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Background: In recent years, immunotherapy has made great progress, and the regulatory role of
epigenetics has been verified. However, the role of 5-methylcytosine (m’C) in the tumor microenvironment
(TME) and immunotherapy response remains unclear.

Methods: Based on 11 m’C regulators, we evaluated the m’C modification patterns of 572 lung
adenocarcinoma (LUAD) patients. The m’C score was constructed by principal component analysis (PCA)
algorithms in order to quantify the m’C modification pattern of individual LUAD patients.

Results: Two m’C methylation modification patterns were identified according to 11 m’C regulators.
The two patterns had a remarkably distinct TME immune cell infiltration characterization. Next, 226
differentially expressed genes (DEGs) related to the m’C phenotype were screened. Patients were divided
into three different gene cluster subtypes based on these genes, which had different TME immune cell
infiltration and prognosis characteristics. The m’C score was constructed to quantify the m’C modification
pattern of individual LUAD patients. We found that the high m’C score group had a better prognosis. The
role of the m’C score in predicting prognosis was also verified in the dataset GSE31210.

Conclusions: Our study revealed that m’C modification played a significant role in TME regulation of
LUAD. Investigation of the m’C regulation mode may have some implications for tumor immunotherapy in
the future.
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Introduction have been detected, including 5-methylcytosine (m’C), N6-
According to the ribonucleic acid (RNA) modification methyladenosine (m’A), and N1-methyladenosine (m'A)

database (MODOMICS), over 150 RNA modifications (1,2). S-methylcytosine (m’C) is one common methylation
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modification, and plays significant roles in various biological
process. M’C modification is a kind of post-transcriptional
modification regulated by “writers”, “erasers”, and
“readers”, which are methyltransferases, demethylases, and
binding proteins, respectively.

Methylation of the cytosine at the fifth carbon position
(m’C) is mediated by methyltransferases consisting of
NOL1/NOP2/Sun domain family, member 1-7 (NSUN1-7),
DNA methyltransferasel (DNMT1), DNMT2, DNMT3A,
and DNMT3B, while the removal process is catalyzed by
demethylases such as ten-eleven translocation 2 (TET2) . In
addition, a group of specific RNA-binding proteins can read
the m’C motif, thereby mediating its function. It has been
found that m’C modification in messenger RNA (mRNA) is
primarily enriched in the non-translated region 3'UTR and
5'UTR), guanine-cytosine (GC)-rich regions, and near the
argonaute (AGO) protein binding site, which has a conserved
sequence of AU(m C)GANGU (3-6).

Immunotherapy has been an effective treatment against
cancer, and is represented by immunological checkpoint
blockades (ICBs). However, the overall response rates are
still unsatisfying, especially for cancers with low mutational
burdens (7). In recent years, with the development of
immunotherapy, the therapeutic options for cancer treatment
have undergone significant changes (8-11). Among the
various immunotherapies, ICBs work by blocking the
interaction between immunosuppressive receptors (immune
checkpoints) expressed on the surface of immunocytes
and their ligands. ICBs include a series of monoclonal
antibody-based therapies. Cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed death 1
(PD-1) and programmed death-ligand 1 (PD-L1) are the
main targets of immunotherapy (12,13). ICB has attracted
widespread attention due to its persistence in reaction and
its impact on the overall survival of patients. However, the
challenge for clinicians is to determine who will respond to
immunotherapy. The number of patients who actually benefit
from immunotherapy remains small (14-16).

The complexity and strong interrelationship of the tumor
microenvironment (TME), which comprises immune cells
(such as macrophages, mast cells, polymorphonuclear cells,
dendritic cells, natural killer (NK) cells, as well as T and B
lymphocytes) and non-immune cells (including endothelial
cells and stromal cells), play a key role in its development
and progression (17,18). The immune cell components
of the tumor are the basis for determining the fate of the
tumor, as well as its invasion and metastasis. Interacting with
other TME components either directly or indirectly can
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lead to a variety of biological behavioral changes in tumor
cells, including proliferation and angiogenesis, apoptosis,
hypoxia, and immune tolerance (19). An increasing number
of studies have shown that the TME has a crucial impact
on tumor progression, immunotherapy response, and
immune escape (20,21). Recently, one research has also
showed that under a scenario of balanced autophagy in the
tumor microenvironment, the infiltrating immune cells
control cytokine production and secretion (22). Sacco et al.
indicated that tumor-infiltrating immune cells could affect
the tumor immunosurveillance by regulating the iron
metabolism (23). Therefore, the characteristics of tumor
immune infiltration can provide new strategies for the
prediction of immunotherapeutic effect, the improvement
of immunotherapeutic response rate, and the development
of novel immunotherapeutic targets.

