
that while FL-RAGE is localized to the plasma membrane as well as to the early and late endo-
some, M-RAGE is exclusively localized to the plasma membrane [38]. Both proteins are highly
and almost equally expressed in the murine lung, together with the soluble cRAGE (Fig 2B; S1
Fig). Similar to its human counterpart, murine FL-RAGE undergoes constitutive ectodomain
shedding in R3/1 cells and MEFs, which dependsmostly on ADAM10 activity (Figs 2C, 4 and
5; S1–S3 Figs). Interestingly, only a small fraction of M-RAGE experiences shedding in vitro.
Correspondingly, M-RAGE is resistant to proteolysis and does not contribute significantly to
cRAGE production in the lung (Figs 2C, 4 and 5; S1–S3 Figs). Indeed we and others have
detected only one species of cRAGE in the pulmonary lysates (Fig 2B; S1 Fig) [20]. M-RAGE
resistance to shedding can also explain the discrepancy between the relative amount of

Fig 5. PMA enhances FL-RAGE but not M-RAGE shedding. (A, B) A10 ko and A10 wt MEFs were transfected with the

indicated vectors, treated or not with PMA for 3 hours and processed as described in Materials and Methods. (A)

Representative WB of cell lysates (40 μg) and supernatants of MEFs. Beta-actin and red Ponceau staining were used as

loading control for cell lysate and supernatant, respectively. (B) Quantification of cRAGEs in the supernatants of transfected

MEFs by ELISA assay. MEFs cells were transfected with different efficiency and the volume of supernatant tested was adjusted

to compensate. Data are mean ± SD (N = 3; ***, P�0.0001; a.u., arbitrary units).

doi:10.1371/journal.pone.0153832.g005

Fig 6. Splicing sequence features in orthologous Ager cassette exon 9. Alignment of exon 9 of the AGER gene among mouse, rat, human,

chimp and rhesus. Upper and lower case indicate exonic and intronic sequence, respectively. The AG and GT of the 3’SS and 5’SS are

underlined. The examined ESR A and B sites are highlighted in gray. Nucleotides in bold indicate exonic positions that change during evolution.

doi:10.1371/journal.pone.0153832.g006
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mRAGE and mRAGE_v4 transcripts and the corresponding proteins in the lung: it is likely
that the constitutive FL-RAGE cleavage reduces its cell surface expression, whileM-RAGE can
accumulate.

Our structural analysis further suggests that the absence of the 9 amino acids in M-RAGE is
unlikely to affect its ligand binding or adhesive properties. However, the missing amino acid
stretch in M-RAGE contains the MMP9 consensus motif and the ADAM10 cleavage site, pre-
dicted on the base of its similarity to the cleavage site of the p75 TNF receptor, a bona fide
ADAM10 substrate [32] (Fig 3A). Notably, cRAGE isolated frommurine lung ends at the C-
terminus with Gly 329 [20], suggesting that ADAM10, and not MMP9, is the major pulmonary
protease responsible for FL-RAGE cleavage, at least in physiological conditions. Despite the
absence of the predicted cleavage site, ADAM10 is still responsible for the small fraction of
M-RAGE cleavage in R3/1 cells and MEFs, likely because of the overexpression of the receptor
after transfection (Figs 4 and 5; S2 and S3 Figs). However, when ADAM10 activity is induced
by PMA, FL-RAGE but not M-RAGE proteolysis is further enhanced, confirming experimen-
tally that the lack of the peptidemotif recognizedby ADAM10 in M-RAGE is responsible for
its resistance to shedding (Fig 5; S3 Fig).

We also investigated the exon–intron structure of the mouse Ager gene and found a high
level of conservation of splicing regulatory elements in rat but not in human and other pri-
mates suggesting that those sites may regulate the AS of the exon 9 (Fig 6).

