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Introduction

According to the ribonucleic acid (RNA) modification 
database (MODOMICS), over 150 RNA modifications 

have been detected, including 5-methylcytosine (m5C), N6-

methyladenosine (m6A), and N1-methyladenosine (m1A) 

(1,2). 5-methylcytosine (m5C) is one common methylation 
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modification, and plays significant roles in various biological 
process. M5C modification is a kind of post-transcriptional 
modification regulated by “writers”, “erasers”, and 
“readers”, which are methyltransferases, demethylases, and 
binding proteins, respectively.

Methylation of the cytosine at the fifth carbon position 
(m5C) is mediated by methyltransferases consisting of 
NOL1/NOP2/Sun domain family, member 1-7 (NSUN1-7), 
DNA methyltransferase1 (DNMT1), DNMT2, DNMT3A, 
and DNMT3B, while the removal process is catalyzed by 
demethylases such as ten-eleven translocation 2 (TET2) . In 
addition, a group of specific RNA-binding proteins can read 
the m5C motif, thereby mediating its function. It has been 
found that m5C modification in messenger RNA (mRNA) is 
primarily enriched in the non-translated region (3'UTR and 
5'UTR), guanine-cytosine (GC)-rich regions, and near the 
argonaute (AGO) protein binding site, which has a conserved 
sequence of AU(m5C)GANGU (3-6).

Immunotherapy has been an effective treatment against 
cancer, and is represented by immunological checkpoint 
blockades (ICBs). However, the overall response rates are 
still unsatisfying, especially for cancers with low mutational 
burdens (7). In recent years, with the development of 
immunotherapy, the therapeutic options for cancer treatment 
have undergone significant changes (8-11). Among the 
various immunotherapies, ICBs work by blocking the 
interaction between immunosuppressive receptors (immune 
checkpoints) expressed on the surface of immunocytes 
and their ligands. ICBs include a series of monoclonal 
antibody-based therapies. Cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed death 1 
(PD-1) and programmed death-ligand 1 (PD-L1) are the 
main targets of immunotherapy (12,13). ICB has attracted 
widespread attention due to its persistence in reaction and 
its impact on the overall survival of patients. However, the 
challenge for clinicians is to determine who will respond to 
immunotherapy. The number of patients who actually benefit 
from immunotherapy remains small (14-16).

The complexity and strong interrelationship of the tumor 
microenvironment (TME), which comprises immune cells 
(such as macrophages, mast cells, polymorphonuclear cells, 
dendritic cells, natural killer (NK) cells, as well as T and B 
lymphocytes) and non-immune cells (including endothelial 
cells and stromal cells), play a key role in its development 
and progression (17,18). The immune cell components 
of the tumor are the basis for determining the fate of the 
tumor, as well as its invasion and metastasis. Interacting with 
other TME components either directly or indirectly can 

lead to a variety of biological behavioral changes in tumor 
cells, including proliferation and angiogenesis, apoptosis, 
hypoxia, and immune tolerance (19). An increasing number 
of studies have shown that the TME has a crucial impact 
on tumor progression, immunotherapy response, and 
immune escape (20,21). Recently, one research has also 
showed that under a scenario of balanced autophagy in the 
tumor microenvironment, the infiltrating immune cells 
control cytokine production and secretion (22). Sacco et al.  
indicated that tumor-infiltrating immune cells could affect 
the tumor immunosurveillance by regulating the iron 
metabolism (23). Therefore, the characteristics of tumor 
immune infiltration can provide new strategies for the 
prediction of immunotherapeutic effect, the improvement 
of immunotherapeutic response rate, and the development 
of novel immunotherapeutic targets.

