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We present HepatoNet1, the first reconstruction of a comprehensive metabolic network of the
human hepatocyte that is shown to accomplish a large canon of known metabolic liver functions.
The network comprises 777 metabolites in six intracellular and two extracellular compartments and
2539 reactions, including 1466 transport reactions. It is based on the manual evaluation of 41500
original scientific research publications to warrant a high-quality evidence-based model. The final
network is the result of an iterative process of data compilation and rigorous computational testing
of network functionality by means of constraint-based modeling techniques. Taking the hepatic
detoxification of ammonia as an example, we show how the availability of nutrients and oxygen may
modulate the interplay of various metabolic pathways to allow an efficient response of the liver to
perturbations of the homeostasis of blood compounds.
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Introduction

The liver has a wide range of physiological functions,
including detoxification of endo- and xenobiotic compounds,
homeostatic regulation of the plasma concentration of a
multitude of metabolites, synthesis of most plasma proteins,
bile formation and hormone production. Hepatocytes account
for about 60% of the liver in terms of cell number and for 80%
of liver volume (Sasse et al, 1992). They are the principal site
of the metabolic conversions underlying the diverse physio-
logical functions of the liver. Accordingly, hepatocyte meta-
bolism integrates a vast array of differentially regulated
biochemical pathways and is highly responsive to changes in
blood composition (Dardevet et al, 2006) evoked by special
diets, overnutrition, starvation or enhanced physical activity.
Overload of the liver’s metabolic capacity as in drug abuse or
inappropriate diets may give rise to long-term silent disease
progression such as accumulation of triglycerides in the liver
(non-alcoholic fatty liver), changes in the plasma level of
lipoproteins, enhanced intracellular levels of reactive oxygen
species and changes in the composition of bile. The complexity

of the metabolic network and the numerous physiological
functions to be achieved within a highly variable physiological
environment necessitate an integrated approach with the aim
of understanding liver metabolism at a systems level.

Over the past decades, a remarkable amount of biochemical,
physiological and medical data on enzymes, membrane trans-
porters, metabolic pathways and physiological functions of
hepatocytes from human beings and other mammals have been
compiled. In particular, two global reconstructions of the human
metabolic network have been published (Duarte et al, 2007; Ma
et al, 2007) that represent an excellent starting point for the
reconstruction of tissue-specific metabolic networks. With the
aim to predict metabolic networks of various human tissues
solely based on large-scale transcriptional profiles, a computa-
tional method has been proposed (Shlomi et al, 2008), which
relates the abundance of the protein transcript to the likelihood
that an enzyme occurring in the global reconstruction of the
human metabolic network carries metabolic flux. However,
when testing the functional capacity of the predicted liver
network to recapitulate typical metabolic objectives reported for
the human hepatocyte, we failed in a substantial number of cases
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tested (see below). This negative finding underlines the need to
choose the labor-intensive strategy to perform a thorough
manual curation of the liver network in order to complement
information on transcript and proteins levels of enzymes and
membrane transporters with additional biochemical and physio-
logical evidences available in the scientific literature and public
databases. The curation process was tightly linked to rigorous
computational testing of the functional capacity of the network
by means of constraint-based optimization methods. To this end,
we defined a large canon of known metabolic objectives of
human hepatocytes ranging from the production of glucose from
lactate (gluconeogenesis) to the degradation of endocytosed
plasma proteins. We also performed negative tests by checking
the incapability of the network to allow thermodynamically
infeasible metabolic processes (e.g. the formation of energy-rich
phosphate bonds without supply of external substrates) or
metabolic conversions that have been shown not to exist in
mammalian cells (e.g. the conversion of fatty acids with an even
number of carbon atoms into glucose). As the result of this
reconstruction process, we present HepatoNet1, a genome-scale
metabolic network of human hepatocytes, which enables the
application of constraint-based modeling techniques to discern
allowable metabolic states in hepatocytes at a large variety of
physiological conditions.

Results

Curation of the stoichiometric metabolic network
of human hepatocytes

The primary aim of our work was to establish a stoichiometric
model of human hepatocyte metabolism characterized by
(i) comprehensive coverage of known biochemical activities of
hepatocytes and (ii) due representation of the biochemical and
physiological functions of hepatocytes as functional network
states.

The initial list of enzymatic reactions of the network was
assembled from two existing global reconstructions of the
human metabolic network (Duarte et al, 2007; Ma et al, 2007)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al, 2008). A chemical reaction or membrane
transport was included into the hepatocyte-specific sub-net-
work if we could find biochemical evidences for the presence of
the respective process (i.e. the chemical conversion or the
intercompartmental transport) or other evidences (e.g. genetics,
proteomics) for the presence of the respective protein either in
human hepatocytes or—if testing of the network’s functionality
required postulation of enzyme or transporter activity for which
biochemical evidence in human hepatocytes was lacking—
in the liver of other mammals. The information on which
the decision was based is indicated in Supplementary Data 1.
Using the METANNOGEN software (Gille et al, 2007) for the
integration of information from various sources, 41500
primary literature articles, reviews and biochemical textbooks
have been manually evaluated. Transport reactions were
compiled on the basis of a comprehensive survey of the
scientific literature on physiologically characterized transport
processes in the liver. The draft network was used to initiate an
iterative process of rigorous testing network functionality and
focused on data re-evaluation and curation.

