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Deep-etch EM reveals that the early poxvirus 
envelope is a single membrane bilayer stabilized 
by a geodetic “honeycomb” surface coat

 

John Heuser

 

Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110

 

hree-dimensional “deep-etch” electron microscopy
(DEEM) resolves a longstanding controversy con-
cerning poxvirus morphogenesis. By avoiding fixative-

induced membrane distortions that confounded earlier
studies, DEEM shows that the primary poxvirus envelope is
a single membrane bilayer coated on its external surface
by a continuous honeycomb lattice. Freeze fracture of
quick-frozen poxvirus-infected cells further shows that
there is only one fracture plane through this primary
envelope, confirming that it consists of a single lipid bilayer.
DEEM also illustrates that the honeycomb coating on this

T

 

envelope is completely replaced by a different paracrys-
talline coat as the poxvirus matures. Correlative thin
section images of infected cells freeze substituted after
quick-freezing, plus DEEM imaging of Tokuyasu-type cryo-
thin sections of infected cells (a new application introduced
here) all indicate that the honeycomb network on immature
poxvirus virions is sufficiently continuous and organized,
and tightly associated with the envelope throughout devel-
opment, to explain how its single lipid bilayer could
remain stable in the cytoplasm even before it closes into a
complete sphere.

 

Introduction

 

One of the triumphs of early EM was the discovery that
poxviruses package their genetic material into membranous
spheres that form deep in the cytoplasm of infected cells, rather
than by budding from the cells as do most other enveloped
viruses (Wyckoff, 1951; 1953; Melnick et al., 1952). More
marvelous still was the ensuing discovery that the spherical
poxvirus envelopes form progressively by expansion of crescent-
shaped precursors that display the same curvature as the final
spheres, but start off incomplete and open to the cytoplasm
(Bang, 1950; Gaylord and Melnick, 1953; Bernhard et al., 1954;
Morgan et al., 1954, 1955). This very unusual form of mem-
brane biogenesis has turned out to be quite novel, although it is
seen in modified form in many of the large icosahedral DNA
viruses that also form in the cytoplasm of infected cells (Smith,
1958; Breese and Deboer, 1966; Yule and Lee, 1973; Nunes et
al., 1975; Mathieson and Lee, 1981; Meints et al., 1984, 1986;
Brookes et al., 1998; Cobbold et al., 2000; Iyer et al., 2001;
Van Etten et al., 2002; Stasiak et al., 2003). Certainly, no host-
cell membranes have ever shown this pattern of biogenesis.

Even more intriguing is the fact that according to most
electron microscopists, including all the original observers of

poxvirus formation and many microscopists still working today,
the composition of the growing crescents and the final spheres
is a single membrane bilayer (Dales and Siminovitch, 1961;
Dales, 1963; Patrizi and Middelkamp, 1968; Dales and Mosbach,
1968; Pogo and Dales, 1969, 1971; Harford et al., 1972; Tripier
et al., 1973; Morgan, 1976). This defies the common wisdom
that all biological membranes form closed compartments, and
must do so because a single membrane would expose a ragged,
hydrophobic edge to the cytoplasm, which presumably would
be intrinsically unstable.

Faced with this apparent dilemma, several studies of poxvi-
rus morphogenesis sought data and EM images that would show
that the poxvirus crescents and spheres are actually composed of
two closely opposed membrane bilayers, as would result from
complete collapse of the lumen of a closed compartment (Sodeik
et al., 1993; Krijnse-Locker et al., 1996; Ericsson et al., 1997;
Salmons et al., 1997; Griffiths, Roos et al., 2001; Sodeik and
Krijnse-Locker, 2002). Unfortunately, the EM images obtained to
date that argue for this simpler two-membrane model have not
been entirely convincing. Moreover, the deep-etch EM (DEEM)
images presented in this report confirm the original conclusion
that the initial poxvirus envelope is indeed a single lipid bilayer.
These are derived primarily from “quick-freeze, deep-etch”
replicas, but also from thin sections of infected cells that were also
quick frozen rather than chemically fixed as is usually done.

 

Correspondence to J. Heuser: jheuser@cellbiology.wustl.edu
Abbreviations used in this paper: 3-D, three-dimensional; DEEM, deep-etch EM;
IMV, intracellular mature virion; IV, immature virion.
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The challenge thus remains of how to explain how such
an individual membrane can be stable in the cell and how it can
grow (Hollinshead et al., 1999; Husain and Moss, 2003). These
questions are provisionally answered here by the additional
finding that the poxvirus envelope is uniformly and tightly
coated by a meshwork of protein that forms a confluent honey-
comb lattice on its convex surface: a lattice with a fixed and
constant radius of curvature. It has long been known that this
envelope has on its external surface what have been termed
“spikes” (Stern et al., 1977; Dales et al., 1978; Mohandas and
Dales, 1995; Risco et al., 2002). However, not until en face im-
ages of this envelope could be obtained by DEEM was it possi-
ble to fully appreciate that these so-called spikes are in fact the
edge views of a fully confluent, continuously interconnected
honeycomb lattice. Thus, we can now appreciate how this spe-
cial protein coat could effectively “template” and stabilize the
single membrane of the nascent poxvirus.

 

Results

 

Cross fractures through viruses at all 
stages of development

 

Fig. 1 diagrams the stages of viral morphogenesis that will be
depicted in the images presented here, and displays the names
currently used for each stage. Freeze fractures or cryosections
through viral factories in cells infected overnight (Fig. 2, A–C)
reveal all stages of virion development, from short arcs or
“crescents” that represent the earliest stages of IV develop-
ment, to closed spheres that represent the completion of IV de-
velopment, to more condensed brick-shaped profiles that repre-
sent the mature intracellular virions (IMVs). Fig. 2 (A and
B) compares freeze etchings of unfixed MVA-infected avian
cells versus aldehyde-fixed WR-infected mammalian cells. (No
structural differences of any sort can be discerned between vi-
ruses grown in these two cell lines, or between these two
strains of virus.) In contrast, Fig. 2 C presents a survey view of
a Tokuyasu-type cryosection made from a pellet of aldehyde-
fixed WR-infected mammalian cells, where the cryosection has
been freeze dried and replicated rather than viewed in the usual
way (Tokuyasu, 1973). This yields images of virogenesis that
look almost indistinguishable from standard DEEM images
(Fig. 2, compare A with C). The only noticeable difference is
that the added steps needed to prepare for cryosectioning make
the cytoplasm look even more coarse and “microtrabecular”
than does aldehyde fixation alone (Heuser, 2002). (To appreci-
ate the effect of aldehyde fixation per se, B can be compared
with A in Fig. 2.)

