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Abstract: This study developed a predictive model for cognitive degeneration in patients with
Parkinson’s disease (PD) using a machine learning method. The clinical data, plasma biomarkers, and
neuropsychological test results of patients with PD were collected and utilized as model predictors.
Machine learning methods comprising support vector machines (SVMs) and principal component
analysis (PCA) were applied to obtain a cognitive classification model. Using 32 comprehensive
predictive parameters, the PCA-SVM classifier reached 92.3% accuracy and 0.929 area under the
receiver operating characteristic curve (AUC). Furthermore, the accuracy could be increased to 100%
and the AUC to 1.0 in a PCA-SVM model using only 13 carefully chosen features.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease. Clinical motor dysfunctions,
such as resting tremors, rigidity, bradykinesia, postural instability, and inability to initiate
motion, are commonly seen in patients with PD. In addition to motor dysfunction, patients
with PD also tend to have cognitive impairments, such as mild cognitive impairment (MCI)
and dementia. MCI and dementia may also affect motor dysfunction in PD patients, and
there is a complicated relationship between motor function and cognition in patients with
PD [1].

According to previous research, there is a high probability that patients with PD
develop cognitive impairment that may affect their quality of life; this impairment predom-
inantly involves the cognitive domains of attention, executive function, and visuospatial
skills [2–4]. Biomarkers obtained mainly from neuroimaging data were extensively dis-
cussed for finding predictors of cognitive dysfunction in Parkinson’s disease in a literature
survey [5,6]. Indeed, it is crucial to identify the factors influencing cognitive decline that
affect clinical prognosis and require early intervention [7].

Machine learning in artificial intelligence is popular in constructing a predictive
model. In a study with 45 subjects, four machine learning models were developed to
assess the ability to discriminate between PD patients with cognitive integrity (PDCI), mild
cognitive impairment (PDMCI), and dementia (PDD). In an SVM model for classifying PDD
and PDCI, the most relevant variables related to PD dementia were white matter, lateral
ventricle, and hippocampus volume, and the prediction accuracy could reach 96.67% [8].
In another study with a cohort of 75 PD patients, a set of five biomarkers (cerebrospinal fluid
(CSF) total tau levels, CSF phosphorylated tau levels, CSF Aβ42 levels, APOE genotype, and
SPARE-AD imaging score) was adopted as the predictor of a logistic regression classifier,
and 80% accuracy was achieved in discriminating PD patients with normal cognition from
PD patients with dementia [9].

In this preliminary study, a cross-sectional investigation of clinical variables, neuropsy-
chological test results, and plasma biomarkers [10–12] in patients with PD was conducted
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to identify features related to cognitive impairment. More specifically, machine learn-
ing was applied to obtain a predictive cognitive degeneration model and ascertain key
predictors that help medical experts quickly identify a patient’s cognitive condition and
provide treatment.

2. Methods
2.1. Participants

This cross-sectional study recruited patients with PD from October 2019 to November
2019 and from July 2020 to November 2020. The patients were recruited at the Neurology
Department of the MacKay Memorial Hospital (Taiwan).

The study was performed following the Declaration of Helsinki and was approved
by the Institutional Review Board of Mackay Memorial Hospital in Taiwan (IRB Number:
18MMHIS152). Informed consent was obtained from all participants. A consecutive series
of patients with PD were recruited in the Neurology outpatient clinics of a tertiary medical
center in northern Taiwan from October 2019 to November 2020. All participants met the
following criteria: (a) age > 30 years, (b) diagnosed with idiopathic PD according to the
PD clinical diagnostic criteria of the Movement Disorder Association [13,14], and (c) no
diagnosis of dementia (for those who have received more than six years of education, the
Mini-Mental State Evaluation [MMSE] score must be >23 points; for those who have less
than six years of education, the MMSE must be >13 points). Participants were excluded if
(a) they had more than two incomplete tests or (b) uncontrolled medical conditions that
cause severe physical and cognitive disabilities. A physician evaluated the presence of the
exclusion criteria, and the process was shown in Figure 1.
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2.2. Clinical Data

We collected clinical information from patients, including sex, age, course of the
disease, education level, levodopa dose, Barthel index, Hoehn and Yahr stage, and Unified
Parkinson’s Disease Rating Scale (UPDRS) parts I–III subscale scores [15–19].

