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H I G H L I G H T S
� Distribution of lactic acid bacterial species in Thai fermented mussels was investigated.
� Seven Lactiplantibacillus plantarum subsp. plantarum isolates exhibited bile salt hydrolase activity.
� Lacticaseibacillus rhamnosus LM1-1 and Enterococcus thailandicus LM4-1 were shown to have high levels of cholesterol assimilation.
� Heat-killed LAB cells of isolates exhibited the immunomodulation effect to levels of IL-12, IFN-γ, hBD-2, and NO production.
� Thai traditional fermented mussel is an attractive source of potential probiotics.
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A B S T R A C T

Forty-eight lactic acid bacteria (LAB) isolated from fermented mussels in Thailand were evaluated for their
probiotic properties, bile salt hydrolase (BSH), cholesterol assimilation and immunomodulatory effects. They
were identified as Companilactobacillus formosensis (Group I, 10 isolates), Lentilactobacillus buchneri (Group II, 8
isolates), Lactiplantibacillus plantarum subsp. plantarum (Group III, 16 isolates), Lacticaseibacillus rhamnosus (Group
IV, 1 isolate), Pediococcus pentosaceus (Group V, 5 isolates) and P. acidilactici (Group V, 1 isolate), Enterococcus
thailandicus (Group VI, 2 isolates), En. hirae (Group VII, 1 isolate), En. durans (Group VI, 1 isolate), Lactococcus
lactis subsp. lactis (Group VII, 1 isolate), Lc. lactis subsp. hordinae (Group VII, 1 isolate), and Leuconostoc lactis
(Group VIII, 1 isolate), based on their phenotypic and genetic characteristics. Seven isolates, L. plantarum subsp.
plantarum LM6-1, LM6-2, LM7-2-2B, LM12-1, LM14-1, LM15-1P and LM15-2 expressed bile salt hydrolase ac-
tivity. All isolates assimilated cholesterol ranging from 20.73 to 79.40%. BSH-producing isolates were tolerant to
acidic and bile conditions and showed the adhesion ability to Caco-2 cells. The BSH-producing and selected
isolates showed the immunomodulatory effects to stimulate interleukin-12 (IL-12), interferon-gamma (IFN-γ),
human beta defensin-2 (hBD-2) and nitric oxide (NO) production at various levels. Therefore, these results
indicated that the isolates meet the standard probiotic criteria and beneficial effects.
1. Introduction

Hoi-dong is a traditional low-salt fermented green mussel meat pro-
duced organically from Perna viridis (Hoi-ma-laeng-poo). It has a dark or-
ange semi-solid appearance with a sour and salty flavor (Figure 1)
(Phithakpol et al., 1995; Tanasupawat and Komagata, 1995). L. pentosus,
L. plantarum, and Tetragenococcus halophilus isolates were found in the
products (Tanasupawat and Daengsubha, 1983; Tanasupawat and
asupawat).
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Komagata, 1995). Lactic acid bacteria (LAB) play an essential role in
fermentation, resulting in improved taste, aroma, and texture. In addition,
they could be used in food preservation. They are also used as probiotics in
severalAsian fermented foods (Ngasotter et al., 2020). LABare classifiedas
normally regarded as safe (GRAS) (FAO/WHO, 2002). Presently, various
investigations support the beneficial significance of probiotics as a func-
tional food with cholesterol-lowering, and immunomodulatory effects
(Albano et al., 2018; Domingos-Lopes et al., 2020; Hameed et al., 2022).
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Figure 1. Fermented mussel (Hoi-dong).
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Probiotics have various health effects, such as the ingestion of LAB
alleviating certain risk factors for coronary disease (CAD) (De Vries et al.,
2006). According to Albano et al. (2018), even at 1% decrease in blood
cholesterol can reduce the CAD risk. Furthermore, LAB are presently still
interesting since theymodulate immunity and immune-boosting effect and
are used in special disorders such as immunodeficiency and autoimmune
diseases (Thamacharoensuk et al., 2017; Iwabuchi et al., 2012).
Interleukin-12 (IL-12) is a pro-inflammatory cytokine associated in limiting
of infection, cancer, as well as the induction of IFN-γ production (Tha-
macharoensuk et al., 2017). IFN-γ has a role in the prevention of intracel-
lular pathogen infection. There have been numerous investigations of
LAB-stimulating IL-12 and IFN-γ secretion (Chen et al., 2013; Moon et al.,
2019; Nakai et al., 2019; Thamacharoensuk et al., 2017).Moreover, human
beta defensin-2 (hBD-2) is a human antimicrobial peptide that serves vital
functions in host defense and is induced by inflammation or infection.
Several LAB isolates have been shown to stimulate BD expression, hence
enhancing BD expression could prevent infections (Kobatake and Kabuki,
2019). In addition, nitric oxide (NO) plays an essential function in infection
defense and immunomodulatory effects (Wang et al., 2009) and there have
been numerous investigations into LAB-induced NO production (Kmo-
nickova et al., 2012; Surayot et al., 2014).

Fermented food products might be a source of novel LAB isolates with
probiotic potential. Studies on the bioactive properties of LAB isolated
from fermented mussels are scarce to none. Currently, the study of
Nanasombat et al. (2012) and Boonprab (2022) reported the biological
activity and the using of LAB starter. The purpose of this study is to
determine the distribution of LAB from Thai fermented mussel (Hoi-dong)
and screen their bile salt hydrolase activity, cholesterol assimilation ca-
pacity, immunomodulatory effects as well as related probiotic properties,
in vitro.
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2. Materials and methods

2.1. Raw material and isolation of LAB

Eighteen fermented mussel (Hoi-dong) samples were gathered from
Samut Prakarn (13�35037.200N 100�35046.600E), Bangkok (13�44035.100N
100�30015.300E), Rayong (12�37059.500N 101�28040.500E), Samut
Songkhram (13�25030.900N 99�57017.800E), Samut Sakhon (13�30052.600N
100�23007.500E), Nakhon Pathom (13�49002.700N 100�03028.600E) and
Chonburi provinces (13�20019.000N 100�55020.200E) (Table 1). For each
sample, 10 g was homogenized to 90 mL MRS broth (Difco) as well as
incubated at 30 �C for 72 h (De Man et al., 1960). After incubation
period, one loopful was streaked on MRS agar with 0.3% (w/v) CaCO3
and incubated under the same conditions. The colonies with clear zone
were picked up for purification. Pure cultures were strored at �20 �C in
40% (v/v) glycerol and lyophilized with 10% (w/v) skim milk.

