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A high-intensity potentially tissue-injuring stimulus generates a homotopic response

to escape the stimulus and is associated with an affective phenotype considered to

represent pain. In the face of tissue or nerve injury, the afferent encoding systems display

robust changes in the input–output function, leading to an ongoing sensation reported

as painful and sensitization of the nociceptors such that an enhanced pain state is

reported for a given somatic or visceral stimulus. Our understanding of the mechanisms

underlying this non-linear processing of nociceptive stimuli has led to our appreciation of

the role played by the functional interactions of neural and immune signaling systems

in pain phenotypes. In pathological states, neural systems interact with the immune

system through the actions of a variety of soluble mediators, including cytokines.

Cytokines are recognized as important mediators of inflammatory and neuropathic pain,

supporting system sensitization and the development of a persistent pathologic pain.

Cytokines can induce a facilitation of nociceptive processing at all levels of the neuraxis

including supraspinal centers where nociceptive input evokes an affective component

of the pain state. We review here several key proinflammatory and anti-inflammatory

cytokines/chemokines and explore their underlying actions at four levels of neuronal

organization: (1) peripheral nociceptor termini; (2) dorsal root ganglia; (3) spinal cord;

and (4) supraspinal areas. Thus, current thinking suggests that cytokines by this action

throughout the neuraxis play key roles in the induction of pain and the maintenance of the

facilitated states of pain behavior generated by tissue injury/inflammation and nerve injury.

Keywords: cytokine, chemokine, pain, neuroimmune crosstalk, neuraxis

INTRODUCTION

High-intensity mechanical or thermal stimuli will selectively increase the activity of populations of
primary afferents, referred to as nociceptors, with the frequency of discharge reflecting the intensity
of the stimulus. This input drives activation of second-order neurons, many of which project to
the brain. The consequence of this input is to drive a pain state, which at its simplest results in
a protective response (e.g., withdrawal of the affected limb) mediated by spinal and supraspinal
organization (e.g., nociception) and then at higher-order levels of processing drives a state of
negative affect (e.g., pain/suffering) (1). Of note, it is appreciated that in the face of persistent
afferent input, as after tissue or nerve injury, there is an increased activation of the afferent and
the second-order spinofugal neuron, which drives an enhanced pain response. Such “hyperalgesic”
states variously reflect increased responsiveness of the primary afferent and/or the second-order
projection neurons, leading to the enhanced pain report. The biology of systems underlying this
change in input–output functionality of the spinal dorsal horn has been the subject of considerable
interest. One underlying element of this facilitated processing reflects the role played by cytokine
signaling in system function.
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Classically, three considerations have characterized the
actions of cytokines.

(1) They are peptides released from immunocompetent cells,
notably T cells and monocyte family members (2).

(2) This increased production and release is driven by
pathological conditions such as tissue injury and infection,
which initiate activation of these inflammatory cells.

(3) Their perceived role is largely to engage immune signaling
and pathologic targets, serving as entities involved in
autocrine, paracrine, and endocrine signaling.

Advances in our understanding of cytokine biology have
considerably expanded this original profile. It is now clear that
aside from immune cells (resident and recruited macrophages,
lymphocytes, and mast cells present throughout the neuraxis),
cytokines are released from peripheral afferents (Schwann cells
and peripheral termini of sensory fibers), as well as from cells
within the dorsal root ganglia (DRG) and spinal cord (3).
As will be reviewed, this release can indeed be initiated by
injury or inflammation, and also by neuronal activity otherwise
driven by these injury conditions (4). Cytokine signaling is
now known to exert direct effects upon neural signaling
through eponymous receptors located on neurons, microglia,
and astrocytes, in the spinal parenchyma and in the DRG and
brain. Further, while neuronal activation might be the result
of receptor-mediated and direct cell-to-cell contact-dependent
mechanisms (e.g., gap junction contacts in DRG neurons and
satellite cells) (5), soluble extracellular molecules serve to create
broader gradients of paracrine- and autocrine-like regulatory
networks. These cytokines thus comprise a communication
network between immune and neuronal cells. In the context
of high-frequency afferent traffic generated by tissue injury, a
wave of inflammatory cytokines acts on the terminals of sensory
nerve fibers (nociceptors), triggering activation of corresponding
pain pathways while neuronal activation leads to a reciprocal
activation of a variety of cytokine-generating cells (3). Of
note, prolonged inflammation alters nociceptive processing in
such a fashion as to yield a persistent pain phenotype even
after the inflammation and wounding has resolved, creating a
“neuropathic”-like phenotype (6).

A further intriguing complexity is that several of these
cytokines, as will be reviewed below, act through signaling
to suppress excitatory signaling (e.g., they have an anti-
inflammatory phenotype). Finally, current work raises the
likelihood that signaling secondary to sustained cytokine and
chemokine release and the recruitment of migratory effector
cells into the DRG and spinal cord can initiate a feedback
loop that results in neuronal injury and subsequently chronic
pain. Thus, the balance between repair and proinflammatory
factors may determine the rate of progression and outcome of
a neurodegenerative process.

Cytokines thus play important roles at the systems
level in regulating the functionality of neuraxial systems
regulating neurodevelopment, neuroinflammation, and synaptic
transmission. Here, we seek to provide an overview focused
on a curated list of cytokines identified in the context of
neuronal modulation and damage, to play a role in changes

in pain processing after tissue and nerve injury, and discuss
roles that cytokines play at the interface of the neuronal and
immune system interfaces divided across four levels of neuronal
organization: (1) peripheral termini; (2) DRG; (3) spinal cords;
and (4) supraspinal areas.

CYTOKINE FAMILIES

Cytokines, from the combination of two Greek words cyto
(cell) and kinos (movement), are defined as a family of low-
molecular-weight bioactive proteins or glycoproteins secreted
by immune cells and non-neuronal cells (e.g., epithelial cells,
fibroblasts, and Schwann cells). Interferon was the first cytokine
discovered more than 60 years ago (7). In the absence of a
unified classification, cytokines are classified by numeric order of
discovery, by kinetic or functional role in inflammatory/immune
responses, by primary cell of origin, or by structural homologies
shared with related molecules (8). According to structural
homologies, cytokines can by classified into groups: tumor
necrosis factors (TNFs), interleukins (ILs), interferons (IFNs),
colony-stimulating factors, transforming growth factors (TGFs),
and chemoattractant cytokines, also called chemokines.

Chemokines are small proteins that direct the movement of
circulating leukocytes and immune cells. They constitute a family
of more than 50 structurally homologous proteins classified in
four families according to the location of N-terminal cysteine
residues (i.e., CXC, CC, CX3C, or XC). Chemokines affect cells
by activating surface receptors that are seven-transmembrane
domain G-protein-coupled receptors (GPCRs) and have been
implicated in a wide range of inflammatory diseases, such as
multiple sclerosis and atherosclerosis (9). These ligands and
their respective receptors participate in neuronal and microglial
crosstalk (10, 11). The temporal expression of chemokines and
their receptors may directly or indirectly contribute to the
development of acute pain and the maintenance of chronic
pain states.