Recently, several studies have shown a strong association
between m’C modification and TME infiltrating immune
cells. Schoeler et al. reported that TET enzymes control
antibody production and shape the mutational landscape in
germinal center B cells. They found that TET?2 and TET3
guide the transition of germinal center B cells to antibody-
secreting plasma cells (24). Also, Li et al. revealed that the
TET family modulates the activation of dendritic cells.
TET1-inhibited monocyte-derived dendritic cells were found
to significantly decrease the percentage of CD45RA FoxP3"-
activated regulatory T (Treg) cells in the allergic rhinitis
group, which might be linked to immune activation (25).
Yue et al. found that TET2/3-deficiency in Treg cells leads
to T cell activation, TET2/3 double-knockout (DKO) Treg
cells exhibited a dysregulated cell surface phenotype, and
TET2/3 DKO CD4" T cells induced disease in healthy
mice (26). Moreover, some researches have focused on
the intrinsic pathways of cancer cells, such as genomic
variation and the disordered expression of m’C regulators.
Chen ez al. indicated that numerous oncogene RNAs with
hypermethylated m’C sites were causally linked to their
upregulation in urothelial carcinoma of the bladder, and
demonstrated that Y-box binding protein 1 (Ybxl) is an
m’C “reader” (27). Lastly, USUNS expression has been
verified to be related to shorter survival in glioblastoma and
the high expression of USUNT7 is correlated to the poor
survival in low-grade gliomas (28,29).

However, the above studies only mentioned the role
and mechanism of one or two regulatory factors of m'C
in antitumor and immune processes, while the potential
cross-talk between regulators remains uncharacterized in
human cancers. Therefore, establishing a comprehensive
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Figure 1 Flowchart of bioinformatics analysis in our study. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; TME, tumor

microenvironment.

understanding of the TME cell infiltration characterization
mediated by m’C regulators will offer insight into TME
immune regulation. In this study, we analyzed the gene
mutation of The Cancer Genome Atlas (TCGA) lung
adenocarcinoma (LUAD), the mRINA expression data, and
the clinical information of patients. We also investigated
the mechanisms through which m’C affected the prognosis
of patients during the occurrence of LUAD, and further
verified the results in an external dataset (GSE31210). We
present the following article in accordance with the MDAR
reporting checklist (available at http://dx.doi.org/10.21037/
tler-21-351).

Methods
Dataset source and preprocessing

We conducted a systematic search of TCGA and the
Gene-Expression Omnibus (GEO) databases for LUAD.
Standardized matrix files of each cohort were downloaded
for further analysis. The study was conducted in accordance
with the Declaration of Helsinki (as revised in 2013). The
procedure of data preprocessing lists was as follows: (I)
we downloaded data of TCGA LUAD single nucleotide
variation (SNV) (MuTect2 Annotation), which included 570
samples; (II) we downloaded data of TCGA LUAD copy
number variation (CNV), which included 544 samples.
We re-annotated the CNV of 13 genes using Bedtools
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software using hg38 as a reference (30); (I1I) we downloaded
data of TCGA LUAD FPKM (Fragments Per Kilobase
Million), which included 572 samples (513 tumor samples
and 59 normal samples) and 513 follow-up data; and (IV)
we downloaded 246 samples of the expression profile and
follow-up data of GSE31210 from National Coalition
Building Institute (NCBI) GEO, which included 226 tumor
samples and 20 normal samples. The study roadmap is
shown in Figure 1.

Unsupervised clustering for 11 m’C regulators

We extracted 11 regulators related to m’C that had
expression in TCGA datasets for LUAD analysis using
the prCOMP function in R language (13 genes related
to m’C modification were detected, but only 11 had
expression). These 13 regulators comprised 11 writers
(NSUN2, NSUN3, NSUN4, NSUNS5, NSUN6, NSUN7,
DNMT1, DNMT?2, DNMT3B, NSUN1, DNMT3A), one
eraser (TET2), and one reader (Aly/REF export factor,
ALYREF). In order to identify different m’C modification
patterns and classify patients for further study, unsupervised
clustering analysis was applied. The 11 m’C regulators
were clustered with LUAD tumor samples by non-negative
matrix factorization (NMF). The NMF method selected
the standard “Brunet” and carried out 100 iterations. The
number of clusters was set from 2 to 10, and we determined
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the average contour width of the common member
matrix using the R package “NMF”, setting the minimum
members of each subclass to 10. We selected the optimal
clustering number as 2 based on the cophenetic, dispersion,
and silhouette.