Informational content of the network

HepatoNet1 represents each reaction by chemically well-
specified metabolites (given in Supplementary Data 1.1), each
metabolite carrying a subscript that indicates its assignment to
one of the six intracellular compartments (cytosol, endoplas-
mic reticulum and Golgi apparatus, lysosome, mitochondria,
nucleus and peroxisome) and two extracellular compartments
(bile canaliculus and sinusoidal space) (Table I). A total of 777
metabolites represent specific chemical entities and 69
describe pooled metabolites, that is composites of chemically
similar molecular species (Supplementary information).
A typical example is the pooled metabolite ‘triacylglycerols
in VLDL’, which is composed of different fatty-acyl residues in
proportions as reported for a typical VLDL particle. Moreover,
seven pseudo-metabolites were defined to take into account
cofactor-using reactions that are not part of the network. For
example, the pseudo-metabolite ‘NADH-redox potential’
lumps together all cellular moieties that are not part of the
network, but may either use or generate NADH, that is
NADHo¼4NADH-redox-potentialþNADþ . Such a reaction
permits to discriminate between the change in the redox state
of NADþ in which the sum of NADþ and NADH remains
constant from a net consumption or production of the
pyridine/purine dinucleotide (e.g. consumption of NADþ in
ADP-ribosylations). For a definition of all seven pseudo-
metabolites species, see Supplementary Table 1.

According to these types of metabolites and the level of
mechanistic detail provided, the network comprises two main
categories of reactions (Supplementary Data 1.2): (i) physical
reactions, that is reactions and transport processes that
interconvert chemically well-defined reactants (i.e. enzyme
catalyzed reactions, free and facilitated diffusion) and (ii)
abstract reactions, which as lumped processes describe the
formation or degradation of large molecular complexes (e.g.
lipoproteins). Physical reactions can be further classified into
enzyme catalyzed reactions, spontaneous reactions, diffusion
(sub-classes free and facilitated diffusion) and transport reac-
tions (sub-class active transport). Whenever available, IUBMB
EC numbers and TCDB-IDs are referenced for individual
enzymatic and transport reactions, respectively. Abstract reactions

Table I Statistics of HepatoNet1

Item Number

Reactions 2539
Membrane transporter 1466

Metabolites (total) 777
Cytosol 611
Mitochondrion 253
ER, Golgi apparatus 123
Lysosome 65
Nucleus 11
Peroxisome 79
Bile canaliculus 23
Sinusoidal space 255

Literature references 1527

Metabolic objectives
For validation 319
Physiological metabolic functions 123
For knock-out simulations
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comprise particle dis-/assembly, pool reactions, protein as-
sembly, protein degradation, postulated transport reactions
(i.e. uptake or secretion of compounds lacking stoichiometric
detail), vesicular transport and virtual reactions used for
definition of the aforementioned pseudo-compounds.

The network accounts for reactant and substrate stoichio-
metry and conservation of mass of each reaction and transport
process. Charges are also balanced with the exception of
protons because lacking knowledge on buffer capacities in the
various cellular compartments supersedes the inclusion of
bulk-phase protons in flux-balance analyses. It has to be noted,
however, that protons involved in membrane transport
processes are charge balanced as well.

HepatoNet1 is available in SBML (Supplementary Data 2)
and tabular format (Supplementary Data 1). Definition,
parameters and results of the validation process are contained
in the Supplementary Data 3. For an overview of all
supplements, see the ‘supplement guide’.

Functional validation and model performance

Our aim was to obtain a functionally competent network
rather than a collection of all reactions reported for the
hepatocyte. To this end, all metabolites known to be ex-
changed by the hepatocyte with bile and blood were
functionally annotated (Supplementary Table 2). These
exchange metabolites were used to prune the initially
compiled hepatocyte-specific network to a reduced network
that does not contain unreachable reactions, that is which
cannot be forced to carry a non-zero flux in any of the
metabolic objectives tested (Hoffmann et al, 2007).

We performed flux-balance analyses to validate whether for
each of the 442 different metabolic objectives listed in
Supplementary Data 3.2, a non-zero stationary flux distribu-
tion could be established in the network. In addition, we
asserted that impossible tasks (e.g. albumin synthesis in the
absence of phenylalanine and phosphorylation of ADP to ATP
in the absence of any external energy source) are not
accomplishable with the network.

Flux-balance computations were carried out by setting the
target fluxes associated with the considered metabolic
objective to a non-zero value and determining the stationary
flux distribution that minimizes the sum of internal network
fluxes (Holzhütter, 2004, 2006) and meets the criterion of
thermodynamic realizability. The latter criterion assures
concordance between the direction of fluxes and the Gibb’s
free energy of the reaction (Hoppe et al, 2007).

Functional testing of the network was performed at two
different sets of metabolites that can be taken up or released by
the network.