Trained nurses performed a comprehensive neuropsychological assessment of all pa-
tients. The assessment includes general cognition and specific cognitive domains involving
the following examinations: (1) global cognition (MMSE and Clinical Dementia Rating-Sum
of Boxes [CDR-SB]); (2) processing speed and working memory (Digits Recall Forward and
Backward); (3) verbal learning and memory (California Verbal Language Test-II Short Form
[CVLT-SF]); (4) semantic verbal fluency (animal naming); (5) language (Boston Naming
Test); (6) attention and visuospatial processing (Trail Making Test A and B [TMT-A and
TMT-B]); and (7) visuoperceptual and visuospatial processing (Benton Judgement of Line
Orientation) [20–27].
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2.3. Neurobiological Indicator

A blood sample of 10 mL was collected from each subject and centrifuged within
one hour of collection. The plasma was separated and immediately frozen in test tubes at
−80 ◦C. We then delivered frozen plasma on dry ice to MagQu Co., Ltd. (New Taipei City,
Taiwan) and measured the levels of plasma α-syn, Aβ42, and t-tau using an immunomag-
netic reduction assay.

2.4. Data Analysis

This study collected 29 clinical data and the three plasma biomarkers for each par-
ticipant, as shown in Table 1. In addition, 42 patients with these complete data were
included to build a classification model using support vector machine (SVM) and principal
component analysis (PCA) in the Python Sklearn package. It was previously shown that
the PCA–SVM method effectively classified PD–MCI from non-PD–MCI patients with high
accuracy, provided good predictors were used [28].

Table 1. Twenty-nine clinical data and the three plasma biomarkers.

Hoehn–Yahr Stage UPDRS I UPDRS II UPDRS III

LED (mg/day) Gender Age of visits Age of onset

Disease duration Education
(years) Barthel Index MMSE

IADL JLO PSQI EQ-5D index
EQ-5D VAS GDS−15 GAD−7 TMT-A

TMT-B Verbal fluency Digits Forwards Digits Backwards
CVLT-SF

total recall
CVLT-SF

Immediate
CVLT-SF

delay
CVLT-SF

recognition
BNT α-syn (pg/mL) Aβ42 (pg/mL) t-tau (pg/mL)

Abbreviation: Aβ42, amyloid-β 42; BNT, Boston Naming Test; CVLT-SF, California Verbal Learning Test-Short
Form; EQ-5D, EuroQol-5 dimensions; GAD-7, Generalized anxiety disorder scale 7-item; GDS-15, Geriatric
depression scale 15-item; IADL, Instrumental activities of daily living; JLO, Judgment of Line Orientation;
LED, Levodopa equivalent dose; MMSE, Mini-Mental State Examination; PSQI, Pittsburgh sleep quality index;
SD, Standard Deviation; TMT, Trail Making Test; UPDRS, Unified Parkinson’s Disease Rating Scale; VAS, visual
analog scale; t-tau, total tau; α-syn, α-synuclein.

2.5. Data Normalization

Before using the SVM prediction model, it is necessary to preprocess the collected data
to obtain a better data structure for training and avoid differences in the data distribution
area, which affects the convergence speed and accuracy of the prediction model. Normal-
ization is a standard preprocessing technique [29]. Min-max normalization is used in the
data preprocessing. The data are scaled to between 0 and 1 through normalization without
changing the distribution of the data [30] using the following transformation:

xnorm =
x− xmin

xmax − xmin
(1)

where xmax is the maximum value, xmin is the minimum value, and xnorm is the normalized
value between 0 and 1 for the dataset, x.