In any case, all such views illustrate that cross fractures
(or Tokuyasu cross cuts) of the outer envelope of immature
vaccinia virions yield an unusually thick lamina compared with
other cross fractured membranes. The IV envelope measures
15–20-nm thick rather than the usual 7–10 nm of a standard in-
tracellular membrane, due to the fact that it bears discernable
mass its external or convex surface (Fig. 3, A–C). However,
this added mass does not appear to represent a second mem-
brane, because it looks too discontinuous or “studded”. By
comparison, Fig. 3 (D and E) illustrates that intracellular or-

ganelles known to be double membraned like mitochondria
(Fig. 3 D) and even the host cell envelopes that secondarily en-
gulf vaccinia virions as they mature (Fig. 3 E) invariably do
display their double-membrane nature after freeze fracture.
(Both panels D and E of Fig. 3 include cross fractured IVs in
the same field, to further demonstrate this critical difference.)
Likewise, comparable thin sections of quick-frozen and freeze-
substituted cells (Fig. 4) confirm that the outer envelope of the
vaccinia virion can be resolved into a 

 

�

 

7-nm electron-lucent
central layer sandwiched between two electron-dense layers,
the outer one looking much thicker and spiky looking on IVs
and looking irregular on IMVs. Again, this envelope looks very
different from cytoplasmic double membranes like mitochon-
dria, as illustrated in the bottom, magnified panels of Fig. 4.

 

Cross fractures of viral cores

 

Cross fractures also yield images of the cores in all the devel-
opmental forms of vaccinia virions, which vary widely in con-
sistency, from only a little denser than the surrounding viro-
plasm in IVs, to very dense and compacted in IMVs, with all
degrees of condensation in between (Fig. 2, A–C). Most nota-
ble is the distinct discontinuity observed between the uni-
formly granular interior of the IV and the distinctly laminated
interior of the IMV, where a second complete layer can be dis-
cerned inside the outer envelope. This second layer is particu-
larly apparent in Tokuyasu cryosections (Fig. 2 C), simply
because an ultramicrotome with a diamond knife is more

Figure 1. Stages of morphogenesis of vaccinia virus, the prototypical
poxvirus, including the abbreviated names of each stage. Virogenesis
begins with the formation (from crescent-shaped precursors) of a spherical
immature virion (the “IV”). The core of the IV then condenses and differen-
tiates to form a mature intracellular virion (IMV). The naked IMV is then
enveloped by a collapsed cisterna of intracellular membrane (of unknown
origin) to form an intracellular enveloped virion (the “IEV”). The IEV then
behaves like a recycling endosome, moving along microtubules to the cell
surface where it ultimately fuses with the plasma membrane to release an
IEV derivative that is still wrapped in one of the two layers of its original
envelope. Typically, this particle remains attached to the cell after dis-
charge, thus is called a cell-associated enveloped virion or “CEV.”
However, if and when it breaks free from the cell surface it is called an
extracellular enveloped virion or “EEV” (not depicted). Some CEV’s on the
cell surface provoke oriented actin polymerization inside the cell (“actin
tail formation”), thereby elevating themselves on the tip of a blunt microvillus.
This promotes their fusion with neighboring cells and the spread of infection.
Bar, 0.3 �m.
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successful at “cross cutting” IMVs than is the standard freeze-
fracture microtome. Nevertheless, this second layer is still
clearly visible in clean freeze fractures of IMVs in totally un-
fixed cells (Fig. 5, top). Thin sections of freeze-substituted
cells confirm that this inner lamina is the so-called “palisade”
layer of the IMV, generally considered to be the surface of the
virion “core” proper (Fig. 4; Easterbrook, 1966; Muller and
Williamson, 1987; Dubochet et al., 1994). Thin sections of
quick-frozen IMVs such as Fig. 4 also match closely all earlier
images of chemically fixed virions (Dales and Siminovitch,
1961; Dales, 1963; Morgan, 1976; Muller and Williamson,
1987), showing in suitable orientations two slightly denser
“lateral bodies” in the viral “periplasm,” in between the pali-
sade layer of the core and the outer envelope of the virion. Al-
though these lateral bodies are only barely discernible in the
freeze-fracture images, on the basis of a slight difference in
physical consistency (Fig. 5, top), still their existence can be
convincingly inferred from the overall shapes of unfixed
IMVs, which in suitable orientations appear embossed on their
surfaces by these lateral bodies (Fig. 6, bottom). Not depicted
are corroborative DEEM images we have obtained of purified
vaccinia virus cores generated by detergent extraction of iso-
lated IMVs, in which case the lateral bodies are retained on the
surface of the cores and thus are fully exposed and immedi-
ately apparent. They are clearly not an artifact, as one group
once claimed (Dubochet et al., 1994).

 

Surface views of intracellular viruses’ 
“honeycomb coats”

 

Unique to the deep-etch technique is its ability to display the
surface features of intracellular membranes and membrane
coatings. Such features are essentially invisible in traditional
thin sections and cannot even be retrieved EM tomography,
due to the chronic problem of the “missing wedge” in all tomo-
graphic datasets (Heuser, 2001). In the case of vaccinia virus,
this unique capability of DEEM displays to advantage the stan-
dard features seen on the surfaces of IMVs (Fig. 6, B and C).
These have been recognized for decades (Dales, 1962; Noyes,
1962a,b; Harris and Westwood, 1964; Nermut, 1972; Muller
and Williamson, 1987; Ikoma et al., 1992). However, DEEM
reveals in addition a wholly new and unexpected feature of the
surface of the IV. Namely, it is not covered by a discontinuous

 

Figure 2.

 

Survey views of viral factories in cells infected overnight and
then prepared by different protocols for DEEM.