Recently, several studies have shown a strong association 
between m5C modification and TME infiltrating immune 
cells. Schoeler et al. reported that TET enzymes control 
antibody production and shape the mutational landscape in 
germinal center B cells. They found that TET2 and TET3 
guide the transition of germinal center B cells to antibody-
secreting plasma cells (24). Also, Li et al. revealed that the 
TET family modulates the activation of dendritic cells. 
TET1-inhibited monocyte-derived dendritic cells were found 
to significantly decrease the percentage of CD45RA-FoxP3hi-
activated regulatory T (Treg) cells in the allergic rhinitis 
group, which might be linked to immune activation (25).  
Yue et al. found that TET2/3-deficiency in Treg cells leads 
to T cell activation, TET2/3 double-knockout (DKO) Treg 
cells exhibited a dysregulated cell surface phenotype, and 
TET2/3 DKO CD4+ T cells induced disease in healthy 
mice (26). Moreover, some researches have focused on 
the intrinsic pathways of cancer cells, such as genomic 
variation and the disordered expression of m5C regulators. 
Chen et al. indicated that numerous oncogene RNAs with 
hypermethylated m5C sites were causally linked to their 
upregulation in urothelial carcinoma of the bladder, and 
demonstrated that Y-box binding protein 1 (Ybx1) is an 
m5C “reader” (27). Lastly, USUN5 expression has been 
verified to be related to shorter survival in glioblastoma and 
the high expression of USUN7 is correlated to the poor 
survival in low-grade gliomas (28,29).

However, the above studies only mentioned the role 
and mechanism of one or two regulatory factors of m5C 
in antitumor and immune processes, while the potential 
cross-talk between regulators remains uncharacterized in 
human cancers. Therefore, establishing a comprehensive 
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understanding of the TME cell infiltration characterization 
mediated by m5C regulators will offer insight into TME 
immune regulation. In this study, we analyzed the gene 
mutation of The Cancer Genome Atlas (TCGA) lung 
adenocarcinoma (LUAD), the mRNA expression data, and 
the clinical information of patients. We also investigated 
the mechanisms through which m5C affected the prognosis 
of patients during the occurrence of LUAD, and further 
verified the results in an external dataset (GSE31210). We 
present the following article in accordance with the MDAR 
reporting checklist (available at http://dx.doi.org/10.21037/
tlcr-21-351).

Methods

Dataset source and preprocessing

We conducted a systematic search of TCGA and the 
Gene-Expression Omnibus (GEO) databases for LUAD. 
Standardized matrix files of each cohort were downloaded 
for further analysis. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
procedure of data preprocessing lists was as follows: (I) 
we downloaded data of TCGA LUAD single nucleotide 
variation (SNV) (MuTect2 Annotation), which included 570 
samples; (II) we downloaded data of TCGA LUAD copy 
number variation (CNV), which included 544 samples. 
We re-annotated the CNV of 13 genes using Bedtools 

software using hg38 as a reference (30); (III) we downloaded 
data of TCGA LUAD FPKM (Fragments Per Kilobase 
Million), which included 572 samples (513 tumor samples 
and 59 normal samples) and 513 follow-up data; and (IV) 
we downloaded 246 samples of the expression profile and 
follow-up data of GSE31210 from National Coalition 
Building Institute (NCBI) GEO, which included 226 tumor 
samples and 20 normal samples. The study roadmap is 
shown in Figure 1.

Unsupervised clustering for 11 m5C regulators

We extracted 11 regulators related to m5C that had 
expression in TCGA datasets for LUAD analysis using 
the prCOMP function in R language (13 genes related 
to m5C modification were detected, but only 11 had 
expression). These 13 regulators comprised 11 writers 
(NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, 
DNMT1, DNMT2, DNMT3B, NSUN1, DNMT3A), one 
eraser (TET2), and one reader (Aly/REF export factor, 
ALYREF). In order to identify different m5C modification 
patterns and classify patients for further study, unsupervised 
clustering analysis was applied. The 11 m5C regulators 
were clustered with LUAD tumor samples by non-negative 
matrix factorization (NMF). The NMF method selected 
the standard “Brunet” and carried out 100 iterations. The 
number of clusters was set from 2 to 10, and we determined 

Figure 1 Flowchart of bioinformatics analysis in our study. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; TME, tumor 
microenvironment.
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the average contour width of the common member 
matrix using the R package “NMF”, setting the minimum 
members of each subclass to 10. We selected the optimal 
clustering number as 2 based on the cophenetic, dispersion, 
and silhouette.

Gene set variation analysis (GSVA) and functional 
annotation

In order to explore the biological behavior between these 
different m5C modification patterns, GSVA enrichment 
analysis was carried out using the R language GSVA 
package (31), and the “c2.cp.kegg.v7.0.symbols.gmt” gene 
set was used as the background. GSVA, in a non-parametric 
and unsupervised method, is commonly employed for 
estimating the variations in pathway and biological process 
activity in the samples of an expression dataset. Differential 
pathways were screened by |t| >6 using the R package 
limma.