Minimal exchange set
In order to challenge the network to reveal its full functional
capacity, we performed functional testing on a minimal set of
importable nutrients (input set) containing besides the specific
metabolite to be metabolized (e.g. lactate as substrate for the
production of glucose) only glucose (in some simulations
omitted, in which fatty acids or amino acids are forced to be
the only nutrient), essential amino and fatty acids, vitamins,

oxygen (in simulations at anoxic conditions omitted), sulfate,
orthophosphate and water. In addition, we demanded that the
metabolic objective tested has to be accomplished at strict
homeostatic conditions, that is without release of other
intermediates into the blood or bile other than the non-
degradable end products of hepatic metabolism as, for example,
CO2, urea or bilirubin diglucoronide. Compilation of the minimal
input and output set was based on literature knowledge of
essential nutrients and non-degradable metabolic end products
of liver metabolism, respectively (see Supplementary Table 3.1).

Customized exchange sets
Here, the minimal input and export set is complemented by
further metabolites according to the specific metabolic
objective tested. For example, testing the objective ‘conversion
of fatty acids into cholesterol’, the input set was complemen-
ted by palmitate, whereas glucose was omitted (Supplemen-
tary Table 3). The type of exchange set used is indicated at each
simulation given in Supplementary Data 3.

The 442 metabolic objectives outlined in Supplementary
Data 3 can be accomplished by HepatoNet1. The respective
flux modes (Supplementary Data 4) have been visualized and
manually validated for their biochemical and physiological
feasibility. For a given metabolic objective, the computed
functional flux mode comprises a larger number of non-zero
fluxes when the minimal exchange set is used rather than a
physiological exchange set as all intermediates have to be
broken down into no further degradable end products.

Analyzing metabolic objectives with HepatoNet1:
bile acid synthesis in starvation

Bile acid synthesis being one important and hepatocyte-
specific physiological liver function is described here as one
example of the constraint-based modeling results obtained
with HepatoNet1. Applying the flux minimization principle
constrained by the minimal input and output set, we
investigated the functional flux mode accounting for the
synthesis of glycochenodeoxycholate (see Figure 1). The
minimal input set contained palmitate instead of glucose to
mimic systemic starvation conditions characterized by an
increase of non-esterified fatty acids in the blood and
continuous hepatic glucose output. The flux mode comprises
173 reactions including 46 transport reactions across the
basolateral and canalicular plasma membranes and mem-
branes separating the cytosol from mitochondria, endoplasmic
reticulum and peroxisome. Palmitate, alanine, serine and O2

are the sole substrates. The pathways directly linked to the
synthesis of the bile acid are the mevalonate pathway and the
de novo synthesis of cholesterol. Other pathways such as
gluconeogenesis, the pentose phosphate pathway or the
ornithine cycle are part of the flux mode because the
calculation was performed on the minimal input and output
set, that is forcing all reactants to be balanced and all
exportable intermediates to be catabolized into non-degrad-
able end products. This example shows how the challenges of
limited substrate supply and catabolism of intermediates to
non-degradable excretion products leads to numerous cross-
links between metabolic pathways traditionally perceived as
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separate entities. For example, alanine is used as gluconeo-
genetic substrate to form glucose-6-phosphate, which is used
in the pentose phosphate pathway to generate NADPH. The
glycine moiety for bile acid conjugation is derived from serine.

Only a minor part of cytosolic b-HMG-CoA (the precursor
of cholesterol) is produced from cytosolic acetyl-CoA
(flux¼0.29 mol/s per formation of 1 mol/s glycochenodeox-
ycholate) that is derived from citrate by the lipogenic enzyme
ATP-citrate-lyase (Hoffmann et al, 1980). Indeed, only a
small flux of citrate carbon into lipids had been shown by
isotope experiments (Watson and Lowenstein, 1970). The
major portion of cytosolic b-HMG is contributed by the ketone
body acetoacetyl-CoA formed in the mitochondrion in equally
large proportions from condensations of two moieties
of acetyl-CoA (flux¼2.86) and incomplete b-oxidation of
palmitate (flux¼2.35). This finding is in contrast to textbook
lines stating acetyl-CoA to be the exclusive precursor of
cholesterol. Mitochondrial acetoacetate is exchanged against
cytosolic puruvate (Kummel, 1983, 1987) and activated
by a cytosolic acetoacetyl-CoA synthetase (Bergstrom and
Edmond, 1985). It has been shown that this predicted
major route for the formation of cytosolic b-HMG-CoA
from mitochondrial ketone bodies may indeed account for
19–80% of cholesterol synthesis (Endemann et al, 1982).

Analyzing metabolic objectives with HepatoNet1:
detoxification of ammonia

Conversion of ammonia into non-toxic nitrogen compounds is
one central homeostatic function of hepatocytes. Using the
HepatoNet1 model, we investigated how the consumption of
oxygen, glucose and palmitate is affected when an external
nitrogen load is channeled in varying proportions to the non-
toxic nitrogen compounds: urea, glutamine and alanine. We
performed a high-resolution series of 20 301 flux minimization
computations by varying the relative proportions of urea,
glutamine and alanine in 200 steps between 0 and 100% and
determined functional flux modes allowing oxygen, glucose
and palmitate as substrates. A similar phase plane analysis has
been used by Resendis-Antonio et al (2007) to analyze the
physiological capabilities of the bacterium Rhibobium etli
during different stages of nitrogen fixation. Oxygen demand is
highest (molar ratio¼0.407) if nitrogen is exclusively trans-
formed into urea. At lower fluxes into urea, an intriguing
pattern for oxygen demand is predicted: oxygen demand
attains a minimum (0.105) if the nitrogen load is directed to
urea, glutamine and alanine with relative fluxes of 0.17, 0.43
and 0.40, respectively (Figure 2A). Oxygen demand in this flux
distribution is four times lower than for the maximum (100%
urea) and still 77 and 33% lower than using alanine (0.186)
and glutamine (0.140) as exclusive nitrogen compounds,
respectively. This computationally predicted tendency is
consistent with the notion that the zonation of ammonia
detoxification, that is the preferential conversion of ammonia
to urea in periportal hepatocytes and to glutamine in
perivenous hepatocytes, is dictated by the availability of
oxygen (Gebhardt, 1992; Jungermann and Kietzmann, 2000).