2.6. SVM

SVMs are a type of supervised learning method. It is to find a hyperplane between
two-class categories. The SVMs try to find the decision boundary in the training data
set to maximize the margin between the two classes to reduce the generalization error of
the classifier. The maximum boundary hyperplane can be determined through various
kernels to build a linear or nonlinear classification [31–33]. This study uses different kernel
functions, including linear, RBF (radial basis function), and Poly (polynomial) functions to
compare which model is better for predicting cognitive impairment.
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2.7. PCA

PCA is an unsupervised learning method for feature extraction. Using the first few
principal components (PCs) of the covariance matrix, normalized high-dimensional data
can be projected into a lower-dimension space using orthogonal transformation while
preserving the essential features [34–36]. More specifically, the dimensionality of the
original dataset X∈ Rn×p (i.e., n samples and p features) can be reduced to X′ ∈ Rn×s by PCA
with s < p. That is, X′ with less dimension presents the data more concisely while retaining
most of the key features (the cumulative energy of the first s eigenvalues of the covariance
matrix is above a certain threshold, for example, 90%, of the total energy). The new features
are then provided to the SVM with a lower dimension for predictive classification; hence,
the training model can accelerate the calculation and improve the accuracy.

2.8. Area under the Receiver Operating Curve

The receiver operating characteristic curve (ROC curve) is drawn as a plot with the
false positive rate (FPR) as the X-axis, and the true positive rate (TPR) as the Y-axis that
illustrates the diagnostic ability of a classifier as its discrimination threshold is varied. The
area under the ROC curve (AUC) measures the power of a classifier to distinguish between
classes and is used as a summary of the ROC curve [37]. The higher the AUC, the better the
model’s performance at distinguishing between the positive and negative classes. When
the AUC is equal to 0.5, the classifier cannot differentiate between positive and negative
categories. Therefore, an AUC between 0.9 and 1 indicates that the predictive classifier has
an excellent discriminatory ability.

3. Results

After one year of data collection, there were 116 patients with idiopathic PD. Of those,
41 patients refused blood and neuropsychological tests, five were transferred to another
hospital, six lost contact, and 22 had incomplete data. Ultimately, only 42 patients had
complete data. In this study, we used CDR-SB scores for the two classifications. The score
interval for the patients without cognitive impairment (from normal to MCI) was ≤0.5, and
the score interval for those with moderate and severe cognitive impairment was >0.5. After
judging and categorizing, 16 patients were classified as not having cognitive impairment,
and 26 patients had moderate to severe cognitive impairment. The demographic and
collected data for these two groups were presented in Table 2.

It was worth mentioning why CDR-SB scores were used for the dichotomy of cognitive
degeneration. A more quantitative representation of the CDR is provided by the sum of
the severity ratings for the six cognitive and functional domains. CDR-SB provides a more
quantitative measure of dementia severity than the global CDR. The CDR-SB frequently
assesses Alzheimer’s disease progression in clinical research [38,39] and has been used in
patients with Parkinson’s disease [40]. Owing to the increased range of values, the CDR-SB
offers several advantages over the global score, including increased utility in tracking
changes within and between stages of dementia severity. Unlike the other global cognitive
testing (i.e., MMSE) in this study, CDR is not influenced by age, education, and gender.

First, all variables (p = 32) were included as feature inputs; 70% of the 42 patients
were randomly selected as the training set and 30% as the verification set. Different kernel
functions were used to train the SVM and PCA–SVM classification models. The validation
accuracy under the full-parameter linear function reached 84.6%, and the AUC was 92.9%.
After reducing the dimensionality of the original 32 features using PCA to six features, the
accuracy increased to 92.3% for the same AUC rate. After PCA’s dimensionality reduction,
the overall forecast confidence improved, as shown in Table 3 and Figure 2.
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Table 2. The demographic and data comparisons of the participants.

N = 42 Without Cognitive
Impairment (N = 16)

Moderate and Severe Cognitive
Impairment (N = 26) p Value

Hoehn–Yahr stage 1.78 (0.73) 2.37 (0.61) 0.291
UPDRS I 2.38 (1.147) 4.15 (1.78) 0.078
UPDRS II 5.63 (2.391) 11.23 (5.88) 0.002
UPDRS III 12.63 (5.35) 20.65 (10.35) 0.013

LED (mg/day) 428.56 (229.13) 440.77 (241.8) 0.617
Gender Male 8/50% Male 10/38.46% 0.463

Age of visits 68.38 (8.57) 76.65 (7.27) 0.417
Age of onset 65.81 (8.72) 71.92 (8.19) 0.753