Estimation of TME cell infiltration

The cell type identification by estimating relative subsets 
of RNA transcripts (CIBERSORT) method was used to 
analyze the composition and relative abundance of m5C-
modified immune cells of the two patterns. Since T cells.
CD4.memory.activated was 0 in all samples, we removed the 
cells and calculated the correlation and significance of 11 
m5C-related genes and TME infiltration types through the 
rcorr function of the R language Hmisc package. We also 
used the ESTIMATE algorithm to quantify the immune, 
matrix, and ESTIMATE scores between groups of high and 
low expression regulators.

Identification of differentially expressed genes (DEGs) 
between m5C distinct phenotypes

Previously, two m5C modification patterns were classified by 
clustering m5C-related genes. In the next step, we carried 
out principal component analysis (PCA) of these two 
subtypes, and the two patterns were separated from each 
other. Using the R package limma package for difference 
analysis, 226 differential genes were screened by |log2fold 
change| >1, false discovery rate (FDR) <0.05. The patients 
were divided into different gene clusters by unsupervised 
clustering of 226 m5C phenotype-related genes (the 
distance between samples was calculated by complete and 
Euclidean).

Generation of the m5C gene signature

Due to the heterogeneity and complexity of m5C 
modification, we constructed a scoring system to quantify 
the m5C modification pattern of individual LUAD patients 
based on these phenotypic genes, which was called the m5C 
score. We then performed a prognostic analysis on each 
gene in the signature using a univariate Cox regression 
model. We screened 124 genes related to prognosis with 
P<0.05 from 226 DEGs, and subsequently analyzed the 124 
genes by PCA, scored PC1 and PC2, and calculated the 
m5C score of each sample. The formula was as follows:

m5C score = Σ (PC1i + PC2i)

where i is the expression of 125 m5C phenotype-related 
genes.

Statistical analysis

Spearman and distance correlation analyses were utilized 
to compute correlation coefficients between the expression 
of m5C regulators and TME infiltrating immune cells. To 
analyze difference between two groups, the Wilcoxon test 
was used, and in cases of three or more groups, difference 
comparisons were conducted using Kruskal-Wallis tests and 
one-way ANOVA (analysis of variance). For verification of 
the external dataset GSE31210, m5C score model samples 
were divided into high and low score subgroups according 
to the median. Using the survminer R package, survival 
curves were generated using log-rank tests and the Kaplan-
Meier (KM) method. Statistical significance was set at 
P<0.05, and all statistical P values were two-sided. All data 
was processed using R 3.6.1 software.

Results 

Genetic variation of m5C regulators in LUAD

Thirteen m5C regulators were identified in this study, 
including 11 writers, one eraser, and one reader. We first 
summarized the incidence of SNV and CNV in the 13 m5C 
regulators in LUAD. Figure S1 shows the dynamic and 
reversible regulation of m5C RNA methylation.

SNV analysis of m5C related genes
Of the 570 LUAD patients, gene mutations of the 13 m5C 
regulators appeared in 99 independent samples, with a 
frequency of 15.75%. The writer, DNMT3A, exhibited 
the highest incidence of mutation, followed by NSUN2, 

https://cdn.amegroups.cn/static/public/TLCR-21-351-supplementary.pdf
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TET2, and DNMT3B, while “reader” genes had fewer 
mutations than “writer” and “eraser” genes. Figure 2A 
displays the mutations in the top 10 genes associated with 
m5C, including variant classification, type, and variants per 
sample.

CNV analysis of m5C related genes
In addition to SNV, CNVs are also present as genetic 
variations, including amplification (Segment_Mean 
>0.2), diploid (−0.2< Segment_Mean <0.2), and deletion 
(Segment_Mean<−0.2). Table 1 shows the proportion of 
amplification and deletion of the 11 genes. We examined 
the incidence of CNV and the mRNA expression of 
these regulators to explore the relationship between gene 
variations and the expression levels of m5C regulators  
(Figure 2B), and found that CNV could be the key factor 
leading to the disordered expression of m5C regulators. 
The expression of m5C regulators in LUAD tissue was 
significantly higher than that in normal lung tissue (except 
NSUN3 and TET2) (Figure S2). 