2.2. Identification methods

2.2.1. Phenotypic characterization
Colony appearance, cell shape, cell arrangement, and Gram staining

were determined after cultivation on MRS agar plate incubated at 30 �C
for 48 h. Physiological and biochemical characteristics including
propagation at increasing NaCl concentration (4%, 6%, and 8%),
temperature (15 �C, 30 �C, and 45 �C), and pH (3.0, 6.0 and 9.0),
catalase activity, nitrate reduction, gas generation, hydrolysis of aes-
culin and arginine, and acid formation from carbohydrates were
determined as described by Tanasupawat et al. (1998). Hierarchical
cluster analysis based on the phenotypic characteristics was performed
using SPSS v22.



Table 1. Isolate number, group, nearest relatives, 16S rRNA gene sequence similarity (%) of the representative isolates.

Isolate no. Group: Nearest relatives Similarity (%) Length (bp) Accession no. Cholesterol assimilation ability (%) BSH activity

LM15-2A I: Companilactobacillus formosensis S215T 99.86 1,354 LC547212 62.07 � 3.06 �
LM16-2 99.71 1,358 LC547232 30.73 � 4.16 �
LM10-2M � � � 60.73 � 4.62 �
LM15-2B 99.85 1,354 LC546812 49.40 � 3.46 �
LM18-3 99.85 1,367 LC547231 57.40 � 7.21 �
LM7-1SP 99.93 1,352 LC546814 59.40 � 7.21 �
LM7-2S 99.79 1,411 LC702436 64.07 � 6.43 �
LM10-3M 100 1,367 LC546813 32.07 � 3.06 �
LM10-1M 99.64 1,375 LC702435 74.07 � 5.03 �
LM15-3 99.56 1,378 LC547229 64.73 � 3.06 �
LM17-6 II: Lentilactobacillus buchneri JCM 1115T 99.93 1,382 LC702433 52.07 � 2.31 �
LM17-7 � � � 51.40 � 6.00 �
LM17-2 � � � 42.07 � 1.15 �
LM17-5 � � � 45.40 � 5.29 �
LM17-4 99.93 1,375 LC547234 36.73 � 2.31 �
LMK9-3 99.81 1,394 LC547223 28.07 � 6.11 �
LM7-3 � � � 38.73 � 11.37 �
LM18-4 99.93 1,359 LC702434 50.07 � 6.11 �
LM16-1 III: Lactiplantibacillus plantarum subsp. plantarum ATCC 14917T 100 1,384 LC546818 68.73 � 2.31 �
LM6-1 100 1,375 LC546819 67.40 � 3.46 þ
LM7-2-2B 99.78 1,337 LC546820 67.40 � 2.00 þ
LM15-1P 99.93 1,370 LC546815 67.40 � 8.72 þ
LM6-2 99.93 1,389 LC547211 54.07 � 11.37 þ
LM14-1 99.85 1,345 LC547215 46.73 � 4.16 þ
LM15-2 100 1,387 LC546816 67.40 � 6.93 þ
LM12-1 100 1,384 LC547230 40.07 � 8.08 þ
LM18-2 100 1,384 LC547227 49.40 � 5.29 �
LMK11-2 100 1,335 LC547222 55.40 � 6.00 �
LM12-2 � � � 38.07 � 2.31 �
LM2-3 � � � 38.07 � 6.43 �
LM3-2 � � � 45.40 � 8.00 �
LM3-1 100 1,379 LC702437 72.73 � 4.62 �
LM16-3 � � � 34.07 � 3.06 �
LMK11-3 � � � 37.40 � 9.17 �
Isolate no. Group: Nearest relatives Similarity (%) Length (bp) Accession no. Cholesterol assimilation ability (%) BSH activity

LM1-1 IV: Lacticaseibacillus rhamnosus JCM 1136T 100 1,342 LC546811 77.40 � 2.00 –

LMK9-1 V: P. pentosaceus DSM 20336T 100 1,368 LC547220 34.07 � 10.26 –

LM13-1 99.86 1,404 LC547226 54.73 � 1.15 –

LM17-3 99.93 1,450 LC547228 52.73 � 2.31 –

LM13-3 99.93 1,362 LC702898 40.07 � 9.87 –

LM5-2 – – – 36.07 � 8.33 –

LM5-1 V: P. acidilactici DSM 20284T 99.93 1,355 LC547214 62.07 � 6.43 –

LM4-1 VI: En. thailandicus DSM 21767T 100 1,326 LC546817 79.40 � 4.00 –

LM4-2 100 1,369 LC547218 20.73 � 11.02 –

LM1-2 VI: En. hirae ATCC 9790T 100 1,373 LC547213 68.07 � 1.15 –

LM2-1 VI: En. durans NBRC 100479T 99.63 1,335 LC547217 48.07 � 4.16 –

LM2-2 VII: Lc. lactis subsp. lactis JCM 5805T 100 1,385 LC547219 42.73 � 10.26 –

LM8-2 VII: Lc. lactis subsp. hordniae NBRC 100931T 99.93 1,378 LC547224 68.73 � 8.08 –

LMK9-2L VIII: Leuconostoc lactis JCM 6123T 99.71 1,357 LC547233 26.73 � 4.16 –

Sample LM1 and LM2 are collected from Samut Prakarn; LM3, LM4, LM16, LM17 and LM18 from Bangkok; LM5 and LM6 from Rayong; LM7, LM8 and LM9 from Samut
Songkhram; LM10, LMK11 are collected from Samut Sakhon; LM12 and LM13 from Nakhon Pathom; and LM14 and LM15 are from Chonburi.
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2.2.2. Genotypic characterization
The 16S rRNA gene sequences of isolates were PCR amplified