 

 (A) QT6 quail cells infected
with the MVA strain of vaccinia virus and quick-frozen alive, without any
chemical fixation or other pretreatment. Only immature virions (IVs) are
present in this field, but they look different depending on the plane of
fracture. Cleanly cross fractured IVs, the large circles with granular interiors,
are seen at 1E, 3D, and 5C. Freeze-fractured IVs that have been
“scalped” are seen at 3F and 3H (and one with a small “scalping” at 5A).
Fractured IVs that have been largely avulsed, leaving only cup-shaped
membrane remnants, are seen at 1B, 3B, and 4G. The cross fractured IVs
at 1G and 5F show some compaction of their cores and hints of icosahedral
shape, indications of incipient maturation. Just peeking out from the
uniformly granular cytoplasm at 1C and 4G are two whole unfractured
IVs showing surface honeycombs. (B) BS-C-40 cells infected with the WR
strain of vaccinia virus and then strongly fixed with glutaraldehyde before
freezing. Such fixation coagulates the cytoplasm and causes it to with-

draw from all the IVs in the field, thereby providing more expansive views
of their honeycombed surfaces (at 3F, 2B, 4A, and 4H). Freeze-fracture
views look the same as in Fig. 2 A however, showing both convex
“scalped” IVs (at 5B) and concave avulsed IVs (at 3A, 4F). Also present in
this field (not depicted in Fig. 2 A) are two incomplete crescent-shaped IV
precursors partially filled with viroplasm (at 3B and 4D). (C) Tokuyasu-type
cryosection that was freeze dried and replicated rather than viewed in the
traditional manner. The preparation for cryosectioning causes even more
severe coagulation of the cytoplasm and more exposure of the IV surface
honeycomb (at 5B and 4F). Also present in this field are four cross cut
intracellular mature viruses (IMVs) at 1B, 2G, 4H, and 5A. The one at 2G
is optimally oriented for seeing its internal core. Note that in such cryo-
sections, “scalped” IVs like the one at 4F do not retain any fracture faces.
These must break down during cryosectioning and/or thawing. Instead,
scalped IVs in such cryosections show complete breaks into their interiors.
Bars, 0.3 

 

�

 

m.
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layer of spikes, as appeared in earlier thin sections (Stern et al.,
1977; Dales et al., 1978; Mohandas and Dales, 1995; Risco et
al., 2002), but is in fact covered by a confluent honeycomb lat-
tice. This lattice is visible even in the low magnification survey
views of Fig. 2 (A–C), but is seen to better advantage at higher
magnification as shown in Fig. 7.

No doubt, this lattice appeared spiky in earlier thin sec-
tions because it is so tightly applied to the exterior of the virus,
and because at certain viewing angles its facets align and rein-
force in an EM image. The only previous hints that this coating
could possibly be a honeycomb lattice came from a couple of
glancing thin section images of it published earlier (Mohandas
and Dales, 1995; Risco et al., 2002), plus an obscure freeze-
etching paper published by Hung et al. (1980), who caught a
glimpse of what they described in the legend to their Fig. 1 as
“some tiny crystalline structures.....with a hexamer-like subunit
arrangement.” We can now appreciate that these authors were

correct in interpreting these tiny hexamers as being glimpses of
something “on the presumptive surface of a virus particle”
(Hung et al., 1980). Current DEEM now shows clearly the full
expanse of this impressive honeycomb lattice, which is seen
equally well on unfixed IVs of MVA (Fig. 2 A and Fig. 7), as it
is on aldehyde-fixed freeze fractures of WR (Fig. 2 B) or Toku-
yasu-type cryosections of WR (Fig. 2 C). As usual, it is barely
visible in thin sections of freeze-substituted material because it
is only 10-nm thick, and thus is obscured by the 100–200-nm
total thickness of the plastic section (Fig. 4).

Close examination of the vaccinia viruses’ surface hon-
eycomb reveals that it is remarkably similar in construction to
the honeycomb lattice that surrounds clathrin-coated vesicles,
except that it is much more compact and multifaceted (Fig. 7).
The number of facets in the vaccinia virion lattice is at least an
order of magnitude greater than in clathrin-coated pits (the fac-
ets being just 40% the size of those in the clathrin lattice and

Figure 3. Higher magnifications of cross fractured vaccinia IVs from completely unfixed cells like that depicted in Fig. 2 A. Their surrounding envelopes
are invariably �2� thicker than the usual membrane bilayer and are punctuated on their convex surfaces with “pegs” or particles that are presumably
the deep-etch equivalent of the “spikes” seen in traditional thin-section views of IVs. A and B display incomplete IV-crescents at different stages of formation.
In contrast to their appearance in cells prepared by chemical fixation and dehydration, none of the crescents in quick-frozen cells show any attachments
to other cellular membranes, at all. Occasionally their free edges appear to contact nondescript 15–20-nm globules, but otherwise they appear to end
completely blindly, as shown here. C illustrates the completed IV sphere. D and E show that other organelles in infected cells that do possess double-thick-
ness envelopes. D shows a mitochondrion whereas E shows a developing vaccinia IEV, where a dark, empty-looking host cell organelle appears to be
extending a thin cisternae around the developing virion. In both cases, these organelles cross fracture in a way that clearly shows their construction:
two distinct membranes of normal thickness separated by a narrow gap, unlike the IV membrane which is thicker but does not look like two closely
opposed membranes. Bars, 0.1 �m.
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the virion being more than two times the diameter of a coated
vesicle or four times its surface area). Additionally, the vac-
cinia virion lattice is somewhat less regular than the clathrin
lattice and less obedient of classical geodesic construction prin-
ciples (e.g., the standard alteration of five- and six-sided facets,
etc.; Buckminster-Fuller and Applewhite, 1975). That is, many
more lattice-discontinuities are seen in the vaccinia virion hon-
eycomb than in the clathrin lattice. The bottom panels in Fig. 7
illustrate that its honeycomb displays many more pentagon/
hexagon dislocations that were ever discerned in growing
clathrin-coated pits (Heuser, 1980, 1989; Steer and Heuser,
1991). Because all such honeycombs are built out of trimeric
elements located at each vertex of the lattice, we can conclude
that there must be more variability in the lateral interactions of
the vaccinia virion trimers than in the interactions of clathrin
triskelia. This presumably reflects the simple fact that the vac-
cinia virion lattice is so compact compared with clathrin, so the
lateral interactions of the trimers in its lattice must be much
more limited in extent than the complicated interactions that
exist amongst the very extended 645-kD “triskelia” of the
clathrin lattice (Heuser and Kirchhausen, 1985; Kirchhausen et
al., 1986; Heuser et al., 1987; Heuser and Keen, 1988; Nathke
et al., 1992; Prasad et al., 1994).