The decreased oxygen demand in flux distributions using
higher proportions of glutamine and alanine is accompanied

by increased uptake of the substrates glucose and palmitate
(Figure 2B). This is due to an increased demand of energy and
carbon for the amidation and transamination of glutamate and
pyruvate to discharge nitrogen in the form of glutamine and
alanine, respectively. A detailed analysis of the flux modes
obtained at high oxygen (89.3% urea, 5.3% glutamine, 5.3%
alanine) and low oxygen (17.3% urea, 42.7% glutamine,
40.0% alanine) demand settings (Figures 3 and 4, respec-
tively) revealed that both solutions rely on glycolysis, the
oxidative pentose pathway, fatty-acid b-oxidation and the
Krebs cycle for substrate entry and breakdown. In both
simulations, non-zero fluxes through a complex part of the
central metabolism occur consisting of (i) reactions and

Figure 2 Simulation of oxygen and substrate demands for ammonia
detoxification. Analysis of oxygen demand for ammonia detoxification is based
on the simulation ‘NH3 degradation’ (Supplementary Data 3.1) and the following
settings: weight of the palmitate and glucose import is set to 10 and 100,
respectively. The import flux of ammonia is set to 1. Export flux for urea iterates
from 0 to 0.5 in 200 steps. Correspondingly, the export flux of glutamine ranges
from 0 to 0.5 minus the export flux of urea. The export flux of alanine is set to the
remaining nitrogen atoms: 1–2� (export flux of ureaþ export flux of glutamine).
Thus, the export of every atom imported with ammonium is fixed into predefined
shares. (A) Oxygen demand as a function of the relative proportion of urea,
glutamine and alanine as nitrogen compounds (arbitrary units). (B) Substrate
demand, sum of glucose and palmitate fluxes. Fluxes are weighted by the
number of carbon atoms in the substrate molecules, that is 6 (glucose) and 16
(palmitate). Plot axes as in (A).
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Figure 3 Functional flux mode for the detoxification of NH3 with high oxygen demand. Flux distribution obtained for ammonia detoxification into the nitrogen compounds
urea (89.3%), alanine (5.3%) and glutamine (5.3%). The setting is detailed in the result section (detoxification of ammonia). Presentation is similar to Figure 1.
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intermediates attributable to a single pathway; for instance,
the urea cycle or Krebs cycle, (ii) reactions and intermediates
interconnecting these traditionally perceived pathways (e.g.
transaminase reactions, pyruvate) and (iii) transport processes
for the flow and balancing of substrates, energy and redox
equivalents between compartments. However, there are
considerable differences between the two scenarios: the flux
solution for high urea production, which is characterized by
high oxygen demand, carries a high flux through the urea cycle
and the recovery pathway of aspartate as a precursor for
argininosuccinate synthesis. A sequence of reactions trans-
ports fumarate into mitochondria, produces and transami-
nates oxaloacetate (using Krebs cycle enzymes and aspartate
transaminase) and transports aspartate to the cytosol. These
reactions carry a considerably lower flux in the low oxygen
demand solution, which is, conversely, characterized by a
marked increase in glycolytic flux and exclusive use of
pyruvate for transamination to alanine and formation of
malate. In the high urea setting, pyruvate is primarily
transported to the mitochondria and converted to acetyl-CoA
and fed into the Krebs cycle. Intriguingly, in the low oxygen
setting, not only is the flux through the complexes of the
respiratory chain diminished, but the F0/F1-ATPase reaction
does not carry any flux at all, indicating that in this solution the
ATP demand can be satisfied entirely by substrate-level
phosphorylation and that the respiratory chain and oxygen
uptake is needed solely to drive secondary active transport
processes. This finding is consistent with the observations
that the proton motive force in hepatocytes is used only
partly for ATP synthesis as approximately 20% of respiratory
oxygen consumption can be attributed to proton-driven
mitochondrial transport (Brand et al, 1991). With regard to
the inversely correlated demand for oxygen and organic
substrates, we observe several combinations of the chosen
nitrogen compounds, which appear equally optimal with
respect to effective substrate usage: high proportions of urea
require high oxygen uptake, but lower quantities of glucose
and palmitate, whereas flux distributions with proportions of
nitrogen compounds as 17% urea, 43% glutamine and 40%
alanine use considerably less oxygen at the expense of a higher
substrate intake. For other nitrogen compound ratios, notably
settings with very high flux into alanine, the reduction in
oxygen consumption is accompanied by an even higher
increase in substrate demand. Taken together, this analysis
reveals strong dependencies between the available level of
oxygen and variations in the substrate demand of hepatocytes
required for effective ammonia detoxification by the liver.