Gene set variation analysis (GSVA) and functional
annotation

In order to explore the biological behavior between these
different m’C modification patterns, GSVA enrichment
analysis was carried out using the R language GSVA
package (31), and the “c2.cp.kegg.v7.0.symbols.gmt” gene
set was used as the background. GSVA, in a non-parametric
and unsupervised method, is commonly employed for
estimating the variations in pathway and biological process
activity in the samples of an expression dataset. Differential
pathways were screened by |tl >6 using the R package
limma.

Estimation of TME cell infiltration

The cell type identification by estimating relative subsets
of RNA transcripts (CIBERSORT) method was used to
analyze the composition and relative abundance of m’C-
modified immune cells of the two patterns. Since T cells.
CD4.memory.activated was 0 in all samples, we removed the
cells and calculated the correlation and significance of 11
m’C-related genes and TME infiltration types through the
rcorr function of the R language Hmisc package. We also
used the ESTIMATE algorithm to quantify the immune,
matrix, and ESTIMATE scores between groups of high and

low expression regulators.

Identification of differentially expressed genes (DEGs)
between m’C distinct phenotypes

Previously, two m’C modification patterns were classified by
clustering m’C-related genes. In the next step, we carried
out principal component analysis (PCA) of these two
subtypes, and the two patterns were separated from each
other. Using the R package limma package for difference
analysis, 226 differential genes were screened by [log2fold
changel >1, false discovery rate (FDR) <0.05. The patients
were divided into different gene clusters by unsupervised
clustering of 226 m’C phenotype-related genes (the
distance between samples was calculated by complete and
Euclidean).
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Generation of the m’C gene signature

Due to the heterogeneity and complexity of m’C
modification, we constructed a scoring system to quantify
the m’C modification pattern of individual LUAD patients
based on these phenotypic genes, which was called the m’C
score. We then performed a prognostic analysis on each
gene in the signature using a univariate Cox regression
model. We screened 124 genes related to prognosis with
P<0.05 from 226 DEGs, and subsequently analyzed the 124
genes by PCA, scored PC1 and PC2, and calculated the
m’C score of each sample. The formula was as follows:

m’C score = £ (PCli + PC2i)

where i is the expression of 125 m’C phenotype-related
genes.

Statistical analysis

Spearman and distance correlation analyses were utilized
to compute correlation coefficients between the expression
of m’C regulators and TME infiltrating immune cells. To
analyze difference between two groups, the Wilcoxon test
was used, and in cases of three or more groups, difference
comparisons were conducted using Kruskal-Wallis tests and
one-way ANOVA (analysis of variance). For verification of
the external dataset GSE31210, m’C score model samples
were divided into high and low score subgroups according
to the median. Using the survminer R package, survival
curves were generated using log-rank tests and the Kaplan-
Meier (KM) method. Statistical significance was set at
P<0.05, and all statistical P values were two-sided. All data
was processed using R 3.6.1 software.

Results
Genetic variation of m’C regulators in LUAD

Thirteen m’C regulators were identified in this study,
including 11 writers, one eraser, and one reader. We first
summarized the incidence of SNV and CNV in the 13 m’C
regulators in LUAD. Figure S1 shows the dynamic and
reversible regulation of m’C RNA methylation.

SNV analysis of m’C related genes

Of the 570 LUAD patients, gene mutations of the 13 m’C
regulators appeared in 99 independent samples, with a
frequency of 15.75%. The writer, DNMT3A, exhibited
the highest incidence of mutation, followed by NSUN2,
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TET2, and DNMT3B, while “reader” genes had fewer
mutations than “writer” and “eraser” genes. Figure 24
displays the mutations in the top 10 genes associated with
m’C, including variant classification, type, and variants per
sample.