(Phuengjayaem et al., 2017) and analyzed using a DNA sequencer (at
Microgen, Inc.) with universal primers (Lane 1991). On the EzBiocloud
system, the sequence similarity values between the isolates and associ-
ated reference isolates were computed (Yoon et al., 2017). A phyloge
3

netic tree based on the neighbor-joining (NJ) method (Saitou and Nei,
1987) was constructed using MEGA 7 (Kumar et al., 2016). The confi-
dence values of each branch in the phylogenetic tree were computed
using a bootstrap analysis with 1000 replications (Felsenstein, 1985).
The identified sequences were submitted into DDBJ (DNA Data Bank of
Japan).
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2.3. Bile salt hydrolases (BSH) activity

The BSH activity was determined as informed by Shehata et al.
(2016). A portion (20 μL) of the overnight culture broth was spotted on
MRS agar containing 0.5% (w/v) taurodeoxycholic acid (TDCA) (sodium
salt hydrate) as well as 0.037% (w/v) calcium chloride (CaCl2). Plates
were incubated at 37 �C for 72 h under anaerobic condition. Precipitated
zone around colonies or white opaque colonies indicated bile salt hy-
drolase activity. As the negative control, the MRS was used. The
BSH-producing LAB isolate was selected for evaluation of probiotic
properties.

2.4. Cholesterol assimilation

MRS broth containing cholesterol-polyethylene glycol (PEG) 600
(Sigma, India) (final concentration 100 μg/ml) was used to determined
cholesterol assimilation capability. Each loopful (1%, v/v) was seeded
into MRS containing cholesterol-PEG 600 and incubated anaerobically at
37 �C for 24 h. The cholesterol was isolated following the method of
Tomaro-Duchesneau et al. (2014). The residual quantity of cholesterol
was determined using modified procedure of Rudel and Morris (1973). A
standard curve was generated using the following cholesterol concen-
trations: 0, 3.125, 6.25, 12.5, 25, 50, 75, 100, as well as 125 μg/ml in
MRS. The amount of cholesterol was read off a standard curve. The
capability was reported as the cholesterol assimilated (%). The percent-
age of cholesterol assimilated was quantify using the following Eq. (1):

Cholesterol assimilated ðμg =mlÞ¼ ½Cholesterol ðμg=mlÞ�0 h

�½Cholesterol ðμg=mlÞ�24 h

% Cholesterol assimilated¼
�
Cholesterol assimilated ðμg=mlÞ

Cholesterol ðμg=mlÞ0 h

�
� 100

(1)

2.5. Evaluation of probiotic properties

2.5.1. LAB cell suspension
According to observation of Pithva et al. (2014), cell suspension was

prepared. The selected isolates were propagated in MRS broth at 30 �C
for 24 h. After incubation period, the cells were collected by centrifu-
gation at 14,000 rpm for 10 min at 4 �C, washed twice with
phosphate-buffered saline (PBS; 0.1 M, pH 7.2, containing 0.85% (w/v)
NaCl), and solubilized in phosphate buffer (0.1 M, pH 7) to obtain bac-
terial suspension of A600 ¼ 1 and 109 CFU/ml.

2.5.2. Acid and bile tolerance
The acid and bile tolerance were observed by the modified observa-

tion of Thamacharoensuk et al. (2017). In brief, the cell suspension was
inoculated into MRS broth (pH 2 and pH 3) or MRS broth containing
0.3% and 0.8% (w/v) bile salt and incubated at 37 �C for 3 h. The viable
cells were enumerated by a 10-fold serial dilution, spot plate technique as
well as incubated at 37 �C for 24 h. The viable cells were reported as log
CFU/ml.

2.5.3. Adhesion assay
The adhesion capacity was determined using Caco-2 cells following

the investigation of Han et al. (2017) with modification. Caco-2 cells
were provided by Professor Shinichi Yokota, Sapporo Medical University
School of Medicine. Caco-2 cells were routinely proliferated in Dulbecco
modified Eagle Minimum Essential Medium (DMEM) containing 10%
(v/v) fetal bovine serum (FBS), and 1% (v/v) penicillin-streptomycin
(PS) at 37 �C in a humidified atmosphere of 95% air and 5% CO2. The
Caco-2 cells (5�105 cell/ml) was inoculated and incubated at 37 �C in
5% CO2. PBS was used to wash Caco-2 cells and the cell suspension was
centrifuged at 14,000 rpm for 5 min at 4 �C and solubilized again in
4

DMEM containing no antibiotics. Each LAB cell suspension was added as
well as incubated for 90 min at 37 �C in 5% CO2 atmosphere. Following
incubation, Caco-2 cells were cleansed by PBS. 0.05% of Triton-X100
solution was used to lyse the cells. The adherence cells were counted
by spot-plate technique on MRS agar as well as incubated at 37 �C for 48
h. As control, the Lacticaseibacillus rhamnosus GG was used. The adhesion
capability of selected isolates was evaluated using the following Eq. (2):

Adhesion percentage ð%Þ¼ Nt

N0
� 100 (2)

where; Nt ¼ the quantity of adherent LAB cells to the Caco-2 cells, N0 ¼
the sum of LAB cell inoculated.

2.5.4. The immunomodulatory effects
The selected isolates were prepared and evaluated for immunomod-

ulatory effects following the method of Hosaka et al. (2021).

2.5.4.1. Preparation of sterilized lactic acid bacteria powder. Each isolate
was propagated in MRS broth medium (Difco) as well as incubated with
shaking (120 rpm) at 30 �C for 24 h. The LAB pellet was centrifuged at
1,000 rpm for 10 min. Cells were rinsed with distilled water and then
lyophilized to obtain LAB powder. Test sample was solubilized in PBS at
200 μg/ml.