Comparing the functional capacity of HepatoNet1
with that of other network reconstructions

In order to compare the functional capacity of HepatoNet1 with
that of other available network reconstructions, we selected
from the full list of tested metabolic objectives a comprehensive
collection of 30 metabolic objectives that are either highly liver
specific or known to be accomplishable in many different
human cell types (Table II). Most of these objectives were
evaluated using several simulations representing different
physiological variants (e.g. gluconeogenesis from various
precursors). All biochemical objectives listed in Table II are

successfully accomplished by the HepatoNet1 model with the
associated simulations yielding biochemically feasible func-
tional modes (see Supplementary Table 4). Figure 5 illustrates
the number of transporters and compartmentalized chemical
reactions involved in the 123 functional flux modes. The
smallest flux mode (formation of glucose from glycogen)
comprises only 11 reactions and 2 compartments (cytosol and
endoplasmic reticulum). The largest flux mode was obtained for
the objective ‘VLDL synthesis’ (247 reactions including 82
transporters). The flux modes also differ substantially in the
number of involved compartments. Anaerobic re-phosphoryla-
tion of ATP takes place exclusively in the cytosol, whereas five
different compartments are involved in the accomplishment of
the objective ‘LDL degradation’.

We then tested how the biochemical objectives shown in
Table II are represented in the global human metabolic
network reconstruction, Recon1 (Duarte et al, 2007). When
comparing the HepatoNet1 model to Recon1, 799 localized
metabolites and 731 reactions can be found in both metabolic
networks (Supplementary Data 1), whereas HepatoNet1
contains 1709 enzymatic and transport processes for which
no equivalent to Recon1 could be found. This is partly a
consequence of differences in the representation of enzymatic
processes. For instance, the fatty-acyl residue distribution of
lipids in HepatoNet1 is tailored for the analysis of liver-specific
questions. Thus, uptake, formation and excretion of lipopro-
tein particles or bile-specific phospholipids and the corre-
sponding reactions do not coincide between the networks,
although the same processes are covered. Accounting for such
differences in compound representation, 119 of the 123
simulations in Table II could be directly compared. As
expected, for most objectives Recon1 allowed feasible flux
modes. The remaining 14 cases in which Recon1 failed are
mostly because of the lack of liver-specific reactions. For
example, a considerable number of hepatic transport pro-
cesses, either intracellular or at the basolateral and canalicular
plasma membranes, are unique to HepatoNet1.

Next, we tested a liver-specific prediction of metabolic
activity in Recon1 based on transcription profiles (Shlomi et al,
2008). Taking into account all reactions of Recon1 and
omitting those reactions that according to this prediction
should not be active in the liver (indicated by a negative
confidence level), only in 71 of 119 simulations, a stationary
flux distribution could be obtained (see Supplementary Table
4). This result shows the current limitations inherent in the
prediction of species- or tissue-specific networks derived from
transcript data alone. The global reconstructions of human
metabolism assisted by computational methods are a useful
starting point to establish tissue-specific networks. However,
currently, there is no alternative to the additional manual
reconstruction and validation in order to attain a physiologi-
cally functional model.

Using HepatoNet1 to explore the robustness
of metabolic liver functions against enzyme
deficiencies

An intriguing question that can be addressed with large-scale
networks pertains the essentiality of enzymes and transporters
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(Behre et al, 2008; Suthers et al, 2009; Plaimas et al, 2010).
Using HepatoNet1, we have analyzed how the knock-out of a
single enzyme or transporter may compromise the metabolic
objectives accomplished by the human hepatocyte. To this
end, we have performed 123 computational knock-out studies
in which we disabled one after the other each single reaction of
the original 123 functional flux modes related to the metabolic
objectives (Table II) and counted how often a computational
knock-out could be compensated by an alternative flux mode
(¼non-essential reaction). As the essentiality of an enzyme or
transporter depends on the availability of external substrates
that can be used to bypass the invalidated reaction, these
knock-out studies were performed on less restrictive custo-
mized exchange sets specified in Supplementary Data 3.
Hence, the number of essential enzymes detected in these
knock-out simulations will be lower than at constraints
imposed by the minimal exchange set, but probably higher

than at comfortable conditions in which the hepatocyte has
full access to all plasma metabolites.

Ranking the essential reactions determined in these 123
knock-out studies in descending order according to the
frequency of their occurrence allows to discriminate between
reactions with cardinal essentiality that are indispensable for
almost all metabolic objectives tested (e.g. electron carriers of
the respiratory chain) and reactions that are essential for only a
limited (usually closely related) number of metabolic objec-
tives (Supplementary Table 5). For 80 enzymes and transpor-
ters that turned out to be essential in at least one knock-out
simulation, enzymopathies with clinical symptoms have been
reported. To our surprise, clinically manifested enzymopathies
have been reported even for those enzymes and transporters,
which in case of a complete knock-out are predicted to impair a
larger set of metabolic objectives. This may point to the
existence of protein isoforms that are not affected by the

Table II Representative set of metabolic objectives that can be accomplished by HepatoNet1

Metabolic function Physiological significance (examples) Simulations (see
Supplement Table 4)

