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Abstract: Pilots undergo a variety of stressors that may affect their performance during all phases of
flight. Heart rate variability (HRV) has been considered as a reliable indicator of the parasympathetic
and sympathetic activities of human autonomic nervous system, which can be used to characterize the
sympathetic stress response of pilots during flight. In this study, thirty active commercial airline pilots
were recruited to fly three flight segments in a Federal Aviation Administration (FAA)-certified A320
flight simulator with each segment at a different carbon dioxide (CO2) concentration on the flight
deck. The pilots performed a series of maneuvers of varying difficulty, and their performance was
evaluated by FAA designated pilot examiners. The HRV metrics (SDNN, RMSSD and LF/HF ratio)
of each pilot both before and during flight simulations were measured with a Movisens EcgMove3
sensor. The average SDNN, RMSSD and LF/HF ratio of the pilots during flight simulations were
34.1 ± 12.7 ms, 23.8 ± 10.2 ms and 5.7 ± 2.8 respectively. Decreased HRV was associated with aging,
obesity and performing difficult maneuvers. Both CO2 exposure and HRV had an independent effect
on the pilot performance, while their interaction was not significant. The generalized additive mixed
effect model results showed that a pilot performed better on a maneuver when his stress response was
lower, as indicated by higher SDNN and RMSSD and lower LF/HF ratio. An interquartile range (IQR)
increase in SDNN (21.97 ms) and RMSSD (16.00 ms) and an IQR decrease in LF/HF ratio (4.69) was
associated with an increase in the odds of passing a maneuver by 37%, 22% and 20%, respectively.

Keywords: heart rate variability; pilot; carbon dioxide; stress; flight maneuver

1. Introduction

The International Air Transport Association (IATA) expects 7.2 billion passengers to travel by
air in 2035, a near doubling of the 3.8 billion passengers that travelled in 2016 [1]. Within the U.S.
Federal Aviation Administration’s (FAA) Air Traffic Control Organization alone, over 2.5 million airline
passengers travel on 43,000 airline flights every day [2]. Billions of passengers travel by air every year;
however, compared to other forms of transportation, flying is the safest, with only 138 onboard and
one external fatality worldwide in 2016 [3].

As of 2017, there were an estimated total of 609,306 pilots within the FAA’s jurisdiction, including
159,825 airline transport pilots [4]. Before an individual can become a pilot, they must obtain a medical
certificate, which indicates that they are healthy enough to operate an airplane. Medication usage,
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medical history, use of corrective lenses, surgeries, and recent visits to health care professionals are all
items that must be disclosed to the Aviation Medical Examiner (AME) by the applicant. Though having
strict requirements of qualification, the actual performance and mental health of airplane pilots on the
flight deck still warrants further intervention. An anonymous survey-based study showed that some
pilots may suffer from depressive symptoms that they do not disclose to the AME or their primary care
manager due to the fear of negative career impacts [5]. Pilots’ attempts to protect their careers through
non-disclosure of their symptoms prevents them from receiving proper treatment. Airline pilots also
reported heightened self-rated fatigue and irregular sleep during international flights [6,7].

Pilots undergo a variety of physical, psychological, and physiological stressors that affects their
performance during the flight. Examples include flight deck humidity, family illnesses or death,
or fatigue and physical deconditioning. To ensure flight safety, it is necessary to have a deeper insight
into the stress levels of pilots during flight, and how stress impacts their performance. The occupational
stress and workload can be estimated through physiological indicators such as cortisol levels in saliva,
respiration rate and heart rate variability (HRV) [8–10]. A recent study [11] indicated that the stress
of pilots was elevated as indicated by lower HRV, when switching from analog to digital visual
presentations of the flight and navigation data.