Disease duration 2.56 (2.39) 4.73 (3.52) 0.022
Education

(years) 7.69 (3.22) 7.04 (4.96) 0.114

Barthel Index 156.25 (225) 88.27 (16.31) 0.019
MMSE 26.94 (2.24) 22.96 (3.96) 0.015
IADL 23.38 (1.26) 17.38 (6.76) 0.000
JLO 14.5 (4) 12.23 (4.86) 0.366

PSQI 5.38 (2.39) 7 (2.79) 0.71
EQ-5D index 0.77 (0.17) 0.75 (0.21) 0.78
EQ-5D VAS 68.88 (10.78) 66.54 (16.54) 0.335

GDS−15 2.5 (3.16) 3.54 (4.71) 0.067
GAD−7 1 (1.86) 2.08 (3.5) 0.068
TMT-A 27.19 (10.88) 36.62 (12.74) 0.494
TMT-B 72.06 (28.19) 87.96 (33.74) 0.15

Verbal fluency 11.56 (4.56) 9.27 (3.76) 0.426
Digits Forwards 7.38 (1.31) 6.12 (1.58) 0.21

Digits Backwards 5.19 (1.56) 3.58 (1.53) 0.897
CVLT-SF

total recall 19.94 (5.89) 17.54 (4.42) 0.440

CVLT-SF
immediate 6 (1.75) 4.96 (1.8) 0.784

CVLT-SF
delay 4.69 (2.06) 3.81 (1.96) 0.696

CVLT-SF
recognition 5.69 (2.44) 4.65 (2.45) 0.461

BNT 23.88 (2.99) 19.08 (6.46) 0.006
α-syn (pg/mL) 0.1 (0.05) 0.12 (0.05) 0.793
Aβ42 (pg/mL) 16.66 (0.45) 16.7 (0.59) 0.669
t-tau (pg/mL) 22.75 (2.63) 23.62 (3.63) 0.162

Table 3. Thirty-two parameter set to predict CDR-SB deterioration.

Classifier Kernel Feature Number Accuracy AUC

SVM
Linear

32
0.846 0.929

RBF 0.769 0.857
Poly 0.615 0.762

PCA-SVM
Linear

6
0.923 0.929

RBF 0.769 0.857
Poly 0.615 0.833

Second, from the above results, it suggested that a set of more concise predictors was
possible. The six items (Hoehn–Yahr stage, IADL, Barthel Index, UPDRS I, II, and III) are
related to essential motor and non-motor functions in PD patients. They are commonly
used as clinical tools to assess PD patients. For the advanced neuropsychological tests, we
selected four tests on executive functioning (TMT-B, Verbal fluency, Digits Forwards and
Backwards) based on previous research [41–43] showing that executive dysfunction was
joint in PD, especially early PD. The three biomarkers (α-syn, Aβ42, and t-tau), typically
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pathognomonic for the pathology of PD and AD, were also included which could predict
executive dysfunction and cognitive decline in PD [12,44]. Therefore, a total of condensed
13 parameters were chosen as feature inputs as shown in Table 4. A randomly selected set
of 70% of the 42 patients was used to train the prediction model, and the remaining 30%
were used to verify the model performance. Different kernel functions were used to train
the SVM and PCA–SVM classification models. The validation accuracy under the linear
function in the SVM classification model reached 84.6%, and the AUC reached 100%. When
reducing the dimensionality of the 13 features using PCA to three features, the accuracy
under the linear function significantly improved to 100%. The AUC was maintained at
100%, as shown in Table 5 and Figure 3.
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Table 4. Condensed thirteen parameters as the model predictors.

Hoehn–Yahr Stage IADL Barthel Index

UPDRS I UPDRS II UPDRS III
Verbal fluency Digits Forwards Digits Backwards

TMT-B α-syn Aβ42
t-tau

Table 5. Thirteen selected parameters to predict CDR-SB deterioration.