Historically, cytokines were simply classified according to
the functional T-helper (Th) cell group (Th1 or Th2) that
produced them. However, recent studies show that cytokines
and chemokine display anti-inflammatory and proinflammatory
properties producing inhibitory and stimulatory effects in the
immune system. As shown in Table 1, properties of a cytokine
are dependent on the microenvironment, and most have dual
effects according to their context (38, 112, 113). For example,
IL-1β is considered a proinflammatory cytokine and can increase
neuronal sensitization (17, 18), but it can also regulate inhibitory
neurotransmission (15, 16). IL-10 is typically considered to be an
immunosuppressive cytokine, which attenuates proinflammatory
cytokine release and can reduce antigen presentation. However,
IL-10 can also support the activation and proliferation of B cells
(39), which can sustain autoimmune attacks. One of the most
complex cytokines is TGF-β, which under certain conditions
is involved in the differentiation of regulatory T cells (Treg)
or in conjunction with IL-6 can drive the differentiation of
proinflammatory T cells that produce IL-17 (Th17) (38). Hence,
cytokines are characterized by (1) pleiotropy (i.e., a specific
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TABLE 1 | Dual effects of cytokines involved in chronic pain*.

Cytokines Major source Receptors Antinociceptive properties Pronociceptive properties Diseases Biologic DMARD

(year approved)

INTERLEUKINS

IL-1β Macrophages, mast

cells, Schwann cells,

microglia,

astrocytes (12)

IL-1R1

IL-1R2

IL-1Ra

At physiological level, acts as a

neuromodulator of LTP (13),

assists host defense against

infection (14), and can regulate

inhibitory neurotransmission

(15, 16)

↑Neuronal sensitization (17, 18),

↑mechanosensitivity of C fibers (19),

↑TRPV1 receptor expression in DRG

neurons (20), ↑release of

proinflammatory cytokines (14)

RA, OA,

neuropathic pain,

IBD, MS, AD,

atherosclerosis

(14, 21)

Anakinra (2001)

Rilonacept (2008)

Canakinumab (2009)

IL-4 Activated T cells (22) IL-4R1

IL-4R2

↑T cell proliferation, activation of B

cells, macrophages, inflammation,

and wound repair (22)

Promote the differentiation of

monocytes into DCs that support Th1

cell response (23), exacerbate a

Th1-dependent model of colitis (24)

Atopic dermatitis

Asthma, chronic

itch, AD,

MS (25–28)

Benralizumab (2017)

Dupilumab (2017)

IL-5 Eosinophils, TH2 cells,

mast cells, NK

cells (29)

IL-5R None Promote allergic response via

↑eosinopoiesis (29)

Asthma, headache

(30, 31)

Mepolizumab (2015)

Reslizumab (2016)

IL-6 Monocytes,

macrophages (32)

IL-6R

sIL-6R

gp130

Regenerative processes (classical

signaling via IL-6R) (33)

Recruitment of mononuclear cells,

inhibition of T cells apoptosis, and

Treg cell differentiation (trans-signaling

via sIL-6R) (33), ↑TRPV1 in DRG (34),

sensitization of nociceptive C-fibers

(35)

Arthritis, cancer

pain

(33, 34, 36, 37)

Tocilizumab (2010)

Siltuximab (2014)

Sarilumab (2017)

IL-10 Macrophages, DCs, B

cells, mast cells, T

cells (38)

IL-10R1

IL-10R2

Immunosuppressive activity↓ of

proinflammatory release,↓ antigen

presentation, ↑release of

anti-inflammatory cytokines

(39),↑spinal microglial expression

of β-endorphin (40)

IL-10-deficient mice developed

mechanical allodynia (41)

↑Activation and proliferation of

immune cells (39), ↑IFN-γ production

(42), ↑MHCII expression on B cells,

inhibition of the suppression of B cells

(38)

RA, MS, SLE,

psoriasis, IBS, IBD,

post-operative

pain, pelvic pain,

neuropathic pain

(40, 43)

None

IL-13 Th2 cells, CD8+ T

cells, mast cells,

eosinophils,

basophils (44)

IL-13Rα1 Inhibition of the release of

proinflammatory cytokines and

prostaglandins (45), modulation of

pain-facilitating macrophages (46)

Drive skin inflammation (26), potent

growth and differentiation factor for B

cells (47)

Asthma, breast

cancer, chronic

itch, RA (26, 45, 48)

Dupilumab (2017)

Lebrikizumab (2017)

IL-17 T cells (Th17),

fibroblasts (49)

Il17RA Anti-inflammatory effect in the

development of experimental

autoimmune uveitis (50),

maintenance of the epithelial tight

junction barrier in the intestinal

epithelium during inflammation

(51), protection against

bacterial-inflammation-induced

bone loss (51)

↑Transcription of proinflammatory

cytokines (49), direct activation of

nociceptors (52), induced

hyperalgesia by a TND-dependent

neutrophil infiltration (53, 54)

Psoriasis, arthritis

(55–57)

Ustekinumab (2009)

Secukinumab (2015)

Ixekizumab (2016)

Brodalumab (2017)

IL-18 Monocytes,

macrophages,

microglia, astrocytes

(58, 59)

IL-18R None ↑Allodynia and hyperalgesia after

intrathecal injection (60) induces

astroglial activation (58) and mediates

microglia/astrocyte and

microglia/neuron interactions (58, 61)

RA, SLE, psoriasis,

IBD, bone cancer,

neuropathic pain

(58, 59, 61)

None

IL-27 Activated APC (62) IL-27

Rα/WSX-1

TCCR

gp130

Suppression of inflammatory

immunity via polarization of Tregs

(63), ↓expansion of Th17 and

IL-17 levels (63–66), and inhibition

of osteoclastogenesis (67)

Trigger IFN-γ production by naïve

CD4+ T cells (62)

Asthma, cancer,

metabolic

disorders,

arthritis (68)

None

IL-33 Macrophage, mast

cell, astrocyte,

microglia,

oligodendrocyte (69)

ST2

(IL1RL1)

IL-1RAcP

Single intrathecal treatment with

sST2 reduces ongoing

CCI-induced hyperalgesia (70)

Oligodendrocytes release IL-33 that

activates both astrocytes and

microglia to further produce TNF-α

and IL-1β (70) and contribute to

spinal pain processing (71)

RA, cancer (72–74) None

(Continued)
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TABLE 1 | Continued

Cytokines Major source Receptors Antinociceptive properties Pronociceptive properties Diseases Biologic DMARD

(year approved)

IL-35 Treg, B cells (75, 76) IL-35R Suppression of T-cell proliferation

(77)