The stress response system is comprised of the autonomic nervous system (ANS) and the
hypothalamic-pituitary-adrenal (HPA) axis [12]. Activation of the sympathetic nervous system (SNS)
with inhibition of the parasympathetic nervous system (PNS) triggers the acute response to both physical
and psychological stress, also known as the fight-or-flight response [13]. During the stress response,
the HPA axis is initiated by the release of the corticotrophin-releasing hormone from the hypothalamus,
which results in a series of endocrine changes that culminates with the release of cortisol from the
adrenal cortex [14]. The PNS plays an integral role in alleviating the stress response of individuals by
inhibiting the SNS and HPA axis [12,15]. The PNS also regulates the “rest and digest” functions that
calm the body down and dampen the stress response [15,16]. HRV is a measure of the variability in
the length of time between heart beats, which serves as a proxy for the dynamic interplay between
the parasympathetic and sympathetic branches of the ANS [17]. Current neurobiological evidence
suggests that HRV indices can be used as an objective physiological indicator of stress [18]. HRV can be
measured in both a time-domain and a frequency-domain [19,20]. Time-domain HRV indices represent
the variability in the time intervals between successive heartbeats. SDNN (standard deviation of the
normal to normal interval) and RMSSD (root mean square of successive differences between normal
heartbeats) are the two most commonly-used HRV time-domain indices. SDNN reflects the total heart
rate variability correlated with ANS activities, while RMSSD is more of a marker of parasympathetic
regulation of heart. Both higher SDNN and RMSSD have been associated with physiological resilience
against stress [18,21]; low variability could be attributed to pathologies such as hypertension, diabetes,
and depression, all of which are associated with stress and decreased cognitive function [22,23].

Frequency-domain measurements describe the power distribution of HRV as a function of
frequency. The low frequency (LF) component (0.04 to 0.15 Hz) of HRV is produced by both SNS and
PNS activities. An increased LF power may reflect increased sympathetic activity during mental stress
and exercise [20]. The high frequency (HF) component (0.15 to 0.4 Hz) of HRV is primarily produced
by PNS activity and highly correlated with the RMSSD time-domain measures [24]. Lower HF power
is correlated with higher stress, panic, anxiety or worry [19]; therefore, the ratio of LF power to HF
power (LF/HF ratio) can be used to estimate the balance between SNS and PNS activity [23]. A low
LF/HF ratio reflects the dominance of PNS activity, when people conserve energy and engage in
tend-and-befriend behaviors. Conversely, a high LF/HF ratio indicates sympathetic dominance, which
occurs when people engage in fight-or-flight behaviors or parasympathetic withdrawal.

The performance of pilots may also be affected by environmental conditions on the flight deck
such as temperature, aircraft vibration, noise, air quality and ventilation. The flight deck has been
under studied, however; nearly all of the research to date on these environmental factors in airplanes,
has focused on conditions in the airplane cabin [25–29]. Specific to air quality, a focus of our current
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study, one study of 179 U.S. domestic flights, Cao et al. [30] found an average CO2 concentration of
1353 ± 290 ppm (mean ± SD) during all flight phases, but as high as nearly 3000 ppm during boarding,
a time when the flight deck door is usually open. The equivalent outside air ventilation rates could
only meet the minimum value of 4.7 L/s/p as required by Federal Aviation Regulations [31] 42% of time
during boarding and 73% of time during flying. Data for conditions on the flight deck are more limited.
The European Aviation Safety Agency (EASA) measured the CO2 concentrations in the cockpits of eight
B787 airplanes and 61 other types of airplanes [32]. The mean CO2 concentration on the B787 flight
deck was 603 ppm with a range of 473 to 1229 ppm. On the flight deck of other airplanes, the mean
CO2 concentrations were 835 ppm (629–1918 ppm) and 753 ppm (594–1976 ppm) for short-haul and
long-haul flights, respectively.

Exposure to CO2 at these levels has been shown to be associated with detrimental effects on
cognitive function and increasing prevalence of health symptoms in other indoor settings [33–36].
Further, our recent study that focused on CO2 and airplane pilots [37] demonstrated that CO2