CNV analysis of m’C related genes

In addition to SNV, CNVs are also present as genetic
variations, including amplification (Segment_Mean
>0.2), diploid (-0.2< Segment_Mean <0.2), and deletion
(Segment_Mean<-0.2). Table 1 shows the proportion of
amplification and deletion of the 11 genes. We examined
the incidence of CNV and the mRNA expression of
these regulators to explore the relationship between gene
variations and the expression levels of m’C regulators
(Figure 2B), and found that CNV could be the key factor
leading to the disordered expression of m’C regulators.
The expression of m’C regulators in LUAD tissue was
significantly higher than that in normal lung tissue (except
NSUNS3 and TET?2) (Figure S2).

In total, nine CNV gene mutations had quantitative
values in the gene expression profile. We observed that
genes that experienced amplification showed higher
expression, while those that experienced deletion exhibited
lower expression. NSUN2, DNMT3B, ALYREF, and
NSUNS had a high frequency of CNV amplification, while
DNMTT1 and TET? exhibited a high frequency of CNV
deletion. These gene mutations may affect the transmission
of the m’C signal in cells and result in cellular functional
disorder. Among them, NSUN2, DNMT3b, NSUNS5 and
DNMTT1 are writers, ALYREF is a reader, and TET2 is
an eraser. Mutations of NSUN2, DNMT3b, ALYREF,
NSUNS5, DNMTT1, and TET2 suggested that the function
of m’C in tumor cells may be abnormal. The above analyses
demonstrated the high heterogeneity of the genetic
and expressional alteration landscape in m’C regulators
between LUAD samples, indicating that the expression
imbalance between m’C regulators plays a crucial role in
the occurrence and progression of LUAD.

M’ C methylation modification patterns mediated by 11
regulators

PCA analyses of m’C-related genes

We extracted 11 m’C-related genes from TCGA and
performed PCA analyses using prCOMP (there were 13
genes related to m’C modification, but only 11 genes with
a quantitative expression level). The first three principal

© Translational Lung Cancer Research. All rights reserved.
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components were shown by pca3d in Figure 34. The 11
m’C-related samples could be completely distinguished
between tumor samples and normal samples.

Network analyses of m’C-related genes

LUAD tumor samples from TCGA with available overall
survival (OS) data and clinical information were enrolled
into one meta-cohort. The prognostic values of the 11 m’C
regulators were revealed via a univariate Cox regression
model (Figure 3B). The 11 regulators were not related to
the prognosis of LUAD patients, except for NSUN7, which
also indicated that these 11 genes may indirectly interfere
with the prognosis of LUAD patients. The m’C regulatory
network described the integrated view of the mutual effect of
m’C regulators, regulator connection, and their prognostic
value for LUAD patients (Figure 3C and Table S1).
The 11 genes were divided into four clusters. We found a
correlation between expression and functional category of
similar m’C regulators. ALYREF may be a key gene of m’C
regulators, which affects the prognosis of LUAD through

forward and reverse regulation of the other 10 genes.

TME cell infiltration characteristics in distinct m’C
modification patterns

Identification of m’C modified subtypes (m’C clusters)
We used the NMF R package to classify patients into two
distinct modification patterns via unsupervised clustering,
according to the expression quantity of 11 m’C regulators
(Figure 44,B). A total of 504 samples were included,
including 152 samples for cluster C1 and 352 samples for
cluster C2. We termed these patterns: m’C cluster C1 and
C2, respectively. Furthermore, prognostic analysis for the
two main m’C modification subtypes was also performed,
and the results showed significant differences in OS
between cluster C1 and C2 (Figure 4C). The m’C cluster
C2 modification pattern exhibited a significant survival
advantage. Then, we analyzed the expression of 11 m’C
regulators in the two main m’C modification subtypes.
The expression of the 7 genes among 11 regulators were
significantly different between cluster C1 and C2, and all 7
genes’ expression is higher in the cluster C1 (Figure 4D).

Functional enrichment of m’C modified subtypes

In order to explore the biological behavior of these different
m’C modification patterns, enrichment analysis of GSVA
was carried out using R language GSVA package, with the
c2 cp.kegg.v7.0.symbols.gmt gene set as a background. A
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Figure 2 Landscape of m’C regulators in LUAD. (A) Mutations of the first 10 genes related to m’C; (B) the relationship between CNV

and expression of nine genes related to m’C modification. ns, no significant difference; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

LUAD, lung adenocarcinoma.