Re-phosphorylation of nucleoside
triphosphates (ATP, GTP, CTP, TTP, UTP)

Cellular energy metabolism, principal cofactors in metabolism (1)–(9)

Regeneration and de-novo synthesis of
NADH and NADPH

Energy metabolism, reductive biosynthesis, redox homeostasis, principal
cofactors in metabolism

(21)–(22)

Glycogenesis Systemic glucose homeostasis; short-term regulation of blood glucose (29)
Glycogenolysis Systemic glucose homeostasis; short-term regulation of blood glucose (30)
Gluconeogenesis Systemic glucose homeostasis: homeostasis of blood glucose in post-prandial

state; cori cycle, alanine cycle
(23)–(28)

Galactose and fructose metabolism Breakdown of dietary carbohydrates (31)–(32)
Formation of nucleotide-activated sugars Glycoprotein and proteoglycan biosynthesis; biotransformation (conjugation) (33)–(39)
Fatty-acid biosynthesis Precursor of triglycerides and phospholipids; lipoprotein assembly and

remodeling
(97)–(99)

Triglyceride biosynthesis Systemic lipid homeostasis: cellular lipid store; lipoprotein assembly (102)
Ketogenesis Preferred substrate for the brain function after prolonged fasting (105)–(106)
Farnesylpyrophosphate biosynthesis Prenylation of proteins; ubiquinone biosynthesis; cholesterol precursor (104)
Cholesterol biosynthesis Membrane synthesis; lipoprotein assembly; bile formation; systemic

lipid homeostasis
(103)

VLDL formation Systemic lipid homeostasis: provision of endogenously derived
triacylglycerides and cholesterol to peripheral tissue

(107)

LDL catabolism Systemic lipid homeostasis: lipoprotein remodeling (108)
Phospholipid biosynthesis Membrane synthesis; lipoprotein and bile formation (82)–(86)
Sphingolipid biosynthesis Membrane synthesis (87)–(89)
Salvage of purine and pyrimidine
nucleotides

RNA and DNA biosynthesis; liver regeneration after injury and intoxication;
energy metabolism

(18)–(20)

De novo synthesis of purine and
pyrimidine nucleotides

RNA and DNA biosynthesis; liver regeneration after injury and intoxication;
energy metabolism

(10)–(17)

Formation of non-essential amino
acids

Systemic amino-acid homeostasis; precursors of endogenous proteins,
plasmaproteins and proteoglycan; creatine and glutathione synthesis

(42)–(53)

Ureogenesis Ammonia detoxification; systemic pH regulation, cori cycle, alanine cycle,
systemic nitrogen and amino-acid homeostasis

(78)–(79)

Creatine biosynthesis Central metabolite for energy metabolism of muscle cells (80)
Heme biosynthesis Biosynthesis of heme proteins, in particular cytochrome P450

(biotransformation and metabolic detoxification)
(81)

Protein biosynthesis Enzymes, cytoskeleton, membrane proteins, plasma proteins
(e.g. acute-phase response, pro-hormone synthesis)

(77)

Amino-acid breakdown Systemic amino-acid homeostasis; carbon sources for gluconeogenesis,
ketogenesis, alanine cycle

(54)–(76)

Biosynthesis of cofactors Principal components of intermediate metabolism, biotransformation
and detoxification

(117)–(118)

Bile formation Cholesterol homeostasis; intestinal uptake and digestion of dietary lipids,
transport of lipophilic vitamins, intestinal motility

(109)–(116)

Formation of glutathione Intracellular and systemic redox homeostasis, systemic GSH supply;
anti-oxidant function; cofactor in biotransformation

(119)

Bilirubin catabolism Heme catabolism (121)
Detoxification of reactive oxygen species Defense against oxidative stress (120)
Detoxification of xenobiotics Metabolic detoxification (122)–(123)
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specific type of deficiency. Alternatively, one may speculate
that non-lethal but clinically manifested enzymopathies are
restricted to moderate defects that still allow significant fluxes.

Discussion

Human physiology relies on the integration of specialized
metabolic functions in different tissues and cell types. Here, a
system-scale stoichiometric model of human hepatocyte
metabolism is presented that accounts for a large variety of
biochemical functions of this cell type. The model is based on a
comprehensive evaluation of the currently available knowl-
edge on hepatocyte metabolism combined from several
information sources and lines of evidence. This metabolic
network is taken as the starting point of a computational
protocol and validation strategy that establishes a network
with a functional scope determined by a comprehensive list of
hepatic physiological functions and documented transport
activities at the cell boundaries. The model is confined to
reactions, which can actually carry flux, exchanging only
those metabolites that are contained in the set of exchangeable
metabolites across the system boundary.

Metabolic objectives representing synthetic capabilities of the
model can be fulfilled using the minimal input set that contains
only compounds known to be essential nutrients for human
beings. The implications of the restrictive nature of this model
boundary exchange imposed in our model calculations are two-
fold. First, consistent with biochemical knowledge, it shows
that the model faithfully represents the anabolic and catabolic
pathways and metabolic versatility of hepatocytes needed to
synthesize and degrade various components of intermediary
metabolism starting from or leading to simple input and output
metabolites. Second, the feasibility of steady state flux
distributions under very restrictive exchange conditions with
granting or prohibiting exchange of individual compounds
suggests that the capacity of hepatocyte metabolism for

homeostatic regulation of blood composition may allow for
the adjustment of perturbations for individual compounds
without major interference among blood constituents.