↓Expression of proinflammatory

cytokines, ↓spinal neuronal

apoptosis via inhibiting JNK

signaling pathways, ↑production

of IL-10 (78)

Release of proinflammatory cytokines

from mononuclear cells in vitro (79)

RA, MS,

neuropathic pain

(78, 80)

None

TUMOR NECROSIS FACTOR

TNF-α Macrophages,

astrocytes,

microglia (81–83)

TNFR1

TNFR2

Nerve demyelination (via TNFR1

signaling) (84)

↑Neuronal sensitization and CGRP

release (85–87), stimulation of

oligodendrocyte regeneration (via

TNFR2 signaling) (84)

RA, cancer,

diabetes, IBD (88)

Etanercept (1988)

Infliximab (1998)

Adalimumab (2002)

Certolizumab pegol

(2008)

Golimumab (2009)

TRANSFORMING GROWTH FACTOR

TGF-β1 Macrophages, Th3

cells (38)

TGF-βR1

TGF-βR2

Development, differentiation, and

polarization of Treg (38); inhibition

of spinal microgliosis and spinal

and astrocyte activation (89)

In association with IL-6, drive the

differentiation of Th17 cells to a

proinflammatory state (38)

Neurological

disorders, arthritis,

neuropathic pain,

chronic pancreatitis

(89–92)

Galunisertib (2019)

INTERFERON

IFN-1α Macrophages,

monocytes, T cells,

glial cells, neurons (93)

IFN-α/βR Analgesic properties: ↓glutamate

and substance P release (94)

Potentialization of excitatory synaptic

transmission (93)

SLE (95) None

IFN-γ CD4+ T cells,

astrocytes, microglia

(38, 96)

IFN-γR Neuroprotective role and

regulation of immunity (97, 98)

Recruitment and activation of

microglia (99), ↑excitatory synaptic

transmission (94)

Neuropathic pain,

lupus, RA, MS,

IBD, HLH (99–102)

Emapalumab (2018)

CHEMOKINES

CCL2/MCP-

1

Macrophages,

monocytes (103)

CCR2 Global suppressive effects on

T-cell trafficking and

differentiation (38)

Activation of microglia (104), ↑activity

of NMDA receptors in dorsal horn

neurons (11), recruitment of

macrophages (103)

OA, MS, asthma

RA, cancer pain,

IBD (38, 103)

None

CXCL1/

GRO-α

Macrophages,

astrocytes (105)

CXCR2 None Involve in astroglial–neuronal

interaction, central sensitization via

NMDA receptors activity (106), attract

polymorphonuclear cells toward

inflammatory sites (105)

Neuropathic pain

(106, 107)

None

CXCL8/IL-

8

Macrophages,

monocytes, T cells

CD8+,

osteoclasts (108)

CXCR1

CXCR2

Participate in tissue homeostasis

(e.g., skin, lung, and joint) via

angiogenesis, neutrophil

migration, and recruitment (109)

Neutrophil recruitment (109) and

angiogenesis (110) in pathological

conditions, direct activation of

nociceptors in arthralgia (68, 108)

Atherosclerosis,

cancer, IBD

(109, 111)

None

*For biologic treatment agents, the date in parentheses represents the initial U.S. approval according to the Food and Drug Administration (FDA). AD, Alzheimer’s disease; APC,

antigen-presenting cells; DCs, dendritic cells; DRG, dorsal root ganglia; GRO, growth-related oncogene; HLH, hemophagocytic lymphohistiocytosis; IBD, intestinal bowel disease; IFN,

interferon; IL, interleukin; MCP, macrophage inflammatory protein; MS, multiple sclerosis; NK, natural killer; NMDA, N-methyl-d-aspartate; RA, rheumatoid arthritis; OA, osteoarthritis;

SLE, systemic lupus erythematosus; TGF, transforming growth factor; TNF, tumor necrosis factor; TRPV1, transient receptor potential cation channel subfamily V type 1.

cytokine can affect several types of cells), (2) redundancy (i.e.,
overlapping functions), and (3) cascading signal activation (i.e.,
one cytokine stimulates the production of additional cytokines)
(113, 114).

Physiologically, cytokines are involved in multiple biological
functions such as cell differentiation, survival, growth, and
metabolism (115). Although broad characterizations of cytokine
behavior were aligned with adaptive immune functions, cytokine
responses of the innate immune system are important to prevent
damage during and following autoimmune attack, inflammation,
and infections. In pathological conditions, the imbalance of
cytokines participates in the development of the disease and

progression leading to damage (114). In the context of the
nervous system, some cytokines are considered to function as
pain mediators as well as messengers of the immune system. This
level of pleiotropy underscores the elegant role these molecules
play in communication between the immune system and the
nervous system.

SIGNALING PATHWAYS

Although the receptors for individual cytokines display
specificity for their respective ligands, the subsequent signaling
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pathways often converge, resulting in nuclear translocation of
transcription factors and a secondary transcription of additional
downstream mediators. Common signaling pathways activated
following cytokine receptor ligation and activation include
(1) nuclear factor-κB (NF-κB), (2) the mitogen-activated
protein kinases (MAPKs), (3) the Janus kinase (JAK) and signal
transducer and activator of transcription (STAT), and (4) the
Smad family signaling pathways (114, 116).

NF-κB Signaling
The most widely studied signaling cascade associated with
cytokine signaling is the NF-κB (NF kappa light chain enhancer
of activated B cells) family (117). These are a family of highly
conserved transcription factors including NF-κB2 p52/p100,
NF-κB1 p50/p105, c-Rel, RelA/p65, and RelB, which form
functional dimers. Receptors that can activate this cascade
include IL-1R and the TNF receptors. In the cytoplasm, NF-
κB family members are bound to IκB. In the classical or
canonical pathways, proinflammatory cytokine receptors activate
an IκB kinase complex (IKKβ, IKKα, and NEMO), which
phosphorylates IκB proteins, leading to IκB degradation and
the release and translocation of the NF-κB/Rel complexes to
the nucleus. In the nucleus, these transcription factors can
induce gene transcription alone or in combination with other
transcription factors including AP-1 and STATs (118).

Some of the target genes include other proinflammatory
cytokines, like IL-6 and IL-8. In some instances, there is an
alternative pathway through signaling of cytokine receptors like
the lymphotoxin-β receptor (LTβR and TNFRSF3) (119). These
activate Nck-interacting kinase [NIK; MAPK kinase kinase
(MAPKKK) 14], which in turn activates IKKα complexes that
phosphorylate NF-κB2 p100. Phosphorylation of NF-κB2 p100
then leads to its ubiquitination and proteasomal processing to
NF-κB2 p52/RelB complexes that translocate to the nucleus and
induce target gene expression (117).