© Translational Lung Cancer Research. All rights reserved.

Trans! Lung Cancer Res 2021;10(5):2172-2192 | http://dx.doi.org/10.21037/tler-21-351



2178

Chen et al. M°C modification and TME infiltration feature in LUAD

Table 1 The proportion of amplification and deletion of 11 genes related to m’C modification

Role Gene symbol Amplification Diploid Deletion CNV_sum Amplification % Deletion%
Writers NSUN2 279 826 6 1111 25.1 0.540054
NSUN3 53 985 64 1102 4.8 5.807623
NSUN4 64 998 42 1104 5.8 3.804348
NSUN5 102 964 32 1098 9.289617 2.91439
NSUN6 67 978 57 1102 6.079855 5.172414
NSUN7 62 990 48 1100 5.636364 4.363636
DNMT1 12 919 174 1105 1.085973 15.74661
DNMT2 72 1017 10 1099 6.55141 0.909918
DNMT3B 112 967 28 1107 10.11743 2.529359
NSUN1 - - - - - -
DNMT3A - - - - - -
Erasers TET2 13 433 80 526 2.471483 15.20913
ALYREF ALYREF 146 937 15 1098 13.2969 1.36612

total of 187 pathways were enriched, and 39 differential
pathways were screened by It1>6. The m’C C1 subgroup
was enriched in 14 pathways, mainly related to matrix
pathways such as cell cycle and DNA (deoxyribonucleic
acid) repair, while C2 was enriched in 25 pathways, mainly
related to signal transduction and immune pathways (such as
Fc epsilon RI signaling pathway and the mitogen-activated
protein kinase (MAPK) signaling pathway) (Figure 5).

TME analyses of m’C modified subtypes

The CIBERSORT method was used to analyze the
composition of immune cells of two m’C modification
patterns (32). C1 was primarily composed of naive B cells,
activated CD4 memory T cells, follicular T helper cells,
resting NK cells, MO macrophages, and M1 macrophages,
while C2 was mainly composed of memory B cells, resting
CD4 memory T cells, monocytes, M2 macrophages,
resting dendritic cells, resting mast cells, neutrophils, and
eosinophils (Figure 64).

The correlation between m’C-related genes and TME
infiltration type was calculated using the rcorr function
of Hmisc package in R language. As shown in Figure 6B,
the DNMT3B gene was significantly associated with 10
TME infiltrating immune cell groups, of which, six were
composed of m’C modified C1 immune cells (naive B cells,
activated CD4 memory T cells, follicular T helper cells,
resting NK cells, MO macrophages and M1 macrophages).

© Translational Lung Cancer Research. All rights reserved.

The remaining four were composed of immune cells of the
C2 subgroup (memory B cells, resting CD4 memory T cells,
resting dendritic cells and resting mast cells). We used the
ESTIMATE algorithm to quantify DNMT3B (Figure 6C).
DNMT?3B expression was inversely correlated with the
immune, matrix, and ESTIMATE scores. Furthermore,
we analyzed the expression of DNMT3B in 21 immune
cells, and found that the low expression of DNMT3B was
significantly increased in the 21 immune cells (Figure 7A4).

Next, we analyzed the relationship between the
expression of DNMT3B and ICB inhibitors. Abnormal
expression of DNMT3B was associated with immune
function disorder (Figure 7B). Subsequent analyses of
pathway enrichment revealed that tumors with high
DNMTT3B expression exhibited enrichment in the Nod-like
receptor (NLR) signaling pathway, cytosolic DNA-sensing
pathway, and RIG-I-like receptor (RLR) signaling pathway
(Figure 7C). Furthermore, we analyzed the OS of high and
low expression groups of DNMT3B. The results showed
that low DNMT3b gene expression group was associated
with immunity and had a better prognosis (Figure 7D).