Computational testing of the network’s functional capabi-
lities was performed by using a variant of flux-balance analysis
that assures thermodynamically feasible flux directions
(Hoppe et al, 2007) and at the same time obeys the principle
of flux minimization (Holzhütter, 2004, 2006), that is mini-
mizes the sum of internal fluxes. Hitherto, constraint-based
modeling approaches for study of metabolism is much more
advanced in unicellular systems (Feist and Palsson, 2008) than in
cell types with more complex architecture. In microorganisms,
simple objective functions (e.g. biomass production) can often
successfully predict cellular behavior (Edwards et al, 2001).
However, for the metabolism of differentiated somatic cells as
hepatocytes that meet many different objectives in parallel,
one may think of a variety of criteria (Nagrath et al, 2007;
Uygun et al, 2007), which may govern the regulation of the
network and thus determine the magnitude of network fluxes.
The minimization of internal fluxes is only one of these
criteria. It relies on the plausible assumption that the cell aims
to accomplish its metabolic tasks at a minimum expense of
enzyme capacity and external resources. Our findings with
respect to the oxygen demand for ammonia detoxification
indicate that the principle of flux minimization may indeed
yield predictions that are in line with experimental observa-
tions on the sinusoidal zonation of metabolic pathways
(Gebhardt, 1992; Haussinger et al, 1992). Moreover, functional
flux modes by definition represent a minimal set of non-zero
fluxes required to meet a single metabolic objective and thus
provide a glance at the minimal complexity of the flux-carrying
sub-network involved. Nevertheless, critical evaluation of the
feasibility of the flux minimization criterion used has yet to be
performed by confronting calculated flux distributions with
experimentally determined flux rates.

In terms of both scope and specificity, our model bridges the
scale between models constructed specifically to examine
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distinct metabolic processes of the liver and modeling based
on a global representation of human metabolism. The former
includes models for the interdependence of gluconeogenesis
and fatty-acid catabolism (Chalhoub et al, 2007), impairment
of glucose production in von Gierke’s and Hers’ diseases
(Beard and Qian, 2005) and other processes (Calik and Akbay,
2000; Stucki and Urbanczik, 2005; Ohno et al, 2008). The
hallmark of these models is that each of them focuses on a
small number of reactions pertinent to the metabolic function
of interest embedded in a customized representation of the
principal pathways of central metabolism. In contrast to either
of the aforementioned modeling scales, HepatoNet1 provides
the combination of a system-scale representation of metabolic
activities and representation of the cell type-specific physical
boundaries and their specific transport capacities. This allows
for a highly versatile use of the model for the analysis of
various tissue-specific physiological functions. Conceptually,
from a biological system perspective, this type of model offers
a large degree of comprehensiveness while retaining tissue
specificity, a fundamental design principle of mammalian
metabolism.

Recently, a computational method for network-based
prediction of human tissue-specific metabolism using tissue-
specific transcript and protein abundance data has been
introduced (Shlomi et al, 2008). The method relies on the
maximization of the number of reactions in the metabolic
network whose predicted flux activity is consistent with the
expression of the genes of the corresponding enzymes. We
were able to establish only 71 of the 119 metabolic functions of
human hepatocytes accomplishable with Recon1 when we
excluded those reactions for which inactivity was predicted by
Shlomi et al (2008), that is reactions carrying a score of less
than zero. Several reasons may explain this negative outcome.
One reason is certainly the poor coverage of the large-scale
network with expression data. We have used gene expression
data as one of the several lines of evidence in the course of
curation of HepatoNet1. Only 55% of all reactions could be
associated with gene expression data. Thus, for a substantial
number of reactions in our network, gene expression data is
not assigned or available. Generally, expression profiles were
consistent with biochemical evidence, although we identified
a small but important number of exceptions in which clear
biochemical evidence for enzyme activity was not reflected in
liver-specific transcript abundance (Supplementary Data 5;
Supplementary Table 6, respectively). Another reason re-
straining the straightforward definition of tissue-specific net-
works on the sole basis of expression profiles consists of the
poor overall correlation of transcript abundance and metabolic
flux strength (Ovacik and Androulakis, 2008; Ponten et al,
2009). For example, in the set of expression data used by
Shlomi et al (2008), many glycolytic enzymes are marked with
‘not expressed’, although the glycolytic flux in human
hepatocytes is large (Cherrington, 1999). Glycolytic enzymes
in hepatocytes have to be continuously present, either for the
purpose to convert extra glucose into triglycerides or to
produce glucose from gluconeogenic precursors in fasting
conditions.

HepatoNet1 incorporates different sources of information,
which provides a greater degree of confidence. This avoids
problems, which may occur if just one type of biological

evidence is used, especially as the use of transcript abundance
as a measure for enzyme activity relies on a number of
simplifying assumptions, which, in sum, may significantly
alter the structure and behavior of the model. The use of
different types of biological evidence and manual integration
and validation of the model components in a functional
network context have been vital for obtaining a model that
provides adequate resolution of hepatocyte biochemical
functions and alignment with physiologically determined
input and output parameters.