Despite these dislocations, the nascent poxvirus honey-
comb coat must be sufficiently confluent and interlocked to be
relatively rigid, because even the smallest pieces of it (on the sur-
face of the shortest arcs of developing IVs; compare Fig. 3, top)
already display a remarkably fixed radius of curvature (R 

 

�

 

0.14 

 

�

 

 0.02 

 

�

 

m), which closely matches that of the complete IV
sphere. (IVs are remarkably uniform in diameter at D 

 

�

 

 0.3 

 

�

 

0.03 

 

�

 

m.) Apparently, this degree of curvature is built into the
honeycomb network as it associates with the virion membrane.
(In a subsequent report, we will show that overexpression of the
pure coat protein in cells, in the absence of membrane associa-
tion, forms instead totally flat honeycombs with no lattice dis-
continuities or pentagons.) Other indications of the relative rigid-
ity of the vaccinia virion lattice is that IVs do not swell when
infected cells are swollen (or even burst) by exposure to distilled
water (not depicted); nor do they collapse when cells are grossly
shrunken by the 2M sucrose used to prepare Tokuyasu-cryosec-
tions (Fig. 2 C). (This fixed-curvature aspect of the poxvirus lat-
tice again differs significantly from the honeycomb lattices of
clathrin seen in cells. Due to the relatively extended nature of
their component triskelia and the high degree of overlap of these
triskelia, clathrin lattices display a wide range of curvatures and
are capable of forming endocytic vesicles with a wide variety of
sizes and shapes (Heuser, 1980, 1989; Heuser et al., 1987; Steer
and Heuser, 1991; Nathke et al., 1992; Prasad et al., 1994).

 

Figure 4.

 

Semithin plastic sections of cells infected overnight with MVA,
then quick-frozen from life and freeze substituted.

 

 Top (3-D): Survey view
of a field of IVs with one selected and color coded with membrane in
yellow and core in blue. Second (3-D): Survey view of a field of IMVs with
one selected and color coded with membrane in yellow and core in two
shades of blue, separated by its palisade layer in red. (Top triptych, not 3-D)

Higher magnification of portions of IVs showing their single surrounding
membrane (yellow) with hints of spikes on their external surfaces. (Middle
triptych) Equally high magnifications of portions of IMVs showing the char-
acteristic separation between their outer limiting membrane (yellow) and
their palisade layer (red). (Bottom triptych) Portions of three freeze-substituted
mitochondria at the same high magnification showing the characteristic
thickness of their two membranes and the characteristic separation between
them. Bar: (top 3-D views) 0.3 

 

�

 

m; (tryptics) 0.1 

 

�

 

m.
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Surface views of the IMV

 

The honeycomb surface of IVs apparently completely disap-
pears by the time the poxvirus matures into an IMV. Instead,
intracellular IMVs appear more roughly textured or corru-
gated on their surfaces (Fig. 6 A). However, IMVs are ex-
tremely difficult to image in situ by DEEM, simply because
the surrounding cytoplasm of the cell clings tenaciously to
them and thus obscures their surfaces. This makes it all the
more remarkable that the surfaces of IVs inside the cell are so
easy to see, and their honeycombs appear so clean. Appar-
ently, this is because the honeycomb repels cytoplasm from its
surface. Fig. 6 B illustrates that comparably clean images of
IMV surfaces can only be obtained by freeze-drying IMVs
that have been released from CEVs during a natural cycle of

infection. These latter virions display a characteristic corru-
gated appearance, due to a close-packing on their surfaces of
short “railroad tracks” composed of parallel rows of particles.
On the vaccinia virions studied here, these railroad tracks run
only short distances and intersect with each other in a haphaz-
ard pattern. They have only occasionally been glimpsed be-
fore (Medzon and Bauer, 1970; Nermut, 1972, Muller and
Williamson, 1987). However, on certain other poxviruses such
railroad tracks form beautiful helical arrays, as on Orf and
Pseudocowpox viruses (Nagington and Horne, 1962; Horne
and Wildy, 1963; Nagington et al., 1964, 1967; Mitchiner,
1969; Spehner et al., 2004).) Fig. 6 C illustrates for compari-
son an IMV released from a vaccinia-infected cell by the stan-
dard protocol of cell-rupture and trypsinization, after which

Figure 5. Direct comparison of the architecture and fracturing properties of the internal “palisade layer” around the cores of intact versus fused virions.
(Top) Cross fractures through totally unfixed IMVs from cell like that in Fig. 2 A, showing a clear view of the internal “palisade layers” around their biconcave
cores, and showing that these layers do not fracture like a biological lipid membrane. (Bottom) Crossfractures through viral cores recently released into the
cytoplasm of a cell exposed to a whopping dose of vaccinia virions by “spinoculation” and quick frozen after only 5 min. The palisade layers surrounding
these cores are still clearly discernible and look more or less intact. Nevertheless, even in this naked “exposed' condition in the cytoplasm, they do not
freeze fracture like any membrane-containing structure. Instead, they invariably crossfracture like the palisade layers in the intact IMVs above, indicating
that they are composed of nothing but protein (and polynucleotides). Bar, 0.1 �m.
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the organization of these railroad tracks becomes so haphazard
and disorganized that they are barely recognizable. In this
condition, the IMV has traditionally been described as having
“mulberries” on its surface, not railroad tracks (Dales, 1962;
Harris and Westwood, 1964; Muller and Williamson, 1987;
Ikoma et al., 1992).

 

Freeze fracture of the envelopes of 
intracellular virions

 

The opportunity to image poxvirus surfaces greatly facilitates
the interpretation of the underlying membrane “fracture faces”
they yield. Such faces result from splitting the lipid bilayer
roughly through its center during the freeze-fracturing proce-
dure. With immature poxviruses, this invariably yields two
roughly complementary sets of faces, convex and concave
(Fig. 8 A). Convex faces are invariably found in regions that
are obviously carved out of the surface-honeycomb of IVs (Fig.
8 B). In three-dimensional (3-D) views, it is clear that they rep-
resent 10–15-nm downward steps (presumably through the full
thickness of the honeycomb and half of the lipid bilayer, as dia-
grammed in Fig. 8 A). In contrast, concave fracture faces look
like isolated fragments of split membrane that are raised
slightly above the surrounding cytoplasm (Fig. 8 C). Presum-
ably, they sit upon the remaining segments of their external
honeycomb (not visible because this honeycomb is now di-
rectly underneath the concave fracture face, again as dia-
grammed in Fig. 8 A).