Generation of m’C gene signatures and functional
annotation

Using the limma package from R language, 226 DEGs
were screened by |log2fold changel >1 and FDR <0.05,

Trans! Lung Cancer Res 2021;10(5):2172-2192 | http://dx.doi.org/10.21037/tler-21-351
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all of which were related to the m’C phenotype. The
patients were divided into three different gene cluster
subtypes through unsupervised clustering of 226 m’C
phenotype-related genes (the cluster method was complete
and Euclidean was used to calculate the distance between
samples). PCA analysis demonstrated that they were
separated from each other (Figure §4). These three clusters

© Translational Lung Cancer Research. All rights reserved.

were named m’C gene cluster C1-C3. We also observed the
distribution of the 11 genes in the three m’C gene clusters
(Figure §B), and found that most samples of gene cluster C2
and C3 were included in m’C cluster C2, and most samples
of gene cluster Cl coincided with m’C cluster Cl1. In order
to further determine which biological processes these 226
genes were primarily involved in, R language WebGestaltR
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significant difference; ***, P<0.001. NMF, non-negative matrix factorization; RSS, residual sum of squares; OS, overall survival.

package was used for Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis (31441146) (33).
We screened a total of five pathways (by P<0.05): cell cycle,
oocyte meiosis, progesterone mediated oocyte maturation,
cellular sense, and the p53 signaling pathway. The 226
genes were associated with m’C modification and were
significantly related to tumorigenesis (Figure 8C).
Subsequently, the distribution of 21 immune cells in the
three subtypes of the m’C gene cluster was analyzed. As
shown in Figure 8D, the three subtypes were statistically
significant in 14 cells. Thus, it was clear that m’C
modification had a critical role in TME, and the 226 genes
modified by m’C also played an important role in the TME.
We further analyzed the KM curve of gene clusters C1-
C3, and found that these three subtypes were associated
with prognosis (P<0.05, Figure $E). Although the samples
were divided into three subtypes, there were only nine
cases of C3 samples. These results were consistent with the

© Translational Lung Cancer Research. All rights reserved.

classification of m'C modification patterns. The prognosis
of C2 was superior to that of C1.

Establishment of the m’C score model

Due to the individual heterogeneity and complexity of
m’C modification, a scoring system was constructed to
quantify the m’C modification pattern of individual LUAD
patients, which was called the m’C score. Firstly, we
screened 124 genes related to prognosis (P<0.05) from 226
isoform differential genes. Table S2 shows the results of the
univariate COX analysis of 124 genes. PCA analysis was
then performed on the 124 genes, PC1 and PC2 scores were
taken, and the m’C score of each sample was calculated as
follows: m’C-score=2PC1i+PC2i. The m’C score results of
the 513 samples are displayed in Table S3.

We divided the high and low score groups according to
the median of the m’C score and used the alluvial diagram

Trans! Lung Cancer Res 2021;10(5):2172-2192 | http://dx.doi.org/10.21037/tler-21-351
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Figure 5 Expression of 39 pathways in the GSVA analy51s of two m’C modification clusters. GSVA, gene set variation analysis.

to demonstrate the changes between m’C clusters, gene
clusters, and m’C scores (Figure 94). We found that most
of the samples of the m’C cluster C2 subtype with good
prognosis were identical with those of the gene cluster
C2 subtype, and patients with good prognosis primarily
exhibited a high m’C score.

To further verify the relationship between our m’C score
model and the prognosis of LUAD, we divided the high
and low score groups according to the median m’C score.
Survival analysis was then performed between these two
groups. We observed that the high m’C score group had a
better prognosis, which was consistent with the results of
the previous analysis (Figure 9B).

As shown in Figure 9C, there was a significant difference
in the m’C scores among the three gene cluster subtypes,
with cluster C2 scoring the highest, and cluster C1 the
lowest, which also verified that a high m’C score had a
good prognosis. Additionally, m’C score difference was also
statistically significant between the two m’C cluster subtypes
(Figure 9D). The score of the C2 subtype was markedly
higher than that of the C1 subtype, and the prognosis of C2

© Translational Lung Cancer Research. All rights reserved.

was better than that of C1, which further verified that a high
m’C score had a better prognosis. Therefore, a high m’C
score may predict a good prognosis for LUAD patients, while
a low m’C score may predict a poor prognosis.

We also performed GSVA analysis to further explore
the biological process involved in the m’C score difference.
We found that the low m’C score group was mainly related
to pathways of DNA repair, cell cycle, and stroma, while
the high m’C score group was primarily associated with
immune-related pathways and MAPK signaling pathways
(Figure 9E). Furthermore, through multivariate Cox
regression model analysis, we found that m’C score was an
independent prognostic factor (sample with missing clinical
information removed) (Figure 9F).