concentrations impact airline pilot performance at levels occasionally observed on the flight deck.
Compared to segments at a CO2 concentration of 2500 ppm, the odds of passing a maneuver in flight
simulations were 1.52 (95% CI: 1.02–2.25) times higher when pilots were exposed to 1500 ppm and 1.69
(95% CI: 1.11–2.55) times higher when exposed to 700 ppm [37]. Based on prior studies showing the
potential for elevated CO2 in the airplane and an impact of CO2 on pilot performance, the aims of
our present study were to: further investigate the stress response of pilots when conducting flight
maneuvers of varying difficulty at different CO2 concentrations during the flight simulations; and
to evaluate how sympathetic stress response, as indicated by HRV metrics impact, the performance
of pilots. Using a crossover repeated measures study design, we recruited thirty active commercial
airline pilots and had them complete a series of three simulated flights in an FAA-certified A320 flight
simulator at three CO2 conditions: 700 ppm, 1500 ppm, and 2500 ppm. Pilots had HRV monitored
for the duration of the flight, and the flight performance of pilots was rated by FAA designated pilot
examiners. We sought to examine the effects of different influencing factors on pilots’ HRV, and in turn
the effect of HRV on the flight performance.

2. Materials and Methods

2.1. Participants

Thirty active commercial airline pilots participated in this panel study in March-May, 2017.
All participants were currently qualified to fly the Airbus A320 aircraft. Their demographic and flight
experience information are presented in Table 1.

Table 1. Basic information of participating pilots.

Category Percentage

Gender
Male 100%

Female 0%

Age
30–40 37%
41–50 27%
>50 36%

BMI (kg/m2)
20–25 40%
25–30 37%
>30 23%

Ethnicity

White/Caucasian 20%
Latino 74%

Black or African American 3%
Multiracial 3%

Flight experience Regularly fly 65+ hours/month as a pilot 70%
Regularly fly 65+ hours/month in simulation 30%
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All recruited pilots were male, which fits the current demographic of airline pilots globally
(94% male) [38]. Pilots were paired to create fifteen teams, and each flight team completed three simulated
flight tests in an FAA-certified A320 flight simulator. During the approximately three-hour long
simulation, each pilot was the pilot flying for half of the simulation, and the pilot monitoring
for the other half. The pilot who flew first for the first simulation flew first for the remaining
two sessions, and pilots sat in the left or right seat based on where they typically sat during actual flight.
The Institutional Review Board (IRB) of the Harvard T.H. Chan School of Public Health reviewed and
approved the study protocol. Informed consent was obtained from all participants.

2.2. Experimentation

An FAA-approved A320 flight simulator (AFG, Inc., Fort Lauderdale, FL, USA) for pilot training
and certification was used in the study (Figure 1). A series of flight maneuvers of varying difficulty
(A, B and C), grouped into three sequences, were programmed into the flight simulator. The descriptions
for each flight maneuver are summarized in the Table S1 (see supplemental material). The detailed
FAA definition of each of the maneuver and rating criteria can be found in [39,40]. There were also
transitional periods between adjacent maneuvers, which were we defined collectively as ‘Gap’ in
our analysis so we could delineate time periods when pilots were actually performing maneuvers.
Each pilot on each flight team performed all of the maneuvers during each of the three simulated
flights. The three flight simulation tests were executed in different order based on the airport that the
pilots departed from—Boston Logan International, New York LaGuardia Airport/New York Kennedy
Airport, and Ronald Reagan Washington National Airport.
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Figure 1. (a) An FAA-approved A320 flight simulator; (b) Flight simulation test.

Each pilot team flew one flight at each of the three targeted CO2 conditions: 700 ppm, 1500 ppm,
2500 ppm. Prior to each session, the CO2 level was adjusted back to a background concentration
of 400 ppm with outdoor air. The CO2 concentration was modified by introducing ultra-pure CO2

(99.9% pure CO2, 0.1% H2O) from a gas cylinder into the simulator through the simulator’s ventilation
system. Two environmental sensors (HOBO model MX1102, Onset Computer Corporation, Bourne,
MA, USA) were installed on the left and right sides of the center console between the pilot seats to
monitor real-time CO2 concentrations. The other environmental conditions were held constant during
the flight simulation tests: total ventilation rate (850 L/s), temperature (24 ± 1 ◦C) and relative humidity
(47 ± 2%). Pilots and examiners were both blinded to test conditions and the order of exposures was
randomized. More specifics on the experimental methodology can be found in Allen et al. [37].