Both IVs and IMVs fracture in the aforementioned man-
ner, with only minor differences in the texture of the membrane
faces thus exposed, as can be seen by comparing Fig. 8 (B and C)
with the freeze fractures of IMVs shown in Fig. 9. It is worth
pointing out here that the convex and concave fracture faces of
vaccinia virions never look truly complementary, as they ought
to if they are indeed the opposite halves of a single membra-
nous structure. However, this disparity has always been seen in
freeze fractures of biological membranes, and has long been
interpreted as representing some degree of “plastic deforma-
tion” of internal membrane components during fracturing (de-
spite the fact that fracturing is typically done at 

 

��

 

100

 

�

 

C;
Steere, 1957; Zingsheim, 1972; Fisher and Branton, 1974). In-
deed, it has even been seen in the small handful of previous
freeze-fracture studies of vaccinia virions that have been pub-
lished (Medzon and Bauer, 1970; Easterbrook and Rozee,
1971; Hung et al., 1980; Risco et al., 2002). In the case of vac-
cinia virions, this incongruity is typically manifest as long

 

to expose a clean IMV inside; and (C) after douncing of infected cells and
isolation of IMVs as is typically done to harvest virus for subsequent exper-
imentation. Inside of the cell, cytoplasm clings tenaciously to the surface of
IMVs, obscuring their surface. (This is apparent also in the survey of Fig. 2 C.)
When harvested from cells, most of this obscuring material is removed (C),
but the finer features of the IMV surface are degraded into what tradition-
ally have been called “mulberries” (possibly due to the trypsinization and
sonication typically used in such purification). When released in the
course of a natural infection, and when the outer membranous envelope of
the CEV ruptures to expose the IMV to neighboring cells, the IMV surface
displays a clear-cut paracrystalline topology defined by parallel double
rows of particles (B). Bar, 0.1 

 

�

 

m.

Figure 6.

 

Three different sorts of views of the true surfaces of IMVs.

 

(A) As seen inside whole cells during virogenesis; (B) after natural release
as a CEV from an infected cell, followed by rupture of the CEV membrane
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threads that stretch out in random orientations on the concave
fracture faces (Fig. 8 C), and dense granularity over the entire
expanse of the convex faces (Fig. 8 B), neither of which is
properly represented by complementary features on the oppo-
site fracture face.

Not seen in any single instance, however, are any addi-
tional planes of fracture through the outer envelopes of either
IVs or IMVs. In fact, no additional planes of fracture were ever
described in any earlier freeze-fracture study of poxviruses
(Medzon and Bauer, 1970; Easterbrook and Rozee, 1971; Ha-

segawa et al., 1974; Hung et al., 1980), although one study
claimed to glimpse them but without adequate documentation
(Risco et al., 2002). Such additional planes of fracture or
“steppes” would definitely be expected if either IVs or IMVs
contained of more than one membrane. Also not seen in any
single instance were any direct physical connections between
developing IV crescents and any adjacent host-cell membranes
(Figs. 2–4). Indeed, DEEM confirms that poxvirus factories are
remarkably devoid of other cellular membranes, as has long
been appreciated from all earlier EM studies (Dales and Simi-

Figure 7. Direct comparison of clathrin lattices and the honeycomb latices on IVs, shown at exactly the same magnification. The clathrin lattices (top) have
lattice parameters �2� greater than the honeycombs on IVs (center). Expansive surface views of IVs are readily obtainable because surrounding
cytoplasm appears to be repelled from them, in contradistinction to IMVs (Fig. 6 A). The protein lattice observed on the IV surface is clearly a geodetic
honeycomb, and sometimes shows hints of overall icosahedral symmetry. However, its lattice dimensions are much smaller. Its vertex to vertex spacing is
7 � 1 nm versus clathrin’s 15 � 1 nm. Moreover, the vaccinia lattice typically displays many more lattice-defects and irregularities. These irregularities
invariably take the form of “pentamer/heptamer” dislocations, typical for all natural honeycomb lattices. Insets at the bottom illustrate this. Proceeding
from the left, green dots indicate proper hexagonal facets and yellow dots indicate inserted pentagons. Only 12 of these pentagonal insertions would be
needed in the whole lattice to make it a sphere, according to Crick and Watson’s postulate (Crick and Watson, 1956; Caspar and Klug, 1962); but many
more pentagons are visible in this relatively small portion of the IV surface. Finally, red dots indicate inserted heptagons and white arrows indicate how
each of these heptagons can be matched with a pentagon immediately adjacent to it. Bar, 0.1 �m.



 

DEEP-ETCH EM OF POXVIRUS MORPHOGENESIS • HEUSER

 

277

 

novitch, 1961; Dales, 1963; Dales and Mosbach, 1968; Mor-
gan, 1976).

 

Deeper cross fractures into IMVs

 

Bearing importantly on the one membrane/two membrane co-
nundrum being addressed here are the profound structural
changes occur in the interior of the IV as it matures. These in-
clude a condensation of its core into a dense, relatively “brick”-
shaped structure that is surrounded by a 

 

�

 

10-nm-thick “clear
zone”. In traditional thin sections, this clear zone is discernable
because it is bordered by narrow bands of electron-density
(Fig. 4, red highlighting). This has led some investigators to
conclude that, in fact, this is the virion’s second “unit mem-
brane”, appearing in a new guise in the IMV (Risco et al.,
2002; Sodeik and Krijnse-Locker, 2002). Even the most recent
EM tomographic study of vaccinia virions reached this conclu-
sion (Cyrklaff et al., 2005). To explain the mysterious appear-
ing act of this membrane inside the already closed IV envelope,
its proponents have had to argue that it was there all the time:
namely, as the second membrane of the collapsed cisternae, but
that it was so closely opposed to the membrane with the exter-
nal spikes on IVs that it couldn’t be properly discerned until
condensation of viral core drew it inward (Sodeik et al., 1993;
Krijnse-Locker et al., 1996; Pedersen et al., 2000; Griffiths,
Wepf et al., 2001; Sodeik and Krijnse-Locker, 2002).