Moreover, we analyzed the expression of 11 m’C
regulators in the high and low m’C score groups. The
expression of seven regulators exhibited significant
correlation with m’C score. As shown in Figure 10, in
addition to TET2, a high m’C score also corresponded
to low gene expression (NSUN2, NSUN5, DNMTI,
DNMT3A4, DNMT3B, and ALYREF).
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ns, no significant difference; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor microenvironment.

Validation of external datasets

Establishment of GSE31210 dataset m’C score

The PCA analysis results of 125 genes obtained from
the previous analysis were used to establish a new m’C
score model based on the GSE31210 dataset. In total, 116

© Translational Lung Cancer Research. All rights reserved.

genes were identified in the GSE31210 dataset, which
were used to establish the m’C score model for 226 tumor
samples in GSE31210. First, through PCA analysis, PC1
and PC2 of the 116 genes were calculated, and the m’C
score was calculated for each sample. Figure 114 shows
the distribution of the 11 genes in the high and low m’C

Trans! Lung Cancer Res 2021;10(5):2172-2192 | http://dx.doi.org/10.21037/tler-21-351
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Figure 10 The expression of 11 m’C regulators in both high and low m’C score groups. ns, no significant difference; ***, P<0.001.

scores. Figure 11B displays the prognosis of the high and
low m’C score groups; a high m’C score may lead to a good
prognosis, which was consistent with the results of TCGA.

GSVA analysis of the high and low m’C score groups

In order to further investigate mechanisms through which
the m’C score affected biological processes, we performed
GSVA analysis using the R language. The results showed
that the high m’C score group was associated with immune
pathways, such as the complement and coagulation cascades,
leukocyte transendothelial migration, and the intestinal
immune network for immunoglobulin A (IgA) production.
Meanwhile, the low score group was associated with the
pathways related to the stroma, such as basal resection and
repair, cell cycle, etc. (Figure 11C).

These results verified that high m’C scores were
related to an immune desert type, which predicted a good
prognosis, while low m’C scores indicated an immune
exclusion phenotype, which suggested a poor prognosis.
The table online (https://cdn.amegroups.cn/static/
public/tler-21-351-1.xIsx) exhibits the enrichment scores
of all samples in 186 pathways, and Table S4 shows the
enrichment results of the high and low m’C score groups.

Composition of immune cells in the high and low levels

of the m’C score model
To further verify the immunophenotype of the high and

© Translational Lung Cancer Research. All rights reserved.

low m’C score groups of the dataset, we used CIBERSORT
to analyze the composition of immune cells in the high and
low m’C score groups (Figure 11D). The high m’C score
exhibited more infiltration of resting CD4 memory T cells
and resting mast cells, as well as less infiltration of MO and
M1 macrophages, which was similar to the immunocyte
infiltration of gene cluster C2.

Discussion

With the development of deep sequencing and mass
spectrometry (30), accumulating evidence has suggested
that m’C modification is very important for maintaining the
normal physiological function of cells and organisms (31-36),
while its abnormal distribution and expression are closely
related to tumor development. Studies have confirmed
that m’C is involved in the progression of hepatocellular
carcinoma (37,38). Also, there is increasing evidence that
methylation regulatory factors can be used as prognostic
and diagnostic markers of cancer (39-43). For example,
the high expression of NSUNI has been identified as a
prognostic marker for non-small cell lung cancer (44-46).
Recent studies have also confirmed that m’C may affect
the behavior of immune cells, such as CD* T cells (47).
Since most studies have focused on the effect of single
TME cell types or regulators on tumor development, there
remains a lack of comprehensive recognition of TME

Trans! Lung Cancer Res 2021;10(5):2172-2192 | http://dx.doi.org/10.21037/tler-21-351
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Figure 11 GSVA analysis of the high and low m’C score groups. (A) The expression of 11 m’C regulators in both high and low m’C score groups in the GSE31210 dataset; (B)

survival analysis of both high and low m’C score patient groups in the GSE31210 dataset; (C) GSVA enrichment analysis showing the activation states of biological pathways
of both high and low m’C score groups in the GSE31210 dataset; (D) the abundance of each TME infiltration cell in both high and low m’C score groups in the GSE31210

dataset. ns, no significant difference; *, P<0.05; **, P<0.01; ***, P<0.001. GSVA, gene set variation analysis.

2189

infiltration mediated by multiple m’C regulators. Further
understanding of the role of different m’C modification
patterns in the infiltration of TME cell will help to improve
our understanding of the TME antitumor immune response
and provide novel immunotherapy strategies.