In total, nine CNV gene mutations had quantitative 
values in the gene expression profile. We observed that 
genes that experienced amplification showed higher 
expression, while those that experienced deletion exhibited 
lower expression. NSUN2, DNMT3B, ALYREF, and 
NSUN5 had a high frequency of CNV amplification, while 
DNMT1 and TET2 exhibited a high frequency of CNV 
deletion. These gene mutations may affect the transmission 
of the m5C signal in cells and result in cellular functional 
disorder. Among them, NSUN2, DNMT3b, NSUN5 and 
DNMT1 are writers, ALYREF is a reader, and TET2 is 
an eraser. Mutations of NSUN2, DNMT3b, ALYREF, 
NSUN5, DNMT1, and TET2 suggested that the function 
of m5C in tumor cells may be abnormal. The above analyses 
demonstrated the high heterogeneity of the genetic 
and expressional alteration landscape in m5C regulators 
between LUAD samples, indicating that the expression 
imbalance between m5C regulators plays a crucial role in 
the occurrence and progression of LUAD.

M5C methylation modification patterns mediated by 11 
regulators

PCA analyses of m5C-related genes
We extracted 11 m5C-related genes from TCGA and 
performed PCA analyses using prCOMP (there were 13 
genes related to m5C modification, but only 11 genes with 
a quantitative expression level). The first three principal 

components were shown by pca3d in Figure 3A. The 11 
m5C-related samples could be completely distinguished 
between tumor samples and normal samples.

Network analyses of m5C-related genes
LUAD tumor samples from TCGA with available overall 
survival (OS) data and clinical information were enrolled 
into one meta-cohort. The prognostic values of the 11 m5C 
regulators were revealed via a univariate Cox regression 
model (Figure 3B). The 11 regulators were not related to 
the prognosis of LUAD patients, except for NSUN7, which 
also indicated that these 11 genes may indirectly interfere 
with the prognosis of LUAD patients. The m5C regulatory 
network described the integrated view of the mutual effect of 
m5C regulators, regulator connection, and their prognostic 
value for LUAD patients (Figure 3C and Table S1).  
The 11 genes were divided into four clusters. We found a 
correlation between expression and functional category of 
similar m5C regulators. ALYREF may be a key gene of m5C 
regulators, which affects the prognosis of LUAD through 
forward and reverse regulation of the other 10 genes.

TME cell infiltration characteristics in distinct m5C 
modification patterns

Identification of m5C modified subtypes (m5C clusters)
We used the NMF R package to classify patients into two 
distinct modification patterns via unsupervised clustering, 
according to the expression quantity of 11 m5C regulators 
(Figure 4A,B). A total of 504 samples were included, 
including 152 samples for cluster C1 and 352 samples for 
cluster C2. We termed these patterns: m5C cluster C1 and 
C2, respectively. Furthermore, prognostic analysis for the 
two main m5C modification subtypes was also performed, 
and the results showed significant differences in OS 
between cluster C1 and C2 (Figure 4C). The m5C cluster 
C2 modification pattern exhibited a significant survival 
advantage. Then, we analyzed the expression of 11 m5C 
regulators in the two main m5C modification subtypes. 
The expression of the 7 genes among 11 regulators were 
significantly different between cluster C1 and C2, and all 7 
genes’ expression is higher in the cluster C1 (Figure 4D).

Functional enrichment of m5C modified subtypes
In order to explore the biological behavior of these different 
m5C modification patterns, enrichment analysis of GSVA 
was carried out using R language GSVA package, with the 
c2 cp.kegg.v7.0.symbols.gmt gene set as a background. A 

https://cdn.amegroups.cn/static/public/TLCR-21-351-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-351-supplementary.pdf
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A

B

Figure 2 Landscape of m5C regulators in LUAD. (A) Mutations of the first 10 genes related to m5C; (B) the relationship between CNV 
and expression of nine genes related to m5C modification. ns, no significant difference; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
LUAD, lung adenocarcinoma.
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total of 187 pathways were enriched, and 39 differential 
pathways were screened by |t|>6. The m5C C1 subgroup 
was enriched in 14 pathways, mainly related to matrix 
pathways such as cell cycle and DNA (deoxyribonucleic 
acid) repair, while C2 was enriched in 25 pathways, mainly 
related to signal transduction and immune pathways (such as 
Fc epsilon RI signaling pathway and the mitogen-activated 
protein kinase (MAPK) signaling pathway) (Figure 5).