If this were so, then we should certainly have been able to
demonstrate here a second fracture plane within the IMV (Fig.
9), even though we failed to find any second fracture plane in
the IV (Fig. 8). Being now physically separate from the outer
envelope of the virus, this putative inner membrane should
have been easier to fracture and easier to see. Moreover, we
should have expected to see some sort of pattern of intramem-
brane particles on its fracture faces, if it had existed. This is be-
cause several earlier EM studies have shown that the clear zone
around the core of IMVs is punctuated by a very distinctive ar-
ray of “spicules”, which has lead to its having been named the
palisade layer (Easterbrook, 1966; Muller and Williamson,
1987; Dubochet et al., 1994). Such a palisade would surely be
expected to yield some sort of regular pattern of intramem-
brane particles on the fracture face of the membrane to which it
attached (again, if such a membrane existed).

However, in no case did we obtain any fracture face of
this palisade layer; all it ever yielded were cross fractures of the
sort shown in Fig. 5 (top). This was true regardless of whether
we fractured complete IMVs in situ or in vitro. Thus, we have
no reason to believe that the palisade layer or clear zone of the
IMV contains any lipid membrane at all. This fits with the fact

 

Figure 8.

 

Freeze fracturing of immature vaccinia virions demonstrates
that they are composed of only a single lipid membrane.

 

 Panel A diagrams
how biological membranes split along the center of the bilayer during
freeze fracture, yielding two roughly complementary fracture faces. In the
case of vaccinia IVs and IMVs, these fracture faces are of course distinctly
convex or concave. Deep etching removes a superficial layer of ice
(shaded light in the diagram), thereby exposing the immediately adjacent
true surfaces of convexly fractured virions. (B) Gallery of IV convex frac-
tures. Regardless of whether they are chemically fixed before freezing or
not, IVs display a single fracture face covered with small protuberances

called “intramembrane particles” (which presumably represent transmem-
brane proteins). Clearly visible on each convex fracture is a step up that
marks the transition between the fracture face and the true surface of the
IV, where its honeycomb lattice is apparent. (C) Gallery of IV concave
fractures. As with the convex fractures above, we have never seen any
hint of any jump into what might be a second, closely opposed membrane
in the IV envelope. Unlike the convex views, concave fracture faces dis-
play only a few intramembrane particles, but mostly randomly oriented
fibrils or “stubs” of fibrils, typical of the “plastic distortion” that accompanies
freeze fracture even at temperatures below 

 

�

 

100

 

�

 

C. Bars, 0.1 

 

�

 

m.
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that the appearance of the “membrane” under the palisade layer
is unaltered by detergent extraction (Dubochet et al., 1994).
Moreover, it fits with our finding that free viral cores delivered
into newly infected cells during viral fusion retain their pali-
sade layer and still look like they possess a bilayer when
viewed in thin sections, even in freeze-substituted cells; but
they still do not freeze fracture as they would if they contained
any membrane. Even when thus free in the cytoplasm and no
longer surrounded by the IMV envelope, vaccinia cores still in-
variably cross fracture, and never display any fracture faces
(Fig. 5, bottom).

 

Discussion

 

The most salient conclusion of this new approach for imaging
poxvirus morphogenesis is that at all stages of development,
its envelope appears to consist of a single lipid bilayer rein-
forced on its convex surface by a thick, confluent protein coat.
Initially, this coat takes the form of a continuous honeycomb-
lattice tightly applied to the convex surface of the virus. Dur-
ing maturation from the IV to the IMV form, this honeycomb
coat disappears and is replaced by an even thicker but less ob-
viously regular protein coat. At no time during development
does the envelope of the virus appear, or behave during freeze

fracture, as if it possesses a second membrane. Other exam-
ples of biological structures that are known to possess double
membranes, like mitochondria, plant thalakoids, rod outer
segment disks, and even Gram-negative bacteria, invariably
display both of their membranes during freeze fracture, be-
cause the fracture-plane steps occasionally and randomly be-
tween one and the other membrane (Bullivant and Ames,
1966; Clark and Branton, 1968; Fisher and Branton, 1974;
Roof and Heuser, 1982; Roof et al., 1982). Likewise, in the
most intimately opposed of all membrane arrays, those found
in the myelin sheaths of nerves, oblique freeze fractures in-
variably step through each layer without skipping any, or if
they do skip they leave behind double-thick steps (Black et
al., 1988; Cullen, 1988; Hasegawa et al., 1988; Rosenbluth,
1988, 1990; Meller, 1990, 1998; Shirasaki and Rosenbluth,
1991; Fujimoto et al., 1996; Maxwell et al., 1999). Not so
with vaccinia virus!

Proponents of the two-membrane collapsed-cisternae
model of poxvirus formation would thus have to argue that one
of the two membranes, and always the same one, refuses to
fracture. This would not only be unprecedented for a biological
membrane, but would defy two additional observations pre-
sented here: namely, (1) that in freeze-substituted material, still
only one membrane is visible (Fig. 4); and (2) in none of the

Figure 9. Freeze-fractured IMVs inside infected cells, illustrating that the fracturing properties of IMVs are basically the same as those of IVs in Fig. 8.
Convex fractures are above and concave fractures below. Deep etching is to the left and minimal etching is to the right. (Reduced etching has no effect on
the appearance of the fracture faces, but obviously eliminates the glimpses of true surface normally seen around the circumferences of convex fractures.
Still, these glimpses look just like the surfaces of the whole IMV seen in Fig. 6 A.) Again, IMVs present only one fracture plane in every instance; hence,
they too must be surrounded by only one membrane. Bar, 0.1 �m.
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technical approaches used here were any connections of the
developing crescents to membrane “loops” or to other closed
cellular compartments ever observed (Fig. 3, top left). Instead,
developing crescents invariably end abruptly, like old railroad
spurs that run off into the grass and stop (Ferlinghetti, 1955).

The only way to explain how such a single railroad track
unit membrane could exist free in the cytoplasm is to imagine
that it is stabilized by a confluent protein coat, and that is ex-
actly what has been found here. The external spikes long seen
on the developing viral crescents and the completed spherical
IVs, and long thought to be composed primarily of the protein
p65 (D13L; Baldick and Moss, 1987; Miner and Hruby, 1989;
Zhang and Moss, 1992; Sodeik et al., 1994; Vanslyke and
Hruby, 1994), turn out to be the thin-section representation of a
continuous honeycomb lattice, only seeming to be discontinu-
ous and spike-like due to vagaries in the superimposition of its
lattice lines in different planes of sectioning and viewing in the
EM. Thus, the prescient conclusion of Dales et al. (1978), the
first investigators to observe the external spikes on IVs (Stern
et al., 1977; Mohandas and Dales, 1995) are entirely justified
and explained by the present observations. They concluded that
the spike layer stabilized the crescent membrane and imposed a
curvature upon it, and they stressed that when the spikes were
prevented from associating with the developing IVs by the
drug Rifampicin, the IV membrane became floppy and tended
to close up upon itself. This latter observation has been con-
firmed many times, and has been highlighted by many demon-
strations of just how promptly crescent formation resumes
upon washout of Rifampicin—again, with the crescents invari-
ably displaying the spike layer as soon as they begin to reform
(Moss et al., 1969; Grimley et al., 1970; Nagayama et al., 1970;
Pennington et al., 1970; Follett and Pennington, 1971; Grimley
and Moss, 1971; Moss et al., 1971; Pennington and Follett,
1971). In a subsequent report, we will use the imaging tech-
niques introduced here to confirm that the external lattice is in-
deed D13L, that D13L is indeed a trimer, and that D13L is
indeed capable of polymerizing into a continuous, self-support-
ing honeycomb (unpublished data).

The observations reported here recapitulate in many ways
the history of the discovery of the clathrin lattice around en-
docytic vesicles (Pearse, 1975; Heuser, 1980). The clathrin
coat was first perceived by thin section EM, where transverse
cross sections made it look like a set of “peg-like projections”
(Roth and Porter, 1964). The occasional glancing section of a
coated pit suggested that these projections might be cross-sec-
tional views of a honeycomb lattice (Bowers, 1964). Then
DEEM finally provided clear en face views that confirmed it
was a honeycomb lattice and confirmed that it curved via the
insertion of pentagons (Crick and Watson, 1956; Caspar and
Klug, 1962), and that it displayed pentagon/heptagon lattice
defects in regions of irregularity (Heuser, 1980). Likewise with
the coat on poxviruses, it was first perceived in thin section EM
as a set of spike-like projections (Dales, 1963), gave hints in
glancing thin sections that it could be a honeycomb (Mohandas
and Dales, 1995) and finally has been shown by DEEM to in-
deed be a complete honeycomb lattice that closely coats the
primary envelope of the poxvirus throughout its period of gen-

eration. Moreover, the IV coat displays pentagons in regions of
maximal curvature and an abundance of pentagon/heptagon
lattice defects in other regions. Fundamental differences be-
tween these two lattices include the fact that the clathrin lattice
is built of highly extended molecules that contact each other
over relatively large distances, thus making a very flexible and
open meshwork capable of assuming a wide range of curvature,
and of even capable of changing curvature after assembly
(Heuser, 1989), whereas the poxvirus coat is presumably built
of small globular units (trimers of the 65-kD D13L protein)
that form a compact lattice that appears rigid and of fixed cur-
vature, thereby “templating” the constant size of the virion.

Finally, the major conclusion reached in this study, namely
that that the developing IV envelope is a ragged-edged unitary
bilayer membrane, raises the challenge for future research to de-
termine how the building blocks of the IV envelope, many of
which are apparently manufactured in the ER, can manage to get
transferred to such a freestanding membrane. Among the many
different mechanisms that might be envisioned, the following
possibilities are worth consideration: (a) piecemeal assembly
from side-to-side association of individual proteolipid com-
plexes, which might float around free in the cytoplasm and bind
to the inner surface the D13L lattice as it grows; (b) growth from
“T”-shaped membrane junctions that viral crescents might form
at their free edges with closed cellular compartments like the ER
(Fig. 10); or (c) sequestration of viral lipids and coat components
in one particular domain of host cell ER, which at some point
converts from a closed compartment to an open crescent by the
rupture of some opposite, noncoated portion of its surface.

We favor the second possibility because there seems to be
an interesting precedent for such a mechanism in the biogenesis
of lipid droplets. Lipid droplets are currently thought to be sur-
rounded by monolayers of phospholipids whose hydrophobic
acyl chains face inward toward the cores of triglyceride. If so,
they are topologically equivalent to single-membrane bilayers
lying free in the cytoplasm, but with a lot of extraneous fat
trapped between the leaflets of the bilayer (and with no free
edges). Current thinking is that lipid droplets form and grow by
generating T-junctions with the ER (Fujimoto et al., 1996;

Figure 10. Diagram comparing how lipid droplets are currently thought
to form, versus our hypothesis for poxvirus membrane growth. Lipid drop-
lets are thought to form within the membrane of the ER and then bud from
it (top). Here, we propose that the crescent-shaped precursors of vaccinia
IVs might acquire phospholipids from the ER membrane in a similar man-
ner (bottom). In both cases, an unstable intermediate in the form of a
“T-junction” might form transiently, as is thought to occur during all mem-
brane fusion and budding events.
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Prattes et al., 2000; Brown, 2001; Murphy, 2001; Ostermeyer et
al., 2001; Pol et al., 2001; Fukumoto and Fujimoto, 2002; Hope
et al., 2002; Caldas and Herman, 2003; Didonato and Bra-
saemle, 2003; Ostermeyer et al., 2004). Fig. 10 demonstrates
how this is topologically equivalent to mechanism (2) proposed
above for vaccinia virus crescent growth. If this equivalency
turns out to have any truth to it, then we could further theorize
that vaccinia viruses might have coopted or pirated the cellular
machinery that normally mediates the transfer of phospholipids
and proteins from ER to lipid droplets. Hopefully, future im-
aging studies using the deep-etch technique (both of poxvirus
development and of lipid droplet development) will help to
determine whether this idea has any basis in reality.

 

Materials and methods

 

Cells and viruses

 

BS-C-1 or BS-C-40 cells (immortalized African green monkey kidney cells)
were grown on small 3 

 

�

 

 3 mm glass coverslips in DME with Earle’s BSS
and 10% FCS (HyClone Inc.) and infected with the WR strain of vaccinia
virus at a dose of 1–10 pfu/cell for 1 h at 37

 

�

 

C, then maintained in cul-
ture overnight in fresh medium. Alternatively, QT6 cells (immortalized Jap-
anese quail fibrosarcoma cells) were grown in Ham’s F10 medium plus
10% FCS (HyClone) and infected with the MVA strain of vaccinia virus,
then recultured overnight. Thanks to W. Resch and T. Koonina (National
Institute of Allergy and Infectious Diseases, Bethesda, MD) for providing
some of the vaccinia virus strains used in this study.

 

Cryopreservation of infected cells

 

At appropriate times, the MVA-infected QT6 cells on coverslips were
briefly rinsed in serum-free, Hepes-buffered Ringer solution (1–5 min) and
promptly quick frozen by abrupt application (slamming) of the coverslip
onto a liquid helium-cooled copper block with our standard Cryopress
(Heuser et al., 1979; Heuser, 1989). This could only be done with MVA,
because quick-freezing is likely to preserve virus infectivity, and deep etch-
ing can only be done in an open P1 facility. For comparison, WR-infected
BSC40 cells on coverslips initially maintained in a P3 facility were chemi-
cally fixed with 3% glutaraldehyde in an isotonic Hepes-buffered Ringer
solution for 2 h, after which they could be safely transferred to our P1
quick-freeze facility and frozen as above.

 

Replicating and imaging deep-etched or freeze-dried samples

 

Coverslips were stored in liquid nitrogen (LN

 

2

 

) until mounting in a Balzers
freeze-etch device (Moor et al., 1961; Moor and Muhlethaler, 1963),
where they were warmed to 

 

�

 

105

 

�

 

C and immediately freeze fractured
(Steere, 1957), then deep etched by letting them sit for 2 min in vacuo
(Heuser and Salpeter, 1979), and finally replicated with 2 nm of platinum
(Bradley, 1959), which was vacuum evaporated onto them (Zingsheim et
al., 1970; Zingsheim, 1972) from 24

 

�

 

 above horizontal while they ro-
tated at 20 rpm: standardly termed rotary replication (Fisher and Branton,
1974; Margaritis et al., 1977).

Besides freeze fracture and deep etching, other sampled of infected
cells or purified virions were glutaraldehyde fixed as above, and then
washed scrupulously with many changes of distilled water before quick
freezing. This permitted these samples to be totally freeze dried in the
Balzers apparatus (by exposure to the vacuum for 15 min at 

 

�

 

80

 

�

 

C) be-
fore rotary replication as above. This yielded unfractured, undisturbed sur-
face views of cells and virions.

In all cases, replicas were separated from the coverslips by flotation
on concentrated hydrofluoric acid, and then washed briefly with 4% so-
dium hypochlorite (bleach) and several rinses of water, before being re-
trieved on 400-mesh Formvar-coated grids. These were then viewed with
a standard TEM operating at 100 kV and imaged at two different degrees
of tilt (

 

�

 

10

 

�

 

) with standard EM film. Thereafter, the stereo pairs of film
were aligned by superimposition on a copy stand and rerecorded as
4492 

 

�

 

 3328 pixel (17 Mp) digital images with a digital single-lens re-
flex camera (Canon EOS-1Ds Mark II). Finally, the digital image pairs
were converted, one to red and the other to green, and layered on top of
each other with the Screen blending mode in Adobe Photoshop, to create
the final 3-D anaglyphs shown here (Heuser, 2000).

 

Comparison with thin sections of freeze-substituted or cryosectioned 
material

 

To obtain images more immediately comparable to earlier electron micro-
graphs of vaccinia viruses, certain quick-frozen cell cultures were worked
up for traditional thin sectioning rather than platinum replication. This in-
volved standard freeze substitution at 

 

�

 

85

 

�

 

C in dry acetone containing
5% OsO

 

4

 

 (Feder and Sidman, 1958), followed by embedding in Araldite
epoxy resin, which after 

 

�

 

60

 

�

 

C polymerization was thin sectioned at
0.1–0.2-

 

�

 

m thick (to provide added depth), then imaged in 3-D as de-
scribed above for replicas.

Finally, an additional cross-correlation was provided by generating
Tokuyasu-type cryosections of vaccinia virus-infected cells, and then imag-
ing these by DEEM rather than the usual way. This involved first generat-
ing standard cryosections of infected cells; e.g., the cells were aldehyde
fixed as above, then impregnated with 2M sucrose and frozen slowly by
immersion in LN

 

2

 

, then cut with a diamond knife at 

 

�

 

130

 

�

 

C into 0.1–0.2-

 

�

 

m thick cryosections (Tokuyasu, 1973, 1980, 1984, 1986). To image
these slices in replicas rather than as the usual translucent whole mounts,
they were picked up on tiny cover glasses rather than on EM grids, then
thawed, washed free of sucrose with several changes of water, and finally
quick-frozen, freeze dried, and platinum replicated exactly as described
for cells and virions above. This yielded remarkably clean cuts through in-
fected cells which looked roughly equivalent to freeze-fractured cells, but
which lacked any confusing fracture faces (either because they do not
form during sectioning with a diamond knife, or because they do not sur-
vive the freeze thawing.)

 

Abrupt application of viruses to cells by spinoculation

 

To image viral core structure outside of whole virions, cells were abruptly
inoculated with massive amounts of virus (100–500 pfu/cell) by centrifu-
gal inoculation or “spinoculation” (Gordon et al., 1960; Weiss and
Dressler, 1960; Osborn and Walker, 1968; Hudson et al., 1976; Tenser,
1978; Smith, 1981; Thiele et al., 1987). This involves centrifuging a sus-
pension of viruses down onto already plated cells, then warming them up
to allow viral fusion. To accomplish this, we prepared flat “fillers” for 1.5-
ml Eppendorf tubes by filling them halfway with Epoxy resin and polymer-
izing it at 60

 

�

 

C. Two or three of the tiny 3 

 

�

 

 3 mm coverslips we use for
quick freezing were then arranged on the bottom of the tube, overlaid
with a suspension of virions in normal mammalian Ringer’s solution, and
centrifuged at 3,000 RPM for 4 min in a standard clinical centrifuge
equipped with swinging buckets containing special inserts to hold the Ep-
pendorf tubes. The centrifugation was done at room temperature, after
which the coverslips were transferred into a warm Ringer’s solution at
37

 

�

 

C for 5 min before quick-freezing. This Ringer’s solution was mildly
acidified because this dramatically enhances poxvirus fusion.
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