Species-specific variation in AS is an important engine in the evolution of mammalian spe-
cies. At least 11% of human and mouse cassette exons undergo species-specificAS [39].
Remarkably, species-specificAS events disproportionately affect conserved sequences that dic-
tate the functional properties of proteins [39]. mRAGE_v4 may represent one such example:
indeed, the AS of exon 9 involves the deletion of a specific amino acid stretch indispensable for
RAGE ectodomain shedding and cRAGE production.

Thus, our characterization of M-RAGE highlights important divergences in the biology of
mouse and human RAGE that needs to be carefully considered since the mouse is the most
extensively used animal model to study RAGE contribution to human pathogenesis.

For instance, RAGE is expressed at high level mainly on the membrane of alveolar type I
(ATI) cells regulating proper lung development [40, 41]. Evidences frommouse studies sup-
port a pathogenic role of RAGE in pulmonary inflammatory disorders, in which RAGE iso-
forms, in particular FL-RAGE and cRAGE/sRAGE, have been found either increased or
decreased [3, 4, 41]. Not much attention has been paid to M-RAGE, which we demonstrated
here to be highly expressed in murine lung.

In the light of our findings, we believe that M-RAGE expression and regulation should be
taken in consideration when investigating RAGE physiological and pathological functions.
First, the ectodomain cleavage of adhesion molecules has been shown to regulate not only their
membrane expression but also cell migration, adhesion and activation [42–44]; in this context,
uncleavable M-RAGE may exert adhesive and migratory properties different from FL-RAGE.
Second, we propose that, since M-RAGE does not participate to sRAGE production, it may
contribute to explain the low levels of circulatingmurine sRAGEs. Human sRAGEs have elic-
ited a lot of interest because their potential role as both a RAGE antagonist to prevent ligand-
dependent receptor activation and circulating biomarkers for RAGE-mediated disorders [21–
26]. Interestingly, analysis of murine serum/plasma has revealed no detectable soluble RAGE
isoforms within the range seen in human [12]. Accordingly, the presence of AS variants encod-
ing for esRAGE and soluble RAGEs in general is low in most tissues compared to human [12,
13]. The existence of M-RAGE may contribute to explain these differences.

In conclusions, the variation in RAGE AS between rodents and humans may have a pro-
found evolutionary and functionalmeaning that needs to be further explored.

Characterization of the Mouse-Specific RAGE_v4 Isoform

PLOS ONE | DOI:10.1371/journal.pone.0153832 September 21, 2016 14 / 17



Supporting Information

S1 Fig. Original unadjusted blots of Fig 2: M-RAGE is resistant to shedding.Twenty μg of
lysate from one Rage-/- and one wild type (wt) lungs and 35 μg of lysate or supernatants from
R3/1 cells transfected with the empty vector (pcDNA), FL-RAGE or M-RAGE were probed
with the indicated antibodies against RAGE. Because of different levels of RAGE expression in
lung and R3/1 cells, long and short exposure of the same membranes are shown. GAPDH or
Beta-actinwere used as loading control. In all panels, nonspecific bands (�) are indicated.
(TIF)

S2 Fig. Original unadjusted blots of Fig 4: effect of ADAM10 activity on FL-RAGE and
M-RAGE cleavage.R3/1 cells were transfected with the indicated vectors, treated or not with
an ADAM10 inhibitor (GI), and processed as described in Materials and Methods. Representa-
tiveWB of cell lysates (50 μg) and supernatants of R3/1 cells. Because of the variable levels of
cRAGEs in the supernatants of R3/1 cells, short and long exposures of the same membrane are
shown. Beta-actin and red Ponceau staining were used as loading control for cell lysates and
supernatants, respectively.
(TIF)

S3 Fig. Original unadjusted blots of Fig 5: PMA enhances FL-RAGE but not M-RAGE shed-
ding. A10 ko and A10 wt MEFs were transfected with the indicated vectors, treated or not with
PMA for 3 hours and processed as described in Materials and Methods. Representative WB of
cell lysates (40 μg) and supernatants of MEFs. Beta-actin and red Ponceau staining were used
as loading control for cell lysate and supernatant, respectively.
(TIF)
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