TME analyses of m5C modified subtypes
The CIBERSORT method was used to analyze the 
composition of immune cells of two m5C modification 
patterns (32). C1 was primarily composed of naïve B cells, 
activated CD4 memory T cells, follicular T helper cells, 
resting NK cells, M0 macrophages, and M1 macrophages, 
while C2 was mainly composed of memory B cells, resting 
CD4 memory T cells, monocytes, M2 macrophages, 
resting dendritic cells, resting mast cells, neutrophils, and 
eosinophils (Figure 6A). 

The correlation between m5C-related genes and TME 
infiltration type was calculated using the rcorr function 
of Hmisc package in R language. As shown in Figure 6B, 
the DNMT3B gene was significantly associated with 10 
TME infiltrating immune cell groups, of which, six were 
composed of m5C modified C1 immune cells (naïve B cells, 
activated CD4 memory T cells, follicular T helper cells, 
resting NK cells, M0 macrophages and M1 macrophages). 

The remaining four were composed of immune cells of the 
C2 subgroup (memory B cells, resting CD4 memory T cells, 
resting dendritic cells and resting mast cells). We used the 
ESTIMATE algorithm to quantify DNMT3B (Figure 6C).  
DNMT3B expression was inversely correlated with the 
immune, matrix, and ESTIMATE scores. Furthermore, 
we analyzed the expression of DNMT3B in 21 immune 
cells, and found that the low expression of DNMT3B was 
significantly increased in the 21 immune cells (Figure 7A). 

Next, we analyzed the relationship between the 
expression of DNMT3B and ICB inhibitors. Abnormal 
expression of DNMT3B was associated with immune 
function disorder (Figure 7B). Subsequent analyses of 
pathway enrichment revealed that tumors with high 
DNMT3B expression exhibited enrichment in the Nod-like 
receptor (NLR) signaling pathway, cytosolic DNA-sensing 
pathway, and RIG-I-like receptor (RLR) signaling pathway 
(Figure 7C). Furthermore, we analyzed the OS of high and 
low expression groups of DNMT3B. The results showed 
that low DNMT3b gene expression group was associated 
with immunity and had a better prognosis (Figure 7D).

Generation of m5C gene signatures and functional 
annotation 

Using the limma package from R language, 226 DEGs 
were screened by |log2fold change| >1 and FDR <0.05, 

Table 1 The proportion of amplification and deletion of 11 genes related to m5C modification

Role Gene symbol Amplification Diploid Deletion CNV_sum Amplification % Deletion%

Writers NSUN2 279 826 6 1111 25.1 0.540054

NSUN3 53 985 64 1102 4.8 5.807623

NSUN4 64 998 42 1104 5.8 3.804348

NSUN5 102 964 32 1098 9.289617 2.91439

NSUN6 67 978 57 1102 6.079855 5.172414

NSUN7 62 990 48 1100 5.636364 4.363636

DNMT1 12 919 174 1105 1.085973 15.74661

DNMT2 72 1017 10 1099 6.55141 0.909918

DNMT3B 112 967 28 1107 10.11743 2.529359

NSUN1 – – – – – –

DNMT3A – – – – – –

Erasers TET2 13 433 80 526 2.471483 15.20913

ALYREF ALYREF 146 937 15 1098 13.2969 1.36612
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all of which were related to the m5C phenotype. The 
patients were divided into three different gene cluster 
subtypes through unsupervised clustering of 226 m5C 
phenotype-related genes (the cluster method was complete 
and Euclidean was used to calculate the distance between 
samples). PCA analysis demonstrated that they were 
separated from each other (Figure 8A). These three clusters 

were named m5C gene cluster C1–C3. We also observed the 
distribution of the 11 genes in the three m5C gene clusters 
(Figure 8B), and found that most samples of gene cluster C2 
and C3 were included in m5C cluster C2, and most samples 
of gene cluster C1 coincided with m5C cluster C1. In order 
to further determine which biological processes these 226 
genes were primarily involved in, R language WebGestaltR 

Figure 3 M5C methylation modification patterns mediated by 11 regulators. (A) PCA for the expression of 11 m5C regulators to distinguish 
tumors from normal samples. Tumors were marked with blue, and normal samples were marked with yellow; (B) the prognostic analyses 
for 11 m5C regulators using a univariate Cox regression model; (C) the interaction between m5C regulators in LUAD. **, P<0.01. PCA, 
principal component analysis; LUAD, lung adenocarcinoma.