MAPK Signaling
The MAPKs are generally divided into the p38 stress-
activated protein kinase (SAPK)/Jun amino-terminal kinase
(JNK) and extracellular signal-regulated kinase (ERK) pathways
(120). These kinase pathways are activated by a variety of
environmental stresses, growth factors, GPCR agonists, and
inflammatory cytokines. In the MAPK cascades, there are tiered
activation steps. The membrane proximal MAPKKK kinases
(MAPKKKKs) or GTPases activate MAPKKK, which mediate
phosphorylation and activation of MAPK kinases (MAPKKs),
which in turn phosphorylate and activate MAPK. p38 MAPK is
activated by MKK3/MKK6 and is involved in the regulation of
HSP27, MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and several
transcription factors including ATF-2, Stat1, the Max/Myc
complex, MEF-2, Elk-1, and indirectly CREB via activation of
MSK1 (121).

Stress signals are delivered to the JNK family cascade by small
GTPases of the Rho family (Rac, Rho, and cdc42). As with the
other MAPKs, the membrane proximal kinase is a MAPKKK,
typically MEKK1–MEKK4, or a member of the mixed lineage
kinases (MLKs) that phosphorylate and activate MKK4 (SEK)

or MKK7 and that phosphorylate the SAPK/JNK kinases, which
then translocate to the nucleus where they can regulate the
activity of multiple other transcription factors (122).

The ERK signaling cascade is activated by receptors involved
in growth and differentiation including receptor tyrosine kinases
(RTKs), integrins, and ion channels. The receptors signal through
cascades that include small GTP-binding proteins (Ras and
Rap1), which in turn activate a MAPKKK (Raf), a MAPKK
(MEK1/MEK2), and then Erk MAPK (123). Erk dimers can
regulate targets in the cytosol and also translocate to the
nucleus where they phosphorylate a variety of transcription
factors regulating gene expression related to growth, migration,
and differentiation. As an example of signaling complexity for
cytokines, TNF acts through two receptors, TNFR1 and TNFR2,
which drive MAP kinase activation and enhance inflammatory
responses by secondary IL-1, IL-6, and IL-8 release following the
transcription of their target genes (124).

Activation of neuronal TNF receptors drives MAPK
activation, which enhances inflammatory response by increasing
IL-1, IL-6, and IL-8 release. IL-1 for instance is involved with
cyclooxygenase (COX) upregulation within the DRG, inducing
neuronal sensitization. Moreover, sensitization of ion channels
in neuronal cells is involved with pain processing (125). IL-6
has been shown to induce JAK and protein kinase C (PKC)
activation, which enhances the ion channel transient receptor
potential (TRP) cation channel subfamily V member (TRPV1)
sensitivity. In fact, JAK and PKC inhibitors decrease TRPV1
sensitization (126, 127). However, not only does this sensitization
apply for the primary afferent, but it also seems that cytokines
can induce neuronal sensitization in other anatomical levels
such as cells in the DRG, dorsal horn of the spinal cord,
and supraspinal areas (128). In fact, peripheral inflammation
increases the expression of IL-1β and COX in the DRG, cascades
known to be involved with neuronal network sensitization (18).
It is thus noteworthy that TNF and IL-1β induced sensitization
of cells in the dorsal horn and increased pain hypersensitivity
(hyperalgesia) by enhancing α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA)- or N-methyl-D-aspartate
(NMDA)-induced currents. Further, IL-1β and IL-6 suppressed
typical inhibitory gamma-aminobutyric acid (GABA)- and
glycine-induced currents (17). Accordingly, TNF and IL-1β
enhanced NMDA receptor phosphorylation in the trigeminal
nucleus in mesencephalic (trigeminal nucleus) and also increased
NMDA current in the hippocampus (129).

Smad Signaling
The Smad family of transcription factors is largely downstream
of the TGF-β and bone morphogenetic protein (BMP)
superfamilies (130). In general, signaling is initiated with
ligand-induced activation of serine/threonine receptor
kinases and phosphorylation of the cytoplasmic signaling
molecules Smad2/Smad3 for the TGF-β/activin pathway, and
Smad1/Smad5/Smad9 for the BMP pathway. Activated Smads
regulate diverse biological effects by partnering with other
transcription factors, resulting in transcription of specific cell
state-associated target genes (131). This family has inherent
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regulatory negative feedback loops with inhibitory Smads (I-
Smads) 6 and 7, which are also induced by both TGF-β and BMP
signaling. The TGF-β and BMP pathways are cross-regulated by
MAPK signaling. Moreover, in certain contexts, TGF-β signaling
can also affect the Erk, SAPK/JNK, and p38 MAPK pathways
independent of Smad activation (116).

JAK/STAT Signaling
Over 50 cytokines and growth factors use the JAK/STAT pathway
for signaling. After receptor ligation, the JAK proteins are
phosphorylated, and activated JAKs then phosphorylate STAT
monomers, leading to dimerization, nuclear translocation, and
DNA binding. Although there are four JAKs (JAK1, JAK2,
JAK3, and TYK2) and seven STATs (STAT1, STAT2, STAT3,
STAT4, STAT5a, STAT5b, and STAT6) in mammals, the number
of potential combinations alone does not fully explain the
pleiotropy in signaling (22, 34, 132). For example, IL-6R and
IL-10R signaling both result in STAT3 activation through JAK
activation; however, one cytokine is mostly proinflammatory,
and the other is considered anti-inflammatory. There may be
differences in STAT use for some cytokines, whereas other
cytokines like IL-27 strongly activate more than one STAT
protein (STAT1 and STAT3). To add to the complexity, multiple
STATs may bind to the same target site due to shared specificities.
In addition STAT proteins can be phosphorylated on serine
residues to influence their DNA binding pattern, and STAT
signaling influences epigenetic changes. Some STAT proteins
have extra nuclear functions, for instance, at the mitochondrion
level (133, 134).

Cytokine-Induced Peripheral Transcription
While it is well-documented that nuclear translocation of
transcription factors is initiated by cytokine signaling, it has
recently been demonstrated that cytokines also can induce
nociceptive plasticity by local protein synthesis in the peripheral
processes of sensory afferents (135). It is well-established that
IL-6 expression is increased in arthritis and peripheral nerve
injury. Likewise, nerve growth factor (NGF) levels are elevated
in inflammatory and neuropathic pain states (36). IL-6- and
NGF-induced mechanical hyperalgesia is reversed by rapamycin
(135). Moreover, the IL-6R signals through the ERK pathway
and the NGF receptor signals primarily through the AKT/mTOR
pathway leading to phosphorylation of the CAP-binding protein
eIF4E. Finally, phosphorylation of eIF4E enhances rapid changes
in the translational control of gene expression in sensory
neurons, and this effect is linked to mechanical allodynia (136).
Although cytokines can induce nociceptive plasticity by local
protein synthesis in the peripheral processes of sensory afferents,
it remains unclear how these pathways directly intersect with the
activities of ion channels or GPCR. In Figure 1, we schematically
illustrate these pathways and actions in the cell body of a
nociceptor (Figure 1A) and the peripheral terminus (Figure 1B).