Three FAA designated examiners participated in the evaluation of pilot performance during the
simulated flights, with the majority of ratings performed by one examiner (Examiner 1: 65% of flights,
Examiner 2: 24% of flights; Examiner 3: 11% of flights). During each simulation, one of the three
examiners was seated at the control console located behind the pilots. The examiner had full control
over the simulator and an elevated vantage point to observe the pilot actions and communications.
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The pilot flying and the pilot monitoring worked as team with different responsibilities during
each maneuver; the rating by the examiner was an indication of their combined flight performance.
The examiners rated each maneuver according to standardized protocols used by the FAA during flight
certification tests. The overall passing rates of pilots on each maneuver are presented in Figure S1.

The Movisens EcgMove3 sensor (Movisens, GmbH, Karlsruhe, Germany) [41], which was worn on
a chest belt underneath the clothes with direct skin contact, was used to measure the electrocardiogram
(ECG) data of each pilot from 10 min before entering the flight simulator to the end of simulations.
The sensor collected single channel ECG data with a resolution of 12 bits and a sampling rate of 1024 Hz.
The Movisens software was used to convert the ECG signals into time-serial HRV indices: SDNN (ms),
RMSSD (ms), LF power (ms2), HF power (ms2) and LF/HF ratio. The HRV indices were calculated in
an interval of 30 s (the minimum interval of EcgMove3 sensor).

2.3. Data Analysis

Multivariate linear models were used to test the fixed effect estimates of potential influencing
factors on HRV indices for each maneuver. The influencing factors tested include age, body mass
index (BMI), regular flight experience as a pilot or in simulation, CO2 condition settings and difficulty
level of the maneuver, controlling for flight profile number (i.e., order of maneuvers) and examiner.
Generalized additive mixed effect models (GAMM) were used to test the relationships between HRV
indices and pilot performance, controlling for CO2 condition, maneuver difficulty, flight profile number,
and examiner, and treating pilot ID as a random effect accounting for the repeat testing of pilots.
As pretested, the interaction effect between CO2 condition and continuous HRV indices was not
statistically significant. Therefore, the interaction term was not included in the final GAMM. A logit
link function was used to treat examiner ratings as a binomial variable (1: Pass, 0: Fail):

yi, j,k = β1+β2 ∗HRV + β3 ∗ (MediumCO2)+β4 ∗ (LowCO2)+β5 ∗ (Profile2) + β6 ∗ (Profile3)+
β7 ∗ (Examiner2)+β8 ∗ (Examiner3)+β9 ∗ (DifficultyB)+β10 ∗ (DifficultyC)+b1i+ei, j,k

(1)

where yi,i,k is the passing rate for pilot i during profile j on maneuver k; β1 is the fixed intercept; β2 is the
fixed effect of each HRV metric at the maneuver level; β3 and β4 are the fixed effects of the medium
and low CO2 conditions compared to the high CO2 condition; β5 and β6 are the fixed effects of the
second and third sessions compared to the first session; β7 and β8 are the fixed effects of Examiners 2
and 3 compared to Examiner 1; β9 and β10 are the fixed effects of the Difficulty B and C maneuvers
compared to the Difficulty A maneuvers; and b1i is the random effect of intercept for pilot i. Additionally,
penalized splines (4 knots, cubic regression) were used to test for the linearity in the relationship
between HRV indices and estimates of passing odds. Statistical analyses were performed using the
open-source statistical package R version 3.5.0 (R Project for Statistical Computing, Vienna, Austria).

3. Results

3.1. Influencing Factors of HRV

Summary statistics of the HRV indices by the pilots are presented in Table 2 along with normative
short-term HRV data from 44 selected studies involving 21,438 healthy adults at rest conditions
(supine or seated), which could be considered as baseline levels for healthy adult population [42].
As shown in Table 2, both the SDNN and RMSSD values of pilots during flight simulations were
slightly decreased than the values recorded during the 10-min waiting period before simulations.
The LF/HF ratios of pilots were basically consistent before and during flight simulations. The pilots
exhibited lower overall HRV (SDNN) and lower parasympathetic regulation (RMSSD) compared with
the normative values both before and during the simulations. The ANS activity of pilots tended to be
more sympathovagal imbalance, as indicated by higher LF/HF ratios compared with the normative
values and the Task Force values (1.5–2.0) [20].
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Table 2. Summary statistics of the HRV indices of pilots, compared with the normative values for
short-term HRