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HIV reservoirs persist in infected individuals despite combination antiretroviral therapy
and can be identified in secondary lymphoid tissues, in intestinal tissues, in the central
nervous system as well as in blood. Clinical trials have begun to explore effects of small
molecule interventions to perturb the latent viral infection, but only limited information
is available regarding the impacts of HIV cure-related clinical interventions on viral
reservoirs found in tissues. Of the 14 HIV cure-related clinical trials since 2012 that have
evaluated the effects of small molecule interventions in vivo, four trials have examined
the impacts of the interventions in peripheral blood as well as other tissues that harbor
persistent HIV. The additional tissues examined include cerebral spinal fluid, intestines
and lymph nodes. We provide a comparison contrast analyses of the data across
anatomical compartments tested in these studies to reveal where peripheral blood
analyses reflect outcomes in other tissues as well as where the data reveal differences
between tissue outcomes. We also summarize the current knowledge on these topics
and highlight key open questions that need to be addressed experimentally to move the
HIV cure research field closer to the development of an intervention strategy capable of
eliciting long-term antiretroviral free remission of HIV disease.
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INTRODUCTION

Despite years of successful combination antiretroviral therapy (cART), viral replication rebounds
almost inevitably in all HIV infected individuals upon cART cessation (Deeks et al., 2016; Margolis
et al., 2016; Wong and Yukl, 2016). This is due to the presence of persistent viral reservoirs which
are the greatest barrier to an HIV cure. Because of the relative ease with which peripheral blood can
be collected, this is the most common anatomical compartment analyzed in clinical HIV studies
(Archin et al., 2012, 2014, 2017; Elliott et al., 2014, 2015; Rasmussen et al., 2014; Spivak et al., 2014;
Mothe et al., 2015; Søgaard et al., 2015; Gutierrez et al., 2016; Leth et al., 2016; Vibholm et al.,
2017, 2019a; Saxena et al., 2019; Table 1). However, it is known that HIV (and SIV in non-human
primates) persists in multiple organ systems throughout the body during cART and that peripheral
blood reservoir findings may not accurately reflect reservoirs in tissue (Costiniuk and Jenabian,
2014; Lamers et al., 2016; Rose et al., 2016, 2018; Estes et al., 2017; Nolan et al., 2018). Thus, it is
essential that the impacts of curative strategies in all relevant organ systems be defined.
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There are many unanswered questions regarding the
impacts of HIV cure-related interventions on systemic HIV
persistence. Among these are: Do findings in peripheral
blood reflect outcomes in other tissues like the intestines
and lymph nodes? and Do persistent viruses move freely
between anatomical compartments? Studies have indicated
that compartmentalization of HIV-infected cells into
specific anatomical compartment and/or immunological
sanctuaries occurs in untreated infections and that this
compartmentalization persists during suppressive cART
(Blackard, 2012). In addition, some of the drugs that have been
tested in HIV cure trials may have reduced penetration into
these compartments which may impede HIV cure efforts (Berg
et al., 2004; Rasmussen et al., 2015). Therefore, we have focused
this review on the impacts of HIV cure-related strategies onto
clinical studies dosing small molecule interventions [e.g., histone
deacetylase inhibitors, PKC agonist, disulfiram and toll-like
receptor (TLR) agonists] and examining HIV persistence in
tissues. Specifically, we review the impacts of such interventions
on mechanisms that regulate HIV persistence in vivo as well as
the immunological and virological impacts of these interventions
in tissues other than peripheral blood. Other HIV cure related
interventions including gene therapy approaches, stem cell
transplants, antiretroviral intensification, therapeutic vaccines
and broadly neutralizing antibody infusions have recently been
reviewed elsewhere (Rasmussen and Sogaard, 2018; Caskey et al.,
2019). Similarly, we callout several key animal model findings but
do not elaborate upon animal model studies of HIV cure-related
interventions as these data have also recently been reviewed
elsewhere (Micci et al., 2015; Denton et al., 2016; Policicchio
et al., 2016; Nixon et al., 2017; Honeycutt and Garcia, 2018;
Whitney and Brad Jones, 2018).

EFFECTS OF HIV CURE INTERVENTIONS
IN THE CENTRAL NERVOUS SYSTEM,
INTESTINES, AND LYMPH NODES

We and others have made efforts to complement peripheral
blood analyses by defining the effects of various HIV cure-related
interventions on HIV persistence within key tissues. In these
trials, the intervention were either suberoylanilide hydroxamic
acid (SAHA), panobinostat or the TLR9 agonist MGN1703
(Elliott et al., 2014; Rasmussen et al., 2014; Vibholm et al.,
2017, 2019a). In the trial exploring SAHA as a latency reversing
agent (LRA), the Lewin group examined rectal tissue biopsies
(Elliott et al., 2014). In our panobinostat trial, we examined
cerebral spinal fluid and sigmoid biopsies (Christensen et al.,
2015; Rasmussen et al., 2015). And in our MGN1703 trials, we
examined sigmoid biopsies and lymph nodes (Krarup et al., 2017;
Schleimann et al., 2019). All these anatomical reservoir studies
were longitudinal in design as they included analyses of samples
at baseline as well as near the end of the dosing period for the
interventional drug in the respective study.

Human and animal study data highlight the potential for
the central nervous system to function as an HIV reservoir
or sanctuary site for the virus during treatment (Clements

et al., 2005; Barber et al., 2006; Churchill et al., 2009; Zink
et al., 2010; Queen et al., 2011; Gray et al., 2014; Honeycutt
et al., 2017, 2018). Investigators have examined the toxicity and
latency reversal effects of multiple agents including panobinostat
and romidepsin on primary astrocytes ex vivo (Gray et al.,
2016). These agents were found to be non-toxic and capable
of inducing viral transcription at therapeutic concentrations.
Our study provides the only published in vivo human data
on central nervous system effects of a latency reversal agent
to date (Rasmussen et al., 2015). We found that repeated,
cyclic treatment with panobinostat did not lead to central
nervous system adverse effects according to cerebral spinal
fluid biomarkers of inflammation and neurodegeneration. We
also found that panobinostat did not sufficiently penetrate the
central nervous system to detectable levels and that there were
no treatment-associated changes in HIV reservoir detection in
the cerebral spinal fluid (Rasmussen et al., 2015). This study
represents a single foray into determining the in vivo effects
of HIV cure interventions in the cerebral spinal fluid for
one intervention. However, this finding may not be specific
for panobinostat since it has been shown in non-human
primates that the concentration of another latency reversal agent
romidepsin in cerebral spinal fluid is only approximately 2% of
the level found in plasma (Berg et al., 2004). Given the scarcity
of data, drawing conclusions about distinct HIV cure-related
intervention impacts in the central nervous system is premature.

The role of intestines in HIV persistence has been researched
extensively in humans as well as non-human primates (Anton
et al., 2003; Guadalupe et al., 2003; Brenchley et al., 2004;
Mehandru et al., 2004; Li et al., 2005; Mattapallil et al., 2005;
van Marle et al., 2007; Chun et al., 2008; Ciccone et al., 2010;
North et al., 2010; Yukl et al., 2010a,b; Chege et al., 2011;
Lerner et al., 2011; Evering et al., 2012; Horiike et al., 2012;
Kline et al., 2013; Deere et al., 2014; Estes et al., 2017). In
a clinical study of 14 days of repeated administration of the
histone deacetylase inhibitor SAHA, HIV RNA levels in rectal
CD4 + T cells were modestly increased and HIV DNA levels
were unchanged (Elliott et al., 2014). This outcome was also
realized in our studies of the sigmoid colon during panobinostat
as well as MGN1703 dosing given that we did not observe
cohort wide changes in the size of the HIV reservoir in either
study (Christensen et al., 2015; Krarup et al., 2017). While
SAHA had no impact on T cell activation in rectal tissue,
panobinostat dosing was associated with a decreased frequency
of CD69+ intestinal T cells (Elliott et al., 2014; Christensen
et al., 2015). This was in contrast to findings in peripheral blood
where T cell activation (CD69+) was found to be increased
following the first doses of panobinostat (Brinkmann et al.,
2018). Additionally, we observed that panobinostat increased
IL-17A expression in the intestinal epithelium and IL-17a is
known to induce the production of antimicrobial peptides that
may help to maintain the intestinal epithelial barrier which is
damaged during HIV infection (Brenchley et al., 2006; Liang
et al., 2006; Christensen et al., 2015). With dosing of the TLR9
agonist MGN1703, a robust interferon response was noted in
the sigmoid colon (Krarup et al., 2017). This interferon response
in the intestine was quite distinct from that observed in the
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TABLE 1 | Overview of tissue analyses in clinical studies dosing small molecule interventions in HIV cure-related context.

Drug class Drug Trial identifier Intervention Tissues (other than
peripheral blood) examined
and analyses performed

Primary study citation Sub-study citations

Histone
deacetylase
inhibitors

Vorinostat NCT01319383 Single dose of vorinostat No other tissues examined Archin et al., 2012 Wu et al., 2017

22 cyclical doses of vorinostat
over 12–16 weeks

No other tissues examined Archin et al., 2014 Wu et al., 2017; Garrido
et al., 2019

Up to 10 doses of vorinostat
given at 72-h intervals

No other tissues examined Archin et al., 2017 Wu et al., 2017

NCT01365065 Daily vorinostat for 14 days Rectal biopsies: CA US HIV
RNA#; HIV DNA; T cell
activation

Elliott et al., 2014 Mota et al., 2017

Panobinostat NCT01680094 Panobinostat dosed three
times per week every other
week for 8 weeks

Cerebral Spinal Fluid: HIV RNA;
levels of biomarkers of
neurodegeneration
Sigmoid Biopsies: HIV DNA; T
cell activation; T cell cytokine
production; virus clonality

Rasmussen et al., 2014 Christensen et al., 2015;
Hogh Kolbaek Kjaer et al.,
2015; Olesen et al., 2015;
Rasmussen et al., 2015;
Barton et al., 2016; Lee
et al., 2017; Wu et al.,
2017; Brinkmann et al.,
2018; Garrido et al., 2019

Romidepsin NCT02092116 3 romidepsin infusions once
weekly for 3 weeks

No other tissues examined Søgaard et al., 2015 Jorgensen et al., 2018

6-Vacc4x1 immunizations
followed by 3 romidepsin
infusions

No other tissues examined Leth et al., 2016 Tapia et al., 2017;
Jorgensen et al., 2018

Aldehyde
Dehydrogenase
Inhibitor

Disulfiram NCT01286259 Daily disulfiram for 14 days No other tissues examined Spivak et al., 2014 None indexed in PubMed

NCT01944371 3-day course of disulfiram No other tissues examined Elliott et al., 2015 Lee et al., 2019

NCT01571466 3 immunizations of
MVA-B∗ ± 3 months once daily
disulfiram

No other tissues examined Mothe et al., 2015 None indexed in PubMed

PKC‡ Agonist Bryostatin-1 NCT02269605 Single dose of bryostatin-1 No other tissues examined Gutierrez et al., 2016 None Indexed in Pubmed

TLR3§ agonist Poly-ICLC‡‡ NCT02071095 2 consecutive daily doses No other tissues examined Saxena et al., 2019 None indexed in PubMed

TLR9§§ Agonist MGN1703 NCT02443935 Twice-weekly dosing for
4 weeks

Sigmoid Biopsies: HIV DNA; T
cell activation; microbiome
diversity; RNASeq, IHC† for
interferon response

Vibholm et al., 2017 Krarup et al., 2017

Twice-weekly dosing for
24 weeks

Inguinal Lymph Nodes: CA US
HIV RNA#; HIV DNA; immune
cell activation; B cell
differentiation and maturation;
antibody production, glycan
status and HIV-specificity;
RNASeq; IHC† for interferon
response; IF†† for follicles;
ISH††† for HIV RNA; virus
clonality

Vibholm et al., 2019a Schleimann et al., 2019;
Vibholm et al., 2019b

#CA US HIV RNA: Cell-associated unspliced HIV RNA; 1Vacc-4x: a synthetic p24 gag peptide vaccine; ∗MVA-B: modified vaccinia Ankara-based HIV-1 vaccine; ‡PKC:
Protein kinase C; ‡‡Poly-ICLC: Polyinosinic-polycytidylic acid, and poly-L-lysine; § TLR3: Toll-like receptor 3; §§ TLR9: Toll-like receptor 9; † IHC: Immunohistochemistry;
†† IF: Immunofluorescence; ††† ISH: In situ hybridization

peripheral blood of the same individuals (Vibholm et al., 2017).
Specifically, we observed that both type I and type II interferons
were generated in the periphery of treated individuals but only
a type I interferon response was detected in the sigmoid colon.
The type I interferon response in the colon was associated
with a trend toward improved intestinal microbiome species
composition. Furthermore, we found that higher baseline levels

of TLR9 expression in the intestine was associated with greater
reductions in levels of integrated HIV DNA during MGN1703
treatment (Krarup et al., 2017). This result suggests that tissue-
specific biomarkers may help determine which individuals will
exhibit the strongest response to HIV cure-related interventions
in future studies. Overall, these analyses examining the intestines
of participants taking HIV cure-related interventions show that
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the intestines are an important anatomical site for study as the
peripheral blood and intestines did not always exhibit similar
responses to treatment in the examined parameters. Future
studies will benefit from incorporating comprehensive intestinal
biopsy analyses into the study plan.

The importance of lymphoid tissues, particularly lymph
nodes, in HIV persistence is clear (Shen et al., 2003; Dinoso
et al., 2009; Fukazawa et al., 2015; Banga et al., 2016;
Deleage et al., 2016; Lorenzo-Redondo et al., 2016; Estes
et al., 2017). Beyond the observation that lymph node tissues
showed no changes in SIV reservoirs in non-human primates
given SAHA (Del Prete et al., 2014), there has been no
published data on the impacts of HIV cure-related interventions
in vivo in lymph node tissues. To begin addressing this major
knowledge gap in the field, we undertook a longitudinal study
of inguinal lymph nodes in participants taking the TLR9
agonist MGN1703 for 24 weeks (Schleimann et al., 2019).
We found that lymph nodes exhibited a potent interferon
response to MGN1703 dosing as was observed in peripheral
blood (Vibholm et al., 2019a). We also observed similarities
between the lymph nodes and peripheral blood regarding
significant changes in B cell differentiation and maturation
levels in response to TLR9 agonist treatment. Related to these
observations, we found that MGN1703 increased plasma IgG
levels as well as increased AID expression in lymph nodes
(Schleimann et al., 2019). Furthermore, after 24 weeks of
MGN1703 dosing, plasma and lymph node IgG glycosylation
patterns were significantly altered. Changes in glycosylation
were associated with reductions in viral reservoir. This study
revealing similarities between the peripheral blood and lymph
node responses to MGN1703 is a beginning in the process
of understanding the lymphoid tissue effects of HIV cure-
related interventions.

NO EVIDENCE OF VIRAL
COMPARTMENTALIZATION IN TLR9
AGONIST THERAPY TRIAL

While the direct in vivo impacts of HIV cure-related clinical
interventions on latency controlling mechanisms have not
been fully elucidated, there are multiple analyses that have
focused on determining whether such interventions impact
only clonal HIV isolates or reactivate a broad spectrum of
persistent HIV isolates. These phylogenetic analyses performed
with clinical trial samples have revealed that the histone
deacetylase inhibitors SAHA, panobinostat and romidepsin
reactivate latent viruses with unique sequence signatures
as well as families of virus clones (Barton et al., 2016;
Winckelmann et al., 2017, 2018). The panobinostat study
also provided the first in vivo observation of a tissue-derived
cell (i.e., a sigmoid colon lamina propria mononuclear cell)
harboring an HIV provirus that matched plasma-derived
rebound viruses isolated following analytical treatment
interruption (Barton et al., 2016). Thus, these HIV cure-
related interventions have broad latency reversing capacity
in vivo in HIV infected individuals.

We recently examined the clonality of persistent virus in
lymph nodes and compared these sequences to replication
competent viruses that rebounded during an analytical treatment
interruption (Vibholm et al., 2019b). We examined samples
from our clinical trial in which participants received 24 weeks
of repeated TLR9 agonist treatment. When we compared the
latent viruses obtained from CD4+ T cells in peripheral
blood and lymph nodes to viruses emerging during treatment
interruption, we found there was no overlap between latent
reservoir and rebound sequences. This was true even though 98%
of intact or replication competent clonal sequences overlapped
between these two anatomical compartments. Although rebound
viruses were not derived from reservoirs detected in either
blood or lymph node, we were able to show that rebound
viruses were generated by recombination events between viruses
within these two compartments (Vibholm et al., 2019b). This
observation is consistent with peripheral blood data showing that
recombination events are important during the emergence of
rebound viremia (Lu et al., 2018). Whether the recombination
events are due to improved viral fitness or escape of immune
pressure is not yet known (Streeck et al., 2008; Ritchie
et al., 2014). Overall, these data indicate that CD4+ T cells
harboring latent HIV circulate between blood and lymphoid
tissues during cART.

CONCLUSION

Understanding the regulation of HIV reservoir persistence is
a high priority in the HIV cure research field. Since 2012, 14
HIV cure-related clinical trials have been published where the
objective was to test the impacts of small molecule interventions
designed to either cause infected cells to become visible to the
immune system for clearance or to improve the ability of the
immune system to clear infected cells. These clinical studies
have yielded new insights into the effects of the interventions on
the regulation of HIV persistence, particularly related to clonal
populations of latently infected cells. In four of the trials, efforts
were made to define the impacts of the respective intervention
in the central nervous system, intestinal tissues and/or lymph
nodes. Data from these four trials reveal key similarities between
the peripheral blood and the organs. Furthermore, they highlight
that observations made in peripheral blood are not always
fully representative of the impacts made by interventions in
the organs which also harbor persistent HIV reservoirs. Such
differential responses highlight the importance of defining the
impacts of curative strategies in all relevant organ systems
including those reviewed herein as well as other applicable tissues
such as spleen and bone marrow. With improved methods for
analyzing tissue reservoirs, investigators will begin to overcome
the limitations in studies that are due to the extreme rarity and
heterogeneity of HIV infected cells in vivo in the setting of cART.
Advancement of the HIV cure research agenda will benefit from
a continued push to seek detailed explorations of infected cells
both derived from peripheral blood as well as from organ sources.
Thus, there is strong impetus to continue examining multiple
organs in such trials.
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