PERIPHERAL NOCICEPTOR TERMINAL

Irritants or immunogens such as carrageenan administered in
the hindpaw induce a transient hyperalgesia that is prevented

by non-steroidal anti-inflammatory drugs (NSAIDs). However,
inflammatorymediators such as prostaglandins into the same site
induced prolonged hyperalgesia, described as latent or “primed”
state, that is not prevented by NSAIDs (85, 137). In the same
manner, during chronic pathophysiological conditions such as
arthritis, cytokines induce neuronal sensitization and priming
of the primary afferent (85), of the DRG (18), and as reviewed
below at supraspinal levels (128). Indeed, in an arthritic murine
model [K/BxN passive serum transfer (138)], the mouse shows
an early phase characterized by inflammation, increased TNF
production, and pain and a late phase characterized by the
inflammation’s resolution, decreased TNF, but persistent pain
(41). These data suggest that cytokines play a role in priming
peripheral nociceptors.

Peripheral termini of nociceptors form arborization-like
structures in the skin, muscles, bone, joints, and viscera
(139). These locations, in proximity to many different cells
(e.g., keratinocytes and immune cells), facilitate the immune
modulation of nociceptor function. Among the many different
inflammatory diseases, arthritic diseases like rheumatoid arthritis
(RA) have been studied for the pathophysiology of localized
peripheral inflammation and pain. Notably, arthritic diseases
have been described to involve an imbalance of cytokines (114,
140). In RA, studies highlight an early alteration of cytokine
and chemokine levels months to years before the onset of
joint swelling, particularly in patients with arthralgia (i.e., joint
pain without observable clinical signs of disease such as joint
redness or swelling) (48, 141, 142). Serum cytokine profiles
also differ in RA patients with specific autoantibodies. Anti-
citrullinated peptide autoantibodies (ACPAs) are present in
a major subset of RA patients (around 60–70%) (143), are
serological markers for the diagnosis of RA (144), and are
prognostic factors for more aggressive joint diseases (145). In
the sera of RA patients with ACPAs, there was an increase in
the IL-5, IFN-1α, TNF, and IL-13 levels. In contrast, there were
specific increases in eotaxin and RANTES (i.e., regulated on
activation normal T cell expressed and secreted) levels in the sera
of RA patients who did not have any detectable ACPAs (48). In
animal models of arthritis, including antigen-induced arthritis
(AIA), collagen antibody-induced arthritis (CAIA), and collagen-
induced arthritis (CIA), IL-6 has been implicated as a key factor
in peripheral pain mechanisms (36). Direct IL-6 or IL-6/sIL-6R
administration into knee joints in rodents induced a long-lasting
sensitization of nociceptive C-fibers, contributing to mechanical
hypersensitivity (35).

In models of inflammatory pain, such as carrageenan
administration in the hindpaw, infiltration of macrophages and
the local release of TNF play a key role in the development and
sensitization of peripheral afferents (85). Activation of neuronal
TNF receptors increases the production of IL-1β, IL-6, and CCL2
[formerly known as monocyte chemoattractant protein-1 (MCP-
1)]. Both IL-1β and IL-6 have been shown to have activity in
acute inflammatory and chronic pain (146–148). Indeed IL-1β
enhanced pain transduction and conduction via modulation of
ion channels such as TRP ankyrin 1 (TRPA1), TRPV1, and
Nav1.7. CCL2 also contributes to macrophage recruitment (104,
149). Thus, these factors serve to perpetuate a feedback loop
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FIGURE 1 | Immune system and nociceptor activation. (A) Cytokines released in the vicinity of the cell body of nociceptors can induce specific receptor activation and

signaling cascades. Upon activation of nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK)/Janus kinase (JAK), and Smad transcription factors present in

the cytoplasm are phosphorylated and translocated to the nucleus, leading to the expression of target genes, resulting in biological responses. Alternatively,

downstream modulators like protein kinase C (PKC) can sensitize neurons through effects on ion channels (e.g., TRPV1 or Na+ channels). (B) In the peripheral

terminus, there are additional cytokines that signal through the extracellular signal-regulated kinase (ERK) pathway and the AKT/mTOR pathways leading to

phosphorylation of eIF4E, which can regulate local protein synthesis in the peripheral processes of sensory afferents. It remains unknown how these pathways directly

intersect with the activities of ion channels.

between neuronal sensitization and cytokine production during
tissue injury or inflammation.

Other studies have suggested that additional cytokines
play key roles in the induction of inflammatory pain in
models of arthritis, including IL-8, IL-17, and IL-27 (55,
58, 68). The chemokine IL-8 and its receptor CXCR2 are
involved in sensitization of afferent nociceptors in ACPA-
induced arthralgia. Interestingly, recent studies demonstrated
that a single injection of human IgG ACPA or monoclonal
murinized IgG ACPA antibodies isolated from RA patients is
capable of initiating pain without paw swelling when injected
into rodents (68). This effect of ACPAs is associated with
osteoclast activation, at least in vitro, which via the release of
the chemokine CXCL1 (an analog to human IL-8) mediates their
pronociceptive effects (68, 108). IL-8 has also been implicated
in conditions such as chronic low back pain (LBP). Krock
et al. showed a specific upregulation of this chemokine in the
cerebrospinal fluid of LBP patients with degenerating disks and
a reduction of disk degeneration and chronic back pain in a
mouse model (148). In a neuropathic orofacial pain condition,
the burning mouth syndrome, patients present an elevated
level of plasma IL-8, and this signature directly correlates
with pain and depressive symptomatology (150). Hence, IL-
8 has been implicated in the periphery for several different
pain phenotypes.

As described above, IL-6 has pleiotropic roles associated
with pain and inflammation. Another cytokine that also shares
the gp130 common receptor chain and signals through the
JAK/STAT pathway is IL-27. IL-27 is a heterodimer formed
by the Epstein–Barr virus-induced gene 3 (EBI3) and IL-
27 p28 subunits, which binds to a receptor composed of
the gp130 common receptor chain and IL-27Rα (i.e., WSX-
1 or TCCR) (62). Sasaguri et al. showed that IL-27 signaling
constitutively contributes to control of thermal (heat and cold)
and mechanical sensitivity (151). In an arthritis model, IL-27
attenuates disease development and histological disease severity
(i.e., cell infiltration in the joint, synovial hyperplasia, and
joint erosion) by reducing the expansion of Th17 cells and
IL-17 levels (63–66), which can reduce nociception (Table 1).
In osteoimmunology, IL-27 plays a critical role in limiting
bone erosion by inhibiting osteoclastogenesis (67). Osteoclast
activity is directly involved in pain development and reduced
with the use of osteoclast inhibitors such as bisphosphonates
or denosumab (152). The suggested mechanisms of this action
include mechanical stabilization in bone pain from trauma and
also changes in pH and acidosis in bone pain from cancer.
Nociception could be promoted by acidosis in which H+ protons
can directly activate specific ionic or receptors sensitive to
protons such as TRPV1 and the acid-sensing ion channel (ASIC)
family (153, 154).
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DORSAL ROOT GANGLIA