2.5.4.2. Cell culture. RAW264.7 cells were proliferated in DMEM
(Sigma) containing 5% FBS (Biological Industries) as well as 0.2% PS
(Gibco) in a 5% CO2 incubator at 37 �C. Caco-2 cells were provided by
Professor Shinichi Yokota, Sapporo Medical University School of Medi-
cine. Cultures were propagated in DMEM (Sigma) containing 5% FBS as
well as 0.25% PS in a 5% CO2 incubator at 37 �C. THP-1 cells were
cultivated in RPMI 1640medium (Nacalai Tesque Inc., Japan) containing
10% FBS as well as 0.2% PS in a 5% CO2 incubator at 37 �C.

Caco-2 cells (1.5 � 105 cells) were innoculated on cell culture inserts
(Falcon, 24-Well Hanging Inserts 0.4 μm) and cultured for 3 days. The
media supplemented with 5 mM sodium butyrate was substituted as well
as incubated for 4 days to trigger differentiation. Transepithelial elec-
trical resistance (TEER) using Millicell-ERS (Merk) was applied to eval-
uate differentiated cells, and differentiated cells (>400 Ωxcm2) were
used. THP-1 cells were innoculated on a multi-well plate (24 well, Fal-
con) as well as incubated for 3 days in media containing cholecalciferol
(Vitamin D3; 100 ng/ml) and phorbol12-myristate13-acetate (PMA; 10
nM) to differentiate into macrophage-like cells. After differentiation,
Caco-2 and THP-1 cells were co-cultured in Transwell.

2.5.4.3. Production of Nitric oxide (NO). NO production was determined
as reported by Yang et al. (2018). RAW264.7 cells were solubilized in
DMEM medium (5% FBS þ 0.2% PS) at a concentration of 3 � 105

cells/ml, innoulcated in each 24-well multi-well plate and incubated in a
5% CO2 incubator at 37 �C for 24 h. The test sample was added to
stimulate the cells (20 μg/ml; final conc.). The negative control was PBS,
while the positive control was lipopolysaccharide (LPS) (10 g/ml)
(Fujifilm Wako). Following activation, the medium was harvested,
centrifuged at 12,000 rpm for 20min and evaluated by Griess reaction, as
reported by Baek et al. (2015). A portion of each Griess reagent, medium
supernatant sample, and 3.125–125 μg/ml sodium nitrite (NaNO3)
standard solution was supplemented and incubated for 20 min. The
absorbance at 550 nm was used as well as the nitrite concentration was
quantify by standard curve.

2.5.4.4. Intestinal immunity model. Co-culture cell culture inserts (apical
side) and multi-well plates (basal side) were used to simulate an intes-
tinal immune model. Test sample dissolved in RPMI 1640 medium was
seeded to the apical side (final concentration 20 μg/ml), as well as the
cells were triggered in a 5% CO2 incubator at 37 �C for 48 h. Following
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incubation, the basal side of the mediumwas collected, and centrifugated
at 12,000 rpm for 20 min, the supernatant was harvested to remove
foreign substances. For IL-12 and IFN-γ, proteins were precipitated by
applying a 25% volume of 100% trichloroacetic acid (TCA) to the su-
pernatant sample. After a 2-minute heat treatment at 100 �C, the
Figure 2. Dendrogram of the hierarchical clu

5

precipitates were cleaned with acetone to remove TCA and solubilized in
1� sample buffer for enrichment.

SDS-PAGE was used to isolate the protein following the procedure of
Laemmli (1970). According to Towbin et al. (1979), the target proteins
were observed via Western blot. Standard curves were constructed using
ster based on phenotypic characteristics.
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IFN-γ (Gibco) as well as IL-12 (Gibco) standard to quantify the IFN-γ and
IL-12 production. As an endogenous control, production was adjusted by
measuring β-actin. For hBD-2, unenriched supernatant was quantified by
Figure 3. Neighbor-joining tree based on 16S rRNA ge

6

the Dot blot, as well as the hBD-2 production was adjusted from the total
protein by CBB staining. The values were determined relative to PBS
(non-stimulation).
ne of the representative isolates from each group.
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2.6. Statistical analysis

All tests were carried out in triplicate. Observations were reported as
the mean � standard deviation (SD). The acid and bile tolerance results
and adhesion results were analyzed by one-way analysis of variance
(ANOVA) using SPSS v 22.0 software. For comparison, Duncan's Multiple
Range Test (DMRT) was used for mean values at a significant level of p <
0.05. The immunomodulatory effect was analyzed by Welch's t-test at a
significant level of p < 0.05.

3. Results and discussion

3.1. Identification of isolates

Forty-eight LAB isolates were isolated from Thai fermented mussel
(Hoi-dong) samples from various provinces (Table 1). All isolates were
Gram-positive, catalase-negative, and facultatively anaerobic belonging
to the members of genera Companilactobacillus, Lentilactobacillus, Lacti-
plantibacillus, Lacticaseibacillus, Pediococcus, Enterococcus, Lactococcus and
Leuconostoc; they did not reduce nitrate. They were divided into 8 Groups
when the hierarchical cluster was analyzed based on their phenotypic
characteristics, and the 16S rRNA gene sequence similarity of the
representative isolates was determined (Figures 2 and 3 and Table 1).

Group I included ten rod-shaped isolates (LM15-2A, LM16-2, LM10-
2M, LM15-2B, LM18-3, LM7-1SP, LM7-2S, LM10-3M, LM10-1M and
LM15-3). They produced no gas from glucose. They proliferated at pH 3,
Table 2. Phenotypic characteristics of isolates.