A C

B
Hazard ratio
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package was used for Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis (31441146) (33). 
We screened a total of five pathways (by P<0.05): cell cycle, 
oocyte meiosis, progesterone mediated oocyte maturation, 
cellular sense, and the p53 signaling pathway. The 226 
genes were associated with m5C modification and were 
significantly related to tumorigenesis (Figure 8C). 

Subsequently, the distribution of 21 immune cells in the 
three subtypes of the m5C gene cluster was analyzed. As 
shown in Figure 8D, the three subtypes were statistically 
significant in 14 cells. Thus, it was clear that m5C 
modification had a critical role in TME, and the 226 genes 
modified by m5C also played an important role in the TME. 
We further analyzed the KM curve of gene clusters C1–
C3, and found that these three subtypes were associated 
with prognosis (P<0.05, Figure 8E). Although the samples 
were divided into three subtypes, there were only nine 
cases of C3 samples. These results were consistent with the 

classification of m5C modification patterns. The prognosis 
of C2 was superior to that of C1.

Establishment of the m5C score model

Due to the individual heterogeneity and complexity of 
m5C modification, a scoring system was constructed to 
quantify the m5C modification pattern of individual LUAD 
patients, which was called the m5C score. Firstly, we 
screened 124 genes related to prognosis (P<0.05) from 226 
isoform differential genes. Table S2 shows the results of the 
univariate COX analysis of 124 genes. PCA analysis was 
then performed on the 124 genes, PC1 and PC2 scores were 
taken, and the m5C score of each sample was calculated as 
follows: m5C-score=ΣPC1i+PC2i. The m5C score results of 
the 513 samples are displayed in Table S3. 

We divided the high and low score groups according to 
the median of the m5C score and used the alluvial diagram 

Figure 4 Identification of m5C modified subtypes. (A) Consensus map of NMF clustering; (B) Cophenetic, RSS, and dispersion distributions 
with rank =2–10; (C) OS survival curves of m5C clusters C1 and C2; (D) expression of 11 genes in two m5C modification clusters. ns, no 
significant difference; ***, P<0.001. NMF, non-negative matrix factorization; RSS, residual sum of squares; OS, overall survival.
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to demonstrate the changes between m5C clusters, gene 
clusters, and m5C scores (Figure 9A). We found that most 
of the samples of the m5C cluster C2 subtype with good 
prognosis were identical with those of the gene cluster 
C2 subtype, and patients with good prognosis primarily 
exhibited a high m5C score.

To further verify the relationship between our m5C score 
model and the prognosis of LUAD, we divided the high 
and low score groups according to the median m5C score. 
Survival analysis was then performed between these two 
groups. We observed that the high m5C score group had a 
better prognosis, which was consistent with the results of 
the previous analysis (Figure 9B). 

As shown in Figure 9C, there was a significant difference 
in the m5C scores among the three gene cluster subtypes, 
with cluster C2 scoring the highest, and cluster C1 the 
lowest, which also verified that a high m5C score had a 
good prognosis. Additionally, m5C score difference was also 
statistically significant between the two m5C cluster subtypes 
(Figure 9D). The score of the C2 subtype was markedly 
higher than that of the C1 subtype, and the prognosis of C2 

was better than that of C1, which further verified that a high 
m5C score had a better prognosis. Therefore, a high m5C 
score may predict a good prognosis for LUAD patients, while 
a low m5C score may predict a poor prognosis. 

We also performed GSVA analysis to further explore 
the biological process involved in the m5C score difference. 
We found that the low m5C score group was mainly related 
to pathways of DNA repair, cell cycle, and stroma, while 
the high m5C score group was primarily associated with 
immune-related pathways and MAPK signaling pathways 
(Figure 9E). Furthermore, through multivariate Cox 
regression model analysis, we found that m5C score was an 
independent prognostic factor (sample with missing clinical 
information removed) (Figure 9F).