It has become apparent that the excitability of the afferent
input circuitry reflects the functional complexity of the DRG
system. DRG neurons are supplied by a fenestrated vasculature
that lies outside the blood–brain barrier (BBB), slowing the
passage of molecules that are normally excluded from the
neuraxis (155). This exposure of the afferent cell bodies to
circulating products, including cytokines, may partly explain
why circulating neurotoxic agents (e.g., chemotherapeutics)
preferentially accumulate and injure cells within the DRG,
inducing a sensory rather than a motor neuropathy (156).
DRG neurons are additionally supported by satellite glial cells
(SGCs), which envelop them and display gap junction linkages
between these two cell types (157). During inflammation, SGCs
display enhanced activation, increased TNF production, and
neuronal excitability (73). An increase of gap junctions has been
observed in pain-generating conditions, and this correlates with
enhanced neuronal excitability (157). Importantly, peripheral
inflammation or nerve injury causes DRG neuronal sensitization,
leading to a spreading activation of SGCs through gap junctions
and to the expression and release of IL-1β from SGCs.

Current work highlights an important role of macrophages
in response to inflammation and cytokine signaling. A major
source of endogenous cytokine production is from these resident
and migratory DRG macrophages. In arthritic conditions (e.g.,
osteoarthritis and RA), macrophages infiltrate into the DRG
and acquire a phenotype resembling that of TNF-stimulated
macrophages, suggesting a role of these cells in the maintenance
of arthritic pain (158). In vitro, macrophages stimulated with
TNF promote release of calcitonin gene-related peptide (CGRP)
by nociceptors, which is consistent with their pronociceptive
effect (159). In vivo, TNF is involved with sensitization of
nociceptive fibers and elicits a rapid increase of CGRP release
from the peripheral termini of nociceptors (86, 87). Other than
macrophages, during inflammation, SGCs become activated,
increasing TNF production, and enhancing neuronal excitability
(73). In neuropathic pain, a key role of TNF in the DRG has been
demonstrated by lentivirus-mediated silencing of TNF in DRG,
which attenuated the pain phenotype and reduced neuronal cell
death in mice with an L5 transection (160).

DRG cells produce additional cytokines such as IL-1β and IL-
6 and chemokines such as CCL2 or CXCL1 within the DRGs
that are involved in pain signaling (3, 161). Interestingly in
osteoarthritis, a high CCL2 production is associated with elevated
numbers of macrophages in the DRG and a high level of CGRP in
DRG neurons (162, 163). Mice lacking the CCR2 receptor (global
knockout) fail to develop mechanical allodynia in nerve injury
models (164). Accordingly, we suggest that during inflammation,
a neuro-crosstalk can occur in the DRG where inflammation
triggers cytokine and chemokine release from local/infiltrating
macrophages and neurons, contributing to development and
maintenance of facilitated states of excitability in the local
DRG circuit. Such enhanced excitability would contribute to an
enhanced afferent input into dorsal horn second-order neurons.

Several cytokines, IL-6 for example, can excite DRG neurons
directly by rapid effects that do not require gene transcription but

are likely to involve phosphorylation of different ion channels,
such as the TRP family. IL-6 is a pleiotropic cytokine with
a pivotal role in the pathophysiology of arthritis and pain
sensitization through increasing neuronal calcium mobilization,
action potential generation, and ion channel sensitization. IL-6
acting through IL-6R and gp130 drives JAK and PKC activation,
which enhances TRPV1, inducing excitability of nociceptive
TRPV1+ DRG neurons (34, 124). Correspondingly JAK and PKC
inhibitors decrease TRPV1 sensitization (34).

Gap junctions in the DRG can provide direct communications
between neuronal cell bodies and SGCs. An increase in gap
junctions has been observed in pain condition and seems
to enhance neuronal excitability and thus elicit pain (157).
Importantly, peripheral inflammation or nerve injury causes
sensitization of neurons, innervating peripheral tissues, and
spreading of activation of SGCs through gap junctions, which
leads to the expression and release of IL-1β from SGCs. IL-1β
has been shown to increase TRPV1 expression in DRG neurons.
Moreover, IL-1RI antagonism reduces thermal hyperalgesia
antigen-induced arthritis (20). IL-1β has been shown to act in
a p38 MAPK-dependent manner, to increase the excitability of
nociceptors. Indeed, IL-1β relieves resting slow inactivation of
tetrodotoxin-resistant voltage-gated sodium channels and also
enhances persistent TTX-resistant current near the threshold
(165). These IL-1β actions on nociceptors have facilitatory
effects in neurotransmission, which at least in part explains the
hyperalgesic effect seen with the direct application of IL-1β or the
endogenous production and release of IL-1β within the DRG.

Beyond the effect of IL-1β on ion channel sensitization, it
has been shown that intraplantar IL-1β can induce persistent
hyperalgesia, which is dependent on GPCR kinase 2 (GRK2)
and IL-10 downregulation. GRK2 plays a regulatory role in the
inflammatory response as studied in arthritis models. Reduction
of GRK2 in peripheral macrophages markedly prolonged
hyperalgesia and pain behavior in response to an intraplantar
injection of IL-1β or the inflammatory agent carrageenan (166).
The reduction of GRK2 in macrophages is associated with the
transition from acute to persistent hyperalgesia due to the lack
of IL-10 production. Moreover, local anti-IL-10 treatment in the
paw did not influence IL-1β-induced hyperalgesia, indicating
that IL-10 signaling in the spinal cord or DRG is required
for spontaneous resolution of hyperalgesia. Corroborating these
data, our group recently showed that mice deficient in IL-10
rapidly developed mechanical allodynia that did not recover,
suggesting that this cytokine also plays a key role in the acute and
chronic phases of pain-like behavior (41).

These data suggest that beyond changes in the peripheral
terminus nociceptor, the DRG plays an important role in
the development of pain states. Thus, cytokines produced by
local cells or released into the DRG are involved with the
facilitation of nociceptive stimulus, inducing subsequent dorsal
horn spinal activity.