In this study, two m’C methylation modification patterns
were revealed according to 11 m’C regulators, which
had remarkably distinct TME immune cell infiltration
characterization. Also, three genomic subtypes of the
m’C gene were identified based on 226 m’C phenotype-
related DEGs, which were also significantly related to
tumor occurrence. This further revealed the important role
of m’C modification in influencing the TME landscape.
Identification of the m’C modification patterns of individual
tumors was crucial due to the individual heterogeneity of
m’C modification. Thus, a scoring system was constructed
to assess the m’C modification pattern of LUAD patients.
The m’C cluster C2 exhibited a higher m’C score, and
patients in the m’C cluster C2 showed better prognosis.
The high m’C score group had a better prognosis, while
the low m’C score group had a poor prognosis. These
results were further verified in the GSE31210 dataset,
which indicated that the m’C score was a reliable method
for the integrated evaluation of distinct tumor m’C
modification patterns. Comprehensive analyses also
proved that the m’C score was an independent prognostic
marker in LUAD. Functional enrichment analyses in the
groups with better prognosis tended to be associated with
immunity; m’C cluster C2 exhibited enrichment pathways
related to immunity, such as the Fc epsilon RI signaling
pathway, and the high m’C score group in the GSE31210
dataset was correlated with immune pathways, such as the
complement and coagulation cascades, leukocyte trans-
endothelial migration, and the intestinal immune network
for IgA production. NSUN2, NSUNS, DNMTI1, DNMT3A,
DNMT3B, and ALYREF were highly expressed in m’C
cluster C2, as well as in TCGA and GSE31210 low m’C
score groups, which had a poor prognosis. Above, we
analyzed immune cell infiltration, immune checkpoint
characteristics, and functional enrichment analysis among
different expression levels of DNMT3B in LUAD.

Our study provides some insight for clinical application.
Our m’C score system could serve as a reliable and
independent biomarker for predicting the prognosis
of patients with LUAD. Our findings may help to
screen suitable patients who can benefit from immune
checkpoint inhibitor therapy. Further research based
on these m’C regulators, which regulate TME immune
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cell infiltration, may contribute to the discovery of novel
immune drug combination treatment strategies or new
immunotherapeutic agents, and promote the development
of individual tumor immunotherapy.

The methylation modification patterns of gastric cancer,
LUAD, and other cancers, which are mediated by the m°A
modulator, and the invasion characteristics of the TME
have been studied, and the m*A modulator is closely related
to the tumor immunophenotype (48-53). Studies have also
revealed that cross-talk between m°A and m’C regulators
is associated with tumor immunogenicity and prognosis
in 33 cancer types (54). In future studies, we will also aim
to explore whether m’C and m°A have a synergistic effect
on LUAD tumor microenvironmental characteristics and
the patients’ response to immunotherapy. We will also
further investigate how genes (NSUN2, NSUNS, DNMT]1,
DNMT3A, DNMT3B and ALYREF) that are highly
expressed in groups with poor prognosis work. In addition,
we cannot rule out the possibility that m’C regulatory
factors affect the behavior of the matrix in the TME. Some
researchers have found that m’C is related to PM2.5-
induced pulmonary fibrosis in mice (55), thus the regulatory
behavior of m’C on the TME may be complex.

Our study had limitations that should be noted. Firstly,
we did not consider the correlation between immune
infiltration location and TME heterogeneity. Secondly,
due to the limited clinical annotation in public datasets, the
clinicopathological parameters detected in this study are not
comprehensive, which may contribute to potential bias in
the predictive performance when the m’C score signature
served as a prognosis biomarker. Thirdly, due to the time
constraints and lack of enough budget, we haven’t carried
out relevant experiments now. In future work, we will
conduct further experiments to validate the results. Finally,
due to the lack of overall clinical information in the datasets
involved, we could not directly analyze the correlation
between m’C score and the response of LUAD patients to
immunotherapy.

Conclusions

In this study, we found that m’C modification played
a significant role in formation of TME diversity
and complexity. Based on the characteristics of m’C
modification, a score model was constructed to predict the
prognosis of LUAD patients, which was also verified in the
external dataset. We believe that m’C modification will have
some implications for tumor immunotherapy in the future.

© Translational Lung Cancer Research. All rights reserved.
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