Characteristics I II III IV

No. of isolate 10 8 16 1

Cell shape Rods Rods Rods Rods

Gas from glucose � þ � �
Growth in 6% NaCl þ þ þ þ
Growth in 8% NaCl þ þ þ þ
Growth at pH 3 þ þ þ þ
pH 9 � þ þ (�5) �
Growth at 15 �C þ þ þ þ
45 �C þ þ þ (�1) þ
Arginine hydrolysis þ þ þ (�4) þ
Acid from:

L-Arabinose � þ þ þ
D-Cellobiose � � (þ1) þ þ
Fructose þ þ þ þ
D-Galactose þ þ þ þ
D-Glucose þ þ þ þ
Lactose � � þ þ
D-Mannose þ � þ þ
D-Maltose w5 þ þ þ
D-Mannitol � � (þ1) þ (�1) þ
D-Melibiose � þ þ (�1) þ
D-Raffinose � w4 þ (�1) þ
L-Rhamnose � � þ (�1) þ
D-Ribose þ þ þ þ
Salicin þ � þ þ
D-Sorbitol � � (þ1) þ (�2) þ
D-Sucrose þ þ (�3) þ þ
D-Trehalose þ (�4) þ þ þ
D-Xylose þ (�2) þ þ þ
Aesculin þ þ þ (�2) �

meso-DAP þ � þ �
Isomer of lactic acid D DL DL L

þ, positive reaction; w, weak reaction; �, negative reaction. Numbers in parentheses
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in 8% NaCl, at 15 �C and 45 �C but they could not proliferate at pH 9.0.
They hydrolyzed arginine, produced D-lactic acid and contained meso-
DAP in the cell wall. However, they synthesized no acid from arabinose,
cellobiose, lactose, mannitol, melibiose, raffinose, rhamnose as well as
sorbitol. The representative isolates in this group showed 99.56%–100%
16S rRNA gene sequence similarity (Table 1) to Companilactobacillus
formosensis S215T (Figure 2). Therefore, they were identified as Compa-
nilactobacillus formosensis (Zheng et al., 2020). Their variable phenotypic
characteristics are presented in Table 2.

Group II included eight rod-shaped isolates (LM17-6, LM17-7, LM17-
2, LM17-5, LM17-4, LMK9-3, LM7-3, and LM18-4). They synthesized gas
from glucose. They propagated at pH 3 and 9, 15 �C as well as 45 �C and
in 8% NaCl. The isolates had no meso-DAP in the cell wall. DL-lactic acid
was produced. All isolates produced no acid from lactose, mannose,
rhamnose and salicin. They were able to hydrolyze arginine. The repre-
sentative isolates in this cluster showed 99.81%–99.93% 16S rRNA gene
sequence similarity (Table 1) to Lentilactobacillus buchneri JCM 1115T

(Figure 2). Therefore, they were identified as Lentilactobacillus buchneri
(Zheng et al., 2020). Their variable phenotypic characteristics are illus-
trated in Table 2.

Group III consisted of sixteen rod-shaped isolates (LM16-1, LM6-1,
LM7-2-2B, LM15-1P, LM6-2, LM14-1, LM15-2, LM12-1, LM18-2,
LMK11-2, LM12-2, LM2-3, LM3-2, LM3-1, LM16-3, LMK11-3). They did
not produce no gas from glucose. They proliferated at pH 3 and in 8%
NaCl. The isolates containedmeso-DAP in the cell wall. DL-lactic acid was
synthesized. The representative isolates in this cluster presented
V VI VII VIII

6 4 2 1

Tetracocci Cocci in chains Cocci in chains Cocci in chains
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indicate the number of isolates showing the reaction.
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99.78%–100% 16S rRNA gene sequence similarity (Table 1) to Lacti-
plantibacillus plantarum subsp. plantarum ATCC 14917T (Figure 2). Hence,
they were identified as Lactiplantibacillus plantarum subsp. plantarum
(Zheng et al., 2020). Their variable phenotypic characteristics are illus-
trated in Table 2.

Group IV contained one rod-shaped isolates (LM1-1). It produced no
gas from glucose. It propagated at pH 3, 15 �C and 45 �C and in 6% and
8% NaCl but did not propagate at pH 9. The isolate contained no meso-
DAP in the cell wall. L-lactic acid was generated. It did not synthesized
acid from aesculin. It hydrolyzed arginine. The representative isolate in
this cluster displayed 100% 16S rRNA gene sequence similarity (Table 1)
to Lacticaseibacillus rhamnosus JCM 1136T (Figure 2). Consequently, it
was identified as Lacticaseibacillus rhamnosus (Zheng et al., 2020).

Group V was comprised of six tetracoccal isolates (LMK9-1, LM13-1,
LM17-3, LM13-3, LM5-2, and LM5-1). They produced no gas from
glucose. They proliferated at pH 3 and, 15 �C, and in 8% NaCl but did not
proliferate at pH 9. DL-lactic acid was produced. The representative
isolates in this group included LMK9-1, LM13-1, LM17-3, and LM13-3,
which exhibited 99.86%–100% 16S rRNA gene sequence similarity
(Table 1) to Pediococcus pentosaceus DSM 20336T (Figure 2), and isolate
LM5-1 revealed 99.93% 16S rRNA gene sequence similarity (Table 1) to
Pediococcus acidilactici DSM 20284T (Figure 2). Their variable phenotypic
characteristics are presented in Table 2.

Group VI contained four coccal isolates (LM4-1, LM4-2, LM1-2 and
LM2-1). They could not synthesize gas from glucose. They developed at
pH 3 and 9, 15 �C and 45 �C, and in 6% and 8% NaCl. The isolates had no
meso-DAP in the cell wall. L-lactic acid was produced. All isolates pro-
duced no acid from arabinose. Acid production was variably observed in
galactose, mannitol, melibiose, raffinose, rhamnose, salicin, sorbitol,
sucrose, trehalose, xylose and aesculin. They hydrolyzed arginine. The
representative isolate LM4-1 and LM4-2 revealed 100% 16S rRNA gene
sequence similarity (Table 1) to Enterococcus thailandicus DSM 21767T

(Figure 2), isolate LM1-2 exhibited 100% 16S rRNA gene sequence
similarity (Table 1) to Enterococcus hirae ATCC 9790T (Figure 2), and
LM2-1 exhibited 99.63% 16S rRNA gene sequence similarity (Table 1) to
Enterococcus durans NBRC 100479T (Figure 2).