SPINAL CORD

The peripheral nociceptor forms an excitatory synapse with
second-order neurons in the dorsal horn of the spinal
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cord to initiate transmission in the central nervous system
(CNS). This synapse can be modulated by local interneurons,
microglia, and astrocytes. These last cells constitute a component
serving to alter the input–output function of the dorsal
horn. Inflammatory cytokines maintain enhanced pain signaling
through modulating the central terminals of nociceptors
and/or spinal cord neurons. In naïve animals, intrathecal
delivery of cytokines can induce a direct pronociceptive
effect, leading to mechanical, and/or thermal hyperalgesia,
which has been observed after intrathecal injection of IL-
1β (15, 16, 167, 168), IL-18 (60), TNF (15, 16, 167), IL-6
(15), CXCL1 (107), CX3CL1/fractalkine (169), or CCL2/MCP-1
(170) among others. Conversely, a pronociceptive phenotype is
reduced in mice lacking such cytokine or chemokine signaling
or after the administration of anti-cytokine antibodies or
cytokine receptor antagonists. In pathologic conditions, chronic
intrathecal administration of IL-1 receptor antagonist (IL-
1ra) prevents pain induced by nerve injury in mice, and a
single intrathecal injection of IL-1ra induced a long-lasting
attenuation of mechanical hypersensitivity in the same model
(171). Intrathecally, coadministration of IFN-β and anti-TNF
antibodies permanently reversed mechanical allodynia in males
in the murine K/BxN serum transfer model of RA (41).
Moreover, intrathecal delivery of cytokines such as TGF-β or IL-
13 can also induce an antinociceptive effect in neuropathic pain
condition (46, 89, 158). TGF-β can inhibit excitatory synaptic
transmission in the spinal cord (172) and neuropathic pain
along with glial activation and neuroinflammation in the spinal
cord (89, 172).

Considering that cytokines play a role in the development
and maintenance of pain at the spinal cord level, we raise the
question of where these neuraxial cytokines are produced and
where they act. Microglia serve as spinal-resident macrophage-
like cells and display a rapid response to increased afferent
traffic and to pathological changes in the CNS. Spinal microglial
activation has been demonstrated in several pain conditions [for
review, see (173), including mononeuropathies after peripheral
nerve injury (174), polyneuropathies after chemotherapy (175,
176), or in diabetic models (177), chronic inflammatory pain
(178), and cancer pain (179), although some data are conflicting
(180)]. Microglia participate notably in the regulation of
neuroinflammation that contributes to the pathogenesis of pain
(173). Signals that activate microglia converge on intracellular
signaling cascades frequently involving the phosphorylation of
p38 MAPK, triggering production and release of TNF, IL-1β, and
IL-18; increased expression of COX; and subsequent synthesis of
prostaglandin E2 (PGE2) (18, 181, 182). These neuromodulators
then lead to enhanced dorsal horn excitability, which ultimately
serves to enhance receptive fields, increase output of the pain-
relevant sensory message to supraspinal areas, and enhance
pain behavior.

Astrocytes have a key role in neurotransmitter recycling,
regulation of blood flow, energy metabolism, synaptogenesis,
and synaptic transmission (183–187). Astrocytes signal physically
through gap junctions (e.g., connexin Cx43), facilitating
intercellular transmission (188, 189). Moreover, it has been
demonstrated that upregulation of Cx43 triggers release of

chemokines, ATP, and glutamate, which ultimately induces
nociceptor sensitization (185, 186). Astrocytes have been shown
to play both beneficial and detrimental roles, depending on
the nature of the injury or disease, that differ in their
functions (190). Thus, spinal cord astrocytes can generate
IFN-α, which have an antinociceptive effect mediated through
the mu opioid receptor (94). In addition, recent data from
our group have shown that the post-inflammatory allodynia
from an arthritis model may be robustly regulated by
downstream effectors activated through IFN-β and interferon-
inducible factors, including IL-10 and IL-1ra (41). In this
model, the allodynia only subsided when anti-TNF therapy
was combined with supplemental IFN-β, indicating that
chronic pain treatment might require modulation of multiple
pathways (41).

Astrocytes can also modulate pain through IL-33 production.
IL-33 is a member of the IL-1 superfamily but is active after
transcription and is deactivated by caspase cleavage. It binds
to the ST2 (Il1rl1) receptor, encoded by the IL1RL1 gene, and
the coreceptor IL-1 receptor accessory protein (IL-1RAcP). After
receptor engagement, the MyD88 signal cascade is activated
similarly as after IL-1R and IL-18R activation. This cytokine has
a pronociceptive effect with intrathecal injection (191, 192). In
addition, inhibiting the IL-33/ST2 pathway reduced nociceptive
behavior in murine models of pain, including cancer and
chemically induced inflammation (72, 192, 193).

The effects of the intrathecal injection of cytokines cited above
directly support the key roles played by spinal cord cytokines in
pain states. As these cytokines are not acting independently, it is
not surprising that these agents display important interactions in
different pain states reflecting their facilitatory and suppressive
interactions. As an example, intrathecal administration of
recombinant IL-27 induced antinociception dependent on IL-10
during the maintenance phase of peripheral neuropathy (194).
Also, intrathecal delivery of IL-35 in an experimental murine
model of autoimmune encephalomyelitis (EAE) reduced pain
behaviors (i.e., facial allodynia and grimacing), which was noted
to occur through an upregulation of an inflammatory cytokine,
IL-10 (195). IL-35 has been very recently highlighted as a
candidate target for diabetic neuropathic pain (DNP) treatment
(78). In fact, in a streptozotocin-induced DNP rat model, other
than a protective effect against inflammatory response, IL-35
injected intrathecally reduced allodynia via inhibition of JNK
signaling (78).

Second-order dorsal horn neurons express cytokine receptors
such as TNFR1, TNFR2, IL-1R, and IL-6R. Cytokine released at
the spinal cord level by resident cells (e.g., microglia/astrocytes)
can induce sensitization of the secondary neuron, leading to
supraspinal areas of activation where pain is processed and
perceived as an uncomfortable sensation (139). In fact, IL-
6, TNF, and IL-β enhance spontaneous post-synaptic current
(sEPSCs) in the spinal cord by both increasing excitatory
synaptic neurotransmission and suppressing inhibitory synaptic
transmissions (160). Taken together, these studies show that
therapeutically targeting peripheral inflammation will not
necessarily affect persistent pain. However, modulating multiple
pathways at the spinal level might be an effective way to
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prevent the development of chronic pain and to alleviate
ongoing pain.

SUPRASPINAL AREAS

Changes in higher-order functions such as anxiety or depression
are critical components of pain phenotypes, especially in the
context of a chronic pain state (196, 197). Studies in animal
models (99, 198, 199) and in vivo positron emission tomography
(PET) associated with magnetic resonance imaging (MRI) in
humans (200, 201) are consistent with the fact that chronic
pain states lead to an alteration of glial function in the brain.
Current thinking emphasizes the critical role that cytokines can
play in regulating depressive states, through their effects upon
key aminergic pharmacological systems regulating depressive
states such as increased monoamine transporter activity (202),
reduced cofactor availability (203), and reduced expression of
glutamate transporters and increased glutamate release from
astrocytes (204).