Moreover, we analyzed the expression of 11 m5C 
regulators in the high and low m5C score groups. The 
expression of seven regulators exhibited significant 
correlation with m5C score. As shown in Figure 10, in 
addition to TET2, a high m5C score also corresponded 
to low gene expression (NSUN2, NSUN5, DNMT1, 
DNMT3A, DNMT3B, and ALYREF).

Figure 5 Expression of 39 pathways in the GSVA analysis of two m5C modification clusters. GSVA, gene set variation analysis.
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Validation of external datasets

Establishment of GSE31210 dataset m5C score
The PCA analysis results of 125 genes obtained from 
the previous analysis were used to establish a new m5C 
score model based on the GSE31210 dataset. In total, 116 

genes were identified in the GSE31210 dataset, which 
were used to establish the m5C score model for 226 tumor 
samples in GSE31210. First, through PCA analysis, PC1 
and PC2 of the 116 genes were calculated, and the m5C 
score was calculated for each sample. Figure 11A shows 
the distribution of the 11 genes in the high and low m5C 

Figure 6 TME cell infiltration characteristics and transcriptome traits in distinct m5C modification patterns. (A) The abundance of each 
TME infiltration cell in two m5C modification patterns; (B) the correlation between each TME infiltration cell type and each m5C regulator 
using Spearman analyses; (C) difference in stromal, immune, and ESTIMATE scores between high and low DNMT3B expression groups. 
ns, no significant difference; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor microenvironment.
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scores. Figure 11B displays the prognosis of the high and 
low m5C score groups; a high m5C score may lead to a good 
prognosis, which was consistent with the results of TCGA.

GSVA analysis of the high and low m5C score groups
In order to further investigate mechanisms through which 
the m5C score affected biological processes, we performed 
GSVA analysis using the R language. The results showed 
that the high m5C score group was associated with immune 
pathways, such as the complement and coagulation cascades, 
leukocyte transendothelial migration, and the intestinal 
immune network for immunoglobulin A (IgA) production. 
Meanwhile, the low score group was associated with the 
pathways related to the stroma, such as basal resection and 
repair, cell cycle, etc. (Figure 11C).

These results verified that high m5C scores were 
related to an immune desert type, which predicted a good 
prognosis, while low m5C scores indicated an immune 
exclusion phenotype, which suggested a poor prognosis. 
The table online (https://cdn.amegroups.cn/static/
public/tlcr-21-351-1.xlsx) exhibits the enrichment scores 
of all samples in 186 pathways, and Table S4 shows the 
enrichment results of the high and low m5C score groups.

Composition of immune cells in the high and low levels 
of the m5C score model
To further verify the immunophenotype of the high and 

low m5C score groups of the dataset, we used CIBERSORT 
to analyze the composition of immune cells in the high and 
low m5C score groups (Figure 11D). The high m5C score 
exhibited more infiltration of resting CD4 memory T cells 
and resting mast cells, as well as less infiltration of M0 and 
M1 macrophages, which was similar to the immunocyte 
infiltration of gene cluster C2.

Discussion

With the development of deep sequencing and mass 
spectrometry (30), accumulating evidence has suggested 
that m5C modification is very important for maintaining the 
normal physiological function of cells and organisms (31-36), 
while its abnormal distribution and expression are closely 
related to tumor development. Studies have confirmed 
that m5C is involved in the progression of hepatocellular 
carcinoma (37,38). Also, there is increasing evidence that 
methylation regulatory factors can be used as prognostic 
and diagnostic markers of cancer (39-43). For example, 
the high expression of NSUN1 has been identified as a 
prognostic marker for non-small cell lung cancer (44-46).  
Recent studies have also confirmed that m5C may affect 
the behavior of immune cells, such as CD+ T cells (47). 
Since most studies have focused on the effect of single 
TME cell types or regulators on tumor development, there 
remains a lack of comprehensive recognition of TME 

Figure 10 The expression of 11 m5C regulators in both high and low m5C score groups. ns, no significant difference; ***, P<0.001.
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infiltration mediated by multiple m5C regulators. Further 
understanding of the role of different m5C modification 
patterns in the infiltration of TME cell will help to improve 
our understanding of the TME antitumor immune response 
and provide novel immunotherapy strategies. 