Group VII consisted of two coccal isolates (LM2-2 and LM8-2). They
produced no gas from glucose. They proliferated at pH 3 and 9, 15 �C,
and in 6% but did not proliferate at 45 �C, pH 9 and in 8% NaCl. L-lactic
acid was synthesized. All isolates could not synthesize acid from raffi-
nose, rhamnose, sorbitol and aesculin. They hydrolyzed arginine. The
representative isolate LM2-2 expressed 100% 16S rRNA gene sequence
similarity (Table 1) to Lc. lactis subsp. lactis JCM 5805T (Figure 2), and
isolate LM8-2 expressed 99.93% 16S rRNA gene sequence similarity
(Table 1) to Lc. lactis subsp. hordniae NBRC 100931T (Figure 2) and they
were identified as Lc. lactis.

Group VIII included one coccal isolates (LMK9-2L). It generated gas
from glucose. It propagated at pH 9, 15 �C and 45 �C, and in 6% but did
not propagate at pH 3 and in 8% NaCl. The isolate contained no meso-
DAP in the cell wall. It synthesized D-lactic acid. It generated no acid
from cellobiose, mannitol, rhamnose, sorbitol, trehalose and aesculin. It
could not hydrolyze arginine. The representative isolate LMK9-2L
revealed 99.71% 16S rRNA gene sequence similarity (Table 1) to Leu-
conostoc lactis JCM 6123T (Figure 2) and was identified as Leuconostoc
lactis.

3.2. Bile salt hydrolase activity

BSH activity has been regarded as a factor related to the cholesterol-
lowering activity, and BSH activity is now often referred as an essential
feature for choosing probiotics (Miremadi et al., 2014). BSH activity
promotes bacterial growth and colonization in gut by deconjugating bile
salts (Begley et al., 2006). Out of 48 isolates, only 7 isolates, LM15-1P,
LM15-2, LM6-1, LM7-2-2B, LM6-2, LM14-1, and LM12-1 expressed BSH
activity by the development of opaque white colonies (Table 1). These
BSH-positive isolates were recognized as L. plantarum subsp. plantarum
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(99–100%similarity). Based on the screening, this study is consistentwith
several earlier publications (Abushelaibi et al., 2017; Liu et al., 2017). The
presence of BSH activity help to diminish the cholesterol quantity and
makeBSH-producing strainendure tobile condition (Noriegaet al., 2006).
The in vivo study of Costabile et al. (2017) found that the ingestion of
L. plantarum ECGC 13110402 (great BSH-producing strain) twice daily
could significantly reduce the cholesterol, and it could also improve the
quantity of high-density lipoprotein. Besides, the application of
L. rhamnosus BFE5264 resulted in a consequential lowering of the serum
cholesterol amount inmurinemodel (Park et al., 2018). Furthermore, this
work might demonstrate the presence of BSH-producing isolates in
non-human isolation sources.

3.3. Cholesterol assimilation

Dyslipidaemia is a modifiable risk factor for cardiovascular disease
(CVD), which is a leading cause of mortality (Labarthe and Dunbar,
2012). Hence, the reducing of cholesterol level is vital for prevention. In
this study, all isolates revealed that the cholesterol assimilation ranged
from 20.73% to 79.40% (Table 1). Only two isolates showed the per-
centage of cholesterol assimilation to be greater than 75%. En. thai-
landicus LM4-1 and L. rhamnosus LM1-1 potentially assimilated
cholesterol at 79.40% and 77.40%, respectively. Moreover, it could be
concluded that the amount of assimilated cholesterol revealed a wide
variation among isolates. The cholesterol assimilation ability result in
this study is in agreement with the findings of various earlier observa-
tions (Miremadi et al., 2014; Shehata et al., 2016; Tomaro-Duchesneau
et al., 2014). Furthermore, probiotic species (i.e., L. bulgaricus,
L. sporogenes and L. reuteri) could decrease cholesterol in human study
(Khare and Gaur, 2020). Besides, L. paracasei DTA81 revealed a great
cholesterol assimilation ability and lowered the total cholesterol in mice
model (Tarrah et al., 2021). Remarkably, BSH activity and cholesterol
assimilation are the cholesterol-lowering mechanisms as well as desir-
able probiotic properties (Ishimwe et al., 2015). LAB can utilize choles-
terol for their physiological functions; therefore, luminal cholesterol
quantity accessible for absorption are decreased (Bordoni et al., 2013).

3.4. Acid and bile tolerance

Acid and bile tolerance are the fundamental characteristics, as it
dictates their capacity to endure in the acidic gastric environment as well
as small intestine, and as a result, their ability to perform their functional
role as a probiotic (Ruiz et al., 2013; Tannock, 2004). Based on
BSH-positive activity, all BSH-positive isolates were selected to investi-
gate. The impacts of an acidic and bile environment on selected isolates
are illustrated in Table 3. In the acidic conditions, the findings revealed
that none of the isolates could survive at pH 2. However, all isolates
tolerated at pH 3 and revealed a statistical difference in cell viability
compared to the MRS control (18.19–35.91% reduction). This observa-
tion is consistent with earlier research (Hassanzadazar et al., 2012). The
endurance at pH 3 was established as a criterion for probiotics (Liong and
Shah, 2005).

With various degrees of bacterial availability, all isolates were
capable of remaining alive in the content of different percentage of bile
salts (Table 3). Statistically, the vitality of isolates significantly altered
compared to the MRS control. In the case of isolate LM15-1P, this isolate
was tolerated only in the presence of 0.3% bile salt. However, the vitality
of L. plantarum subsp. plantarum LM6-1, LM6-2, LM7-2-2B, LM12-1,
LM14-1, LM14-2, and LM15-2 was enhanced (þ0.11–11.85 % reduction)
in the level of 0.3–0.8% bile salts with statistical differences compared to
the MRS control. This observation is in accordance with the earlier
observation (Thamacharoensuk et al., 2017). Consequently, selected
isolates could endure and propagate under the bile environment, and bile
salts might enhance the vitality.