Cytokines play key roles in supraspinal modulation of pain
transduction. Consistent with this assertion are the findings
that intracerebroventricular (ICV) injection of TNF, IL-1β,
and IL-6 induced hyperalgesia (205–207) and that blocking
these cytokines in the brain reduced the behaviorally defined
expression of a pain state (208). Of note, mechanistically, it is
not clear whether this pain state reflects the role of an enhanced
supraspinal response to the ascending pain stimulus or an
activation of descending facilitatory/loss of descending inhibitory
system (209).

Microglial activation (Iba1 marker) after nerve injury is
observed in specific brain regions involved in pain and affect.
These regions include not only the thalamus and somatosensory
cortex but also limbic regions considered to be affiliated
with the affective component of the pain response (210).
Importantly, as in the spinal cord, glial cells are thought
to be a major source of cytokines and chemokines in the
brain (204), and the activation of these cells is considered
to play a key role in anxiety and depression, comorbidities
associated with chronic pain states (211, 212). Other works
support the involvement of microglial activation in prefrontal
cortex, amygdala, and hippocampal neurons associated with an
overproduction of TNF in neuropathic pain and chronic-pain-
associated depression (211, 213). Moreover, upregulation of IL-
10 and IL-1β is found in the contralateral–ventrolateral orbital
cortex (VLO) of rats with spared nerve injury (SNI), and IL-1β
expression and glutamatergic neurotransmission are enhanced
in the prefrontal cortex (PFC) of mice with neuropathic
pain (214).

Cytokine activation in the brain on the affective-motivation
component of pain processing is an exciting component of the
role played by cytokines in pain processing. Considerable work
has demonstrated that circulating inflammatorymarkers (e.g., IL-
1β, TNF, IL-6, and C-reactive protein) are important covariates
for depression and anxiety in humans (215, 216).

CYTOKINES AS THERAPEUTIC TARGETS

Although not the focus of this review, it would seem remiss not to
briefly comment on some of the advances seen with the advent of
approved biologic therapies. As described previously, cytokines
and chemokines have a key role in disease-associated pain and
therapies exerting an action on cytokine release or activity, which
is really effective [Table 1; (182, 183)]. Accumulating data suggest
that in a variety of pain states, there is a strong covariance
between circulating proinflammatory cytokine messages and the
pain states in fibromyalgia (217) or painful (vs. non-painful)
neuropathies (218, 219). Of note, TNF antagonism improved
depressive symptoms in patients with high baseline inflammatory
biomarkers (220). While these endpoints do not directly impact
upon pain signaling, they provide an important covariate
between chronic pain and comorbidities that can enhance the
chronic pain states (221).

The bulk of clinical data describe the relief of pain in
the treatment of inflammatory states like RA using agents
that block the activity of key cytokines like IL-6 and TNF.
Conventional synthetic disease-modifying antirheumatic drugs
(csDMARDs) such as methotrexate or sulfasalazine can attenuate
cytokine release (222–226), but the biologic disease-modifying
antirheumatic drugs (bDMARDs), which have a direct effect on
the function and levels of circulating cytokines, have been shown
to be more effective alone or in combination with csDMARDs
[Table 1; (124, 227–229)]. The success of these agents is reflected
in the development of agents with similar targets. Notable groups
of agents include anti-TNF (including infliximab, adalimumab,
certolizumab pegol, etanercept, or golimumab) and anti-IL-
6 or IL-6 receptor antagonists (i.e., tocilizumab, sarilumab,
clazakizumab, and olokizumab) (115). However, remission of
inflammation by clinical parameters has not universally been
associated with complete relief of pain, and residual pain with
neuropathic features can persist (178). More recently, agents that
intercede with signaling, notably the JAK inhibitors, may add to
the armamentarium of agents that can reduce pain as well as
inflammation (230, 231). The development of therapeutic agents
that target individual cytokines and their signaling pathways is a
promising and exciting area that has been extensively reviewed
by others (232, 233). These therapies hold significant promise
for the future, and further investigations into their level of
anatomic activity will hopefully yield insights into individualized
therapeutic plans.

CONCLUSION

The primary emphasis of this review has been on reviewing
the role of cytokines at the levels of the peripheral terminus,
the DRG, the spinal dorsal horn, and supraspinal circuits
(Figure 2). Although pain arises from different conditions, some
mechanistic components are conserved across pain states:

(i) Peripheral nerve fibers (nociceptors) are directly
exposed to circulating products like cytokines and detect
environmental stimuli (thermal, mechanical, or chemical
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FIGURE 2 | Anatomic levels of cytokine interactions with nociceptive processing. Upon injury or infection, mediators such as immune cytokines are released locally by

resident or blood-derived immune cells. The peripheral terminals of nociceptors, dorsal root ganglia (DRGs), and spinal cords have several receptors for these

mediators, which activate signaling cascades that modulate nociceptive activity. Cytokines are displayed as pronociceptive (red) or antinociceptive (blue).

nature) and stimulate excitation of second-order neurons
at the spinal cord.

(ii) In the DRG, the somata of nociceptors are surrounded by
SGCs and macrophages. As noted, the DRG lies outside of
the conventional BBB restriction, leading it to be directly
exposed to these circulating proteins and other danger
signals. These peripheral stimuli drive cytokine secretion
from SGCs and macrophages, contributing to inflammatory
signaling cascades and persistent pain.

(iii) The dorsal horn in the spinal cord receives information
from nociceptors.

(iv) The incoming information is processed by complex circuits
involving excitatory and inhibitory interneurons and
transmitted to projection neurons to several supraspinal
areas in the CNS. Spinal cord astrocytes and microglia are
described as key cells in the mechanism of pain processing
in several pain models (234).

In Figure 2, we graphically summarize key cytokines that play a
role in these fourmajor neuraxial components (i.e., the peripheral
terminal, DRG, spinal cord, and brain). At each anatomic level,
we note the relevance of the several local systems (neuronal,
glial, and inflammatory cells) that contribute both as a source of
cytokines and as a target for these molecules functioning in an
autocrine-/paracrine-like fashion.

This review serves to emphasize the multiple levels at which
cytokines may be released and act to alter the nociceptive
phenotype and reflect the role of a local paracrine or autocrine

function. It is clear, however, that this position does not exclude
the likelihood that the circulating cytokine profile observed in
a variety of inflammatory and injury states might contribute to
the abnormal pain and depression though a circulating delivery.
Of note, the presence of these circulating proinflammatory
products and the accessibility of these products to neuraxial
components such as the peripheral terminal and the DRG point
to potential interactions. The ability of glia such as astrocytes
and perivascular macrophages to sample circulating products,
along with the evident role played by glia in CNS function, points
to the likelihood that circulating products can modify function
throughout the neuraxis. We therefore conclude that targeting
inflammatory cytokine and chemokine signaling may provide
additional strategies in the therapeutic intervention of chronic
pain. However, we note that despite recent promising advances,
any single agent is unlikely to be uniformly effective, and future
studies in this area are warranted.
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