Classifier Kernel Feature Number Accuracy AUC

SVM
Linear

13
0.846 1

RBF 0.538 0.738
Poly 0.846 0.976

PCA-SVM
Linear

3
1 1

RBF 0.923 0.976
Poly 0.692 0.905



Brain Sci. 2022, 12, 1048 7 of 10

Brain Sci. 2022, 12, x FOR PEER REVIEW 7 of 10 
 

Table 4. Condensed thirteen parameters as the model predictors. 

Hoehn–Yahr Stage IADL Barthel Index 

UPDRS I UPDRS II UPDRS III 

Verbal fluency Digits Forwards Digits Backwards 

TMT-B α-syn Aβ42 

t-tau   

Table 5. Thirteen selected parameters to predict CDR-SB deterioration. 

Classifier Kernel 
Feature 

Number 
Accuracy AUC 

SVM 

Linear 

13 

0.846 1 

RBF 0.538 0.738 

Poly 0.846 0.976 

PCA-SVM 

Linear 

3 

1 1 

RBF 0.923 0.976 

Poly 0.692 0.905 

 

Figure 3. ROC curve and AUC result for each 13-parameter classifier of CDR-SB deterioration. 

4. Discussion 

In this study, machine learning was used to accurately classify the presence or ab-

sence of cognitive disorders in terms of CDR-SB scores in patients with idiopathic PD. In 

particular, we selected ten parameters related to clinical data and dynamic execution in 

neuropsychological tests and the three plasma biological indicators shown in Table 4 as 

the predictors that led to an accuracy rate and AUC for the PCA-SVM model as high as 

100%. Therefore, dynamic execution and plasma biometrics are highly relevant for as-

sessing the cognitive ability of PD patients. Compared to the two previously mentioned 

machine learning models for predicting cognitive degeneration [8,9], the developed PCA-

Figure 3. ROC curve and AUC result for each 13-parameter classifier of CDR-SB deterioration.

4. Discussion

In this study, machine learning was used to accurately classify the presence or ab-
sence of cognitive disorders in terms of CDR-SB scores in patients with idiopathic PD.
In particular, we selected ten parameters related to clinical data and dynamic execution
in neuropsychological tests and the three plasma biological indicators shown in Table 4
as the predictors that led to an accuracy rate and AUC for the PCA-SVM model as high
as 100%. Therefore, dynamic execution and plasma biometrics are highly relevant for
assessing the cognitive ability of PD patients. Compared to the two previously mentioned
machine learning models for predicting cognitive degeneration [8,9], the developed PCA-
SVM model produced the best prediction accuracy. In addition, literature on the use of
the standard clinical assessment tools including neuropsychological tests for PD patients
as cognitive predictors in a machine learning was limited and was even rarely seen using
plasma biomarkers.

CDR is generally used to determine the severity of a patient’s overall cognitive status,
which is time-consuming and requires professional judgment. A patient’s cognitive ability
cannot be determined by questionnaires alone. However, only ten questionnaire items from
clinical and neuropsychological tests and three plasma biological indicators were needed
to train the predictive model through this training model. It is noted that questionnaires
can be readily implemented after suitable personnel training and do not necessarily require
professional medical persons; thus, it can reduce the time and burden on medical persons.

This study has some limitations. First, this was a cross-sectional study. Longitudinal
studies are needed to identify the key indicators that can predict cognitive degeneration in
a future time in PD patients, trace these predictors in the different disease stages, and clarify
their roles in other cognition domains. Second, the sample size of this study was relatively
small because of the need for neuropsychological evaluations and blood tests. Third, there
was a lack of a control group of healthy subjects to compare the levels of these indicators.
Finally, although all our participants fulfilled the diagnostic criteria of clinically established
or probable PD, the possibility of overlapping clinical manifestation and misdiagnosis
of progressive supranuclear palsy-parkinsonism predominant type (PSP-P) and postural
instability and gait difficulty subtype of PD should be emphasized [45].
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For future perspectives, increasing the sample size and conducting a longitudinal
study are among the priorities. Specifically, increasing the sample size can further validate
and support the developed model’s performance in view of the small sample size in this
study. Conducting longitudinal study can identify the key indicators and help develop a
prediction model that can predict cognitive degeneration in a future time in PD patients,
which is extremely important for medical experts to quickly identify a patient’s cognitive
condition and provide treatment in advance.
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