Their high endurance to low-pH conditions and the occurrence of bile
salts, these isolates might endurance in the stomach and intestine or even



Table 3. Survival of selected isolates after incubation for 3 h at various pH and bile concentrations.

Isolate no. Viable cells (log CFU/ml) % Reductionb

MRSa pH 2 pH 3 0.3% Bile 0.8% Bile pH 2 pH 3 0.3% Bile 0.8% Bile

LM6-1 8.07 � 0.16 0.00 � 0.00* 6.11 � 0.18* 8.95 � 0.14* 8.75 � 0.26* 100.00 24.29 þ10.90 þ8.43

LM6-2 9.03 � 0.23 0.00 � 0.00* 4.85 � 0.33* 9.81 � 0.22* 9.74 � 0.23* 100.00 46.29 þ8.64 þ7.86

LM7-2-2B 8.69 � 0.21 0.00 � 0.00* 6.34 � 0.09* 9.72 � 0.12* 9.21 � 0.19* 100.00 27.04 þ11.85 þ5.98

LM12-1 8.94 � 0.19 0.00 � 0.00* 5.73 � 0.34* 9.85 � 0.20* 9.67 � 0.19* 100.00 35.91 þ10.18 þ8.17

LM14-1 8.79 � 0.20 0.00 � 0.00* 5.87 � 0.38* 9.62 � 0.15* 8.80 � 0.30 100.00 33.22 þ9.44 þ0.11

LM15-1P 9.24 � 0.06 0.00 � 0.00* 7.07 � 0.26* 9.62 � 0.15* 9.01 � 0.09* 100.00 23.48 þ4.11 2.49

LM15-2 8.80 � 0.04 0.00 � 0.00* 5.98 � 0.07* 9.19 � 0.08* 8.93 � 0.20 100.00 32.05 þ4.43 þ1.48

Data expressed as mean � SD.
*p < 0.05, compared to negative control.

a MRS used as a negative control.
b Percentage reduction of bacterial number as compare to negative control; þ, indicated enhance of bacterial viability.

Figure 4. Percentage of selected isolates adhesion to Caco-2 cell lines. Selected isolates were enumerated by bacterial culture and interpreted as the percentage
adherence compared with the control. All experiments are done in triplicate and the results were reported as the mean � standard deviation (SD). The different
alphabets mean significant difference (p < 0.05).
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compete with other bacterial groups in this condition, suggesting a
promising probiotic potential.

3.5. Adhesion properties

Based on BSH-positive activity and acid and bile endurance, seven
isolates, including L. plantarum subsp. plantarum LM6-1, LM6-2, LM7-2-
2B, LM12-1, LM14-1, LM15-1P, and LM15-2 were chosen to determine.
The adhesion capability is illustrated in Figure 4. L. plantarum subsp.
plantarum LM14-1 showed the lowest adhesion ability at 0.17 � 0.06%.
While the adhesion ability of L. plantarum subsp. plantarum LM6-1 (1.38
� 0.95%), LM7-2-2B (1.27 � 0.43%), LM12-1 (1.06� 0.54%), and LM6-
2 (0.93 � 0.54%) did not revealed statistical difference when compared
with L. rhamnosus GG (1.22 � 0.55%; positive control). Furthermore,
L. plantarum subsp. plantarum LM15-1P (5.03 � 1.26%) and LM15-2
(2.37 � 1.23%) showed greater adhesion capability with a statistical
difference compared to L. rhamnosus GG. Adhesion ability of LAB in this
work is compatible with published research findings (Duary et al., 2011;
García-Cayuela et al., 2014; Thamacharoensuk et al., 2017). From this
study, it could be indicated that the adhesion ability of selected isolates to
Caco-2 was isolate-specific and varied within the same species (Duary
et al., 2011). In conclusion, most of the L. plantarum subsp. plantarum
isolated from the fermented mussel samples showed similar and/or
better able to adhere epithelial cells under in vitro investigation as
compared to the L. rhamnosus GG. These fermented food isolates show
remarkable potential and might be potential candidate probiotics for
9

further intensive in vivo investigations to evaluate their additional well-
being effects due to better gut colonization.

3.6. Immunomodulatory effects of LAB

The observation illustrated that the immunomodulatory effects of the
chosen and representative isolates varied with and without statistically
significant differences from the control (Table 4).

For IL-12 induction, the ability to stimulate IL-12 production was best
in Lc. lactis subsp. lactis LM2-2 (53.98 � 7.66 ng/ml), whereas
L. plantarum subsp. plantarum LM6-1 had the lowest (7.15� 1.22 ng/ml).
The IL-12 induction ability of LAB in this finding is consistent with past
publication (Chen et al., 2013; Iwabuchi et al., 2012; Thamacharoensuk
et al., 2017).

For IFN-γ induction, L. buchneri LM17-6 had the highest ability to
stimulate IFN-γ production (60.43 � 20.35 ng/ml), while L. plantarum
subsp. plantarum LM6-1 had the lowest (21.84 � 6.64 ng/mL). The IFN-γ
induction in this work is in accordance with earlier findings (Ou et al.,
2011; Yamane et al., 2018).

For hBD-2 production, En. thailandicus LM4-1 and En. durans LM2-1
increased hBD-2 production, but En. hirae LM1-2 and L. plantarum
subsp. plantarum LM7-2-2B decreased it. According to the in vitro results,
En. thailandicus LM4-1 and En. durans LM2-1 had a stimulatory effect on
hBD-2 expression. The result of hBD-2 stimulation in this research is in
accordance with the published investigation (Kobatake and Kabuki,
2019; Schlee et al., 2008). As a result, this study demonstrates that



Table 4. Immunomodulatory effects of the selected and representative isolates.