In this study, two m5C methylation modification patterns 
were revealed according to 11 m5C regulators, which 
had remarkably distinct TME immune cell infiltration 
characterization. Also, three genomic subtypes of the 
m5C gene were identified based on 226 m5C phenotype-
related DEGs, which were also significantly related to 
tumor occurrence. This further revealed the important role 
of m5C modification in influencing the TME landscape. 
Identification of the m5C modification patterns of individual 
tumors was crucial due to the individual heterogeneity of 
m5C modification. Thus, a scoring system was constructed 
to assess the m5C modification pattern of LUAD patients. 
The m5C cluster C2 exhibited a higher m5C score, and 
patients in the m5C cluster C2 showed better prognosis. 
The high m5C score group had a better prognosis, while 
the low m5C score group had a poor prognosis. These 
results were further verified in the GSE31210 dataset, 
which indicated that the m5C score was a reliable method 
for the integrated evaluation of distinct tumor m5C 
modification patterns. Comprehensive analyses also 
proved that the m5C score was an independent prognostic 
marker in LUAD. Functional enrichment analyses in the 
groups with better prognosis tended to be associated with 
immunity; m5C cluster C2 exhibited enrichment pathways 
related to immunity, such as the Fc epsilon RI signaling 
pathway, and the high m5C score group in the GSE31210 
dataset was correlated with immune pathways, such as the 
complement and coagulation cascades, leukocyte trans-
endothelial migration, and the intestinal immune network 
for IgA production. NSUN2, NSUN5, DNMT1, DNMT3A, 
DNMT3B, and ALYREF were highly expressed in m5C 
cluster C2, as well as in TCGA and GSE31210 low m5C 
score groups, which had a poor prognosis. Above, we 
analyzed immune cell infiltration, immune checkpoint 
characteristics, and functional enrichment analysis among 
different expression levels of DNMT3B in LUAD. 

Our study provides some insight for clinical application. 
Our m5C score system could serve as a reliable and 
independent biomarker for predicting the prognosis 
of patients with LUAD. Our findings may help to 
screen suitable patients who can benefit from immune 
checkpoint inhibitor therapy. Further research based 
on these m5C regulators, which regulate TME immune 

D
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cell infiltration, may contribute to the discovery of novel 
immune drug combination treatment strategies or new 
immunotherapeutic agents, and promote the development 
of individual tumor immunotherapy.

The methylation modification patterns of gastric cancer, 
LUAD, and other cancers, which are mediated by the m6A 
modulator, and the invasion characteristics of the TME 
have been studied, and the m6A modulator is closely related 
to the tumor immunophenotype (48-53). Studies have also 
revealed that cross-talk between m6A and m5C regulators 
is associated with tumor immunogenicity and prognosis 
in 33 cancer types (54). In future studies, we will also aim 
to explore whether m5C and m6A have a synergistic effect 
on LUAD tumor microenvironmental characteristics and 
the patients’ response to immunotherapy. We will also 
further investigate how genes (NSUN2, NSUN5, DNMT1, 
DNMT3A, DNMT3B and ALYREF) that are highly 
expressed in groups with poor prognosis work. In addition, 
we cannot rule out the possibility that m5C regulatory 
factors affect the behavior of the matrix in the TME. Some 
researchers have found that m5C is related to PM2.5-
induced pulmonary fibrosis in mice (55), thus the regulatory 
behavior of m5C on the TME may be complex.

Our study had limitations that should be noted. Firstly, 
we did not consider the correlation between immune 
infiltration location and TME heterogeneity. Secondly, 
due to the limited clinical annotation in public datasets, the 
clinicopathological parameters detected in this study are not 
comprehensive, which may contribute to potential bias in 
the predictive performance when the m5C score signature 
served as a prognosis biomarker. Thirdly, due to the time 
constraints and lack of enough budget, we haven’t carried 
out relevant experiments now. In future work, we will 
conduct further experiments to validate the results. Finally, 
due to the lack of overall clinical information in the datasets 
involved, we could not directly analyze the correlation 
between m5C score and the response of LUAD patients to 
immunotherapy.

Conclusions

In this study, we found that m5C modification played 
a s ignif icant role in formation of  TME diversity 
and complexity. Based on the characteristics of m5C 
modification, a score model was constructed to predict the 
prognosis of LUAD patients, which was also verified in the 
external dataset. We believe that m5C modification will have 
some implications for tumor immunotherapy in the future.
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