HepatoNet1 is expected to provide a structural platform for
computational studies on liver function. The results presented
herein highlight how internal fluxes of hepatocyte metabolism
and the interplay with systemic physiological parameters can
be analyzed with constraint-based modeling techniques. At
the same time, the framework may serve as a scaffold for
complementation of kinetic and regulatory properties of
enzymes and transporters for analysis of sub-networks with
topological or kinetic modeling methods.

Materials and methods

Network reconstruction

Biochemical reactions and their assignment to metabolic pathways in
the global reconstructions of the human metabolic network (Duarte
et al, 2007; Ma et al, 2007) and the KEGG (Kanehisa et al, 2008) were
used as a starting point for the initial candidate list of network
components. For each reaction, various enzyme and protein databases
such as the Braunschweig Enzyme database (BRENDA) (Chang
et al, 2009), Reactome (Matthews et al, 2009) and UniProtKB (The
UniProt Consortium, 2008) have been used. Relevant content was
analyzed to evaluate the available physiological, biochemical and
genetic evidence with special regard to tissue specificity and sub-
cellular localization. A reaction was included in the network if (i)
experimental evidence was available for the reaction to occur in
human hepatocytes or liver tissue in general or (ii) similar
experimental evidence from other mammalian species and considera-
tion of human orthologous genes allowed inference of the reaction.
Biochemical (enzyme assay, transport assay, protein expression and
localization) and genetic evidence (genes, transcript expression
and genetic diseases) were the principal types of evidence used.
Although generally, enzymatic and transport reactions represent
mechanistic biochemical processes, the network contains a number
of lumped reactions, which represent processes that are mechan-
istically beyond the scope of HepatoNet1 and describe its metabolic
inputs and outputs. Glycogen is represented on the basis of the
corresponding species in Recon1 (Duarte et al, 2007). An exhaustive
search of the Gene Expression Omnibus (NCBI-GEO; Barrett et al,
2009) revealed a total of 12 datasets containing gene expression data
from normal human liver tissue samples. Eight of these, GDS181 (Su
et al, 2002), GDS422 to 426 (Yanai et al, 2005), GDS1096 (Ge et al,
2005) and GDS1209 (Yoon et al, 2006) include affymetrix detection
calls and were used as additional lines of evidence for network
reconstruction. Only samples of normal human liver tissue/hepato-
cytes were considered. Affymetrix probe set IDs were mapped to
reactions using the Ensembl Homo sapiens database (Hubbard et al,
2009) and KEGG orthology records.

Reaction directionality

Principally, reactions are treated as reversible and constraints on
reaction directionality are only imposed systematically in the course of
computational analysis of the network. Empirical constraints of
directionality have been manually set for a limited set of reactions to
prevent unfeasible flux distributions. See Supplementary Data 1.2 for
details.
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Compartmentalization

Endoplasmic reticulum, microsomes and Golgi apparatus were
modeled as one compartment because in many cases, experimental
data do not allow to discriminate between these compartments.
Mitochondrial intermembrane space was assigned to the cytosolic
compartment. Sub-cellular localization of reactions was determined
based on direct experimental evidence (protein localization, targeting
sequences and subcellular fractionation) and indirect physiological or
biochemical evidence. In the absence of information, reactions were
modeled as cytosolic.

Structural network analysis

Atomic mass balance was analyzed by computation of net stoichio-
metry (Gevorgyan et al, 2008). Protons involved in transport processes
across membranes occur as separate species in the model and are mass
balanced, which is not the case for protons exchanged with the
aqueous bulk phase.

Pruning

Reconstructed network data was subjected to functional pruning
(Hoffmann et al, 2007) by confining the model to reactions that can
potentially carry a non-zero flux. The hepatocyte-specific set of
exchange processes used for pruning comprises substrates and end
products of hepatocyte biosynthetic and catabolic activities and was
assembled based on liver physiological and biochemical functions
(Supplementary Table 2).

FBA

Pruned network models were subjected to flux-balance simulations
setting the target fluxes according to the demanded metabolic
objective (Supplementary Data 3) to non-zero positive or negative
values and determining the stationary flux distribution. The optimiza-
tion objective has been the minimization of internal fluxes (Holzhütter,
2004). Fluxes are weighted equally by default unless modified in
selected cases to reflect differential activity of enzymes with
alternative substrates or cofactors (e.g. affinity of hexokinase toward
various hexoses) (Supplementary Data 6.1). Thermodynamic con-
straints on reaction directionality have been imposed (Hoppe et al,
2007). For this purpose, standard Gibb’s energies listed in Supple-
mentary Data 1.2 have been obtained from a prediction method
(Jankowski et al, 2008) and physiological metabolite concentration
ranges listed in Supplementary Data 6.2 from the Human Metabolome
database (Wishart et al, 2007). Computation was performed with the
aid of CPLEX 10.1 (ILOG, Gentilly, France).

In an iterative process, simulation results that were not in agreement
with the expected outcome were used to spot inconsistencies in the
underlying network structure. These inconsistencies were the subject
of curation, followed by new simulations to revalidate HepatoNet1.
Flux modes were visualized with BiNA 1.3.1 (Kuentzer et al, 2007) or
CytoScape (Shannon et al, 2003) in combination with FluxViz (König
and Holzhütter, 2010).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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