Species/isolate no. IL-12 (ng/
ml)

IFN-γ
(ng/ml)

hBD-2 (relative
value)

NO (μM)

C. formosensis LM10-1M 29.90 �
5.15

26.88 �
8.52

1.29 � 0.19 14.15 �
0.07**

L. buchneri LM17-6 10.31 �
2.74*

60.43 �
20.35

1.43 � 0.18 10.38 �
0.04**

L. plantarum subsp.
plantarum LM6-1

7.15 �
1.22*

21.84 �
6.64

2.26 � 0.20* 17.89 �
0.05**

L. plantarum subsp.
plantarum LM6-2

20.62 �
4.82

49.25 �
18.21

1.91 � 0.23* 13.52 �
0.28**

L. plantarum subsp.
plantarum LM7-2-2B

9.97 �
3.92*

35.42 �
11.44

0.98 � 0.11 16.65 �
0.08**

L. plantarum subsp.
plantarum LM12-1

53.12 �
6.43*

59.93 �
16.02

1.67 � 0.25 16.64 �
0.05**

L. plantarum subsp.
plantarum LM14-1

9.21 �
3.15*

31.01 �
8.57

1.50 � 0.10* 17.76 �
0.17**

L. plantarum subsp.
plantarum LM15-1P

51.78 �
4.72*

27.40 �
4.63

1.58 � 0.04* 15.75 �
0.14**

L. plantarum subsp.
plantarum LM15-2

24.77 �
3.42

35.91 �
8.79

1.61 � 0.06* 16.03 �
0.39**

L. rhamnosus LM1-1 33.74 �
8.43

25.96 �
9.17

1.18 � 0.05* 17.44 �
0.24**

P. pentosaceus LM13-1 22.31 �
6.72

47.79 �
19.05

1.50 � 0.10* 18.19 �
0.36**

P. acidilactici LM5-1 23.15 �
4.38

43.03 �
14.72

1.43 � 0.11* 19.59 �
0.17**

Lc. lactis subsp. lactis LM2-
2

53.98 �
7.66*

53.55 �
21.27

2.04 � 0.06* 17.20 �
0.33**

Lc. lactis subsp. hordinae
LM8-2

20.32 �
10.85

45.68 �
14.93

1.48 � 0.06* 15.89 �
0.17**

En. thailandicus LM4-1 16.03 �
5.76

33.89 �
11.99

3.03 � 0.23* 14.68 �
0.23**

En. hirae LM1-2 10.43 �
5.27*

27.05 �
7.66

0.85 � 0.07 12.13 �
0.15**

En. durans LM2-1 18.38 �
7.41

33.64 �
11.14

3.01 � 0.25* 19.15 �
0.18**

Len. lactis LMK9-2L 10.60 �
6.35*

27.29 �
6.92

1.54 � 0.26 6.78 �
0.11**

PBS (no stimulation) 29.52 �
5.87

43.23 �
12.72

1.00 � 0.00 Not
detected

LPS (positive control) Not determined 32.47 �
0.14

Data expressed as mean � SD.
*p < 0.05, compared to PBS (no stimulation) within each column.
**p < 0.05, compared to LPS (positive control).
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beneficial LAB promote innate immunity through defensin induction.
Also, LAB stimulation is an attractive, innovative therapy technique for
enhancing innate immunity (Schlee et al., 2008).

For nitric oxide (NO) production, NO production is physiologically
advantageous to the host's immune response. From the outcomes of NO
assay, all representative isolates stimulate NO production at a wide range
of rates with statistically significant differences from the control
(Table 4). The highest NO production was found in P. acidilactici LM5-1
(19.59 � 0.17 μM), followed by En. durans LM2-1 (19.15 � 0.18 μM),
P. pentosaceus LM13-1 (18.19 � 0.36 μM), and L. plantarum subsp. plan-
tarum LM6-1 (17.89� 0.05 μM) and LM14-1 (17.76� 0.17 μM). The NO-
induced production of LAB in this examination is similar to earlier pub-
lications (Kmonickova et al., 2012; Korhonen et al., 2001; Surayot et al.,
2014).

As a consequence, these isolates have the potential to be effective
against invading pathogens via stimulation immunity (Kang et al., 2021a,
b; Kato et al., 1999). Surprisingly, the heat-killed cells in this study still
had immunomodulation activities; hence, the benefits of inactive cells
include a lower risk of antibiotic resistance and sepsis and an extension of
10
life span since there is no requirement to retain the viability (Shripada
et al., 2020; Zendeboodi et al., 2020). Furthermore, this obeservation
revealed that bacterial isolates, even though they belonged to the same
species, might have various functional properties (Kang et al., 2021a,b).

4. Conclusions

This observation demonstrated the distribution of LAB in Thai fer-
mented mussel (Hoi-dong) which includes the genera Companilactoba-
cillus, Enterococcus, Lentilactobacillus, Lactiplantibacillus, Lactococcus,
Leuconostoc, and Pediococcus. This is the first observation on the LAB
distribution these food origins. Seven L. plantarum subsp. plantarum iso-
lates expressed BSH activity by the development of an opaque white
colony as well as could tolerate and propagate in acidic (pH 3) and bile
salt (0.3 and 0.8%) environments. Besides, they also had a great adhesion
capability to Caco-2 cells. Additionally, the BSH-producing isolates as
well as representative isolates showed immunostimulatory effects. Lc.
lactis subsp. lactis LM2-2 induced the most IL-12 production, while
L. buchneri LM17-6 induced the most IFN-γ production, En. thailandicus
LM4-1 induced the most hBD-2 secretion, and P. acidilactici LM5-1
potentially stimulated NO production. The function of LAB in hyper-
cholesterolemia management and immunomodulatory is increasingly
receiving attention. Consequently, these isolates may be regarded as
good probiotics since they have cholesterol-removing effects, immuno-
modulatory ability, adhesion ability, and tolerance of acid and bile, all of
which are beneficial probiotic characteristics. Additional research, such
as clinical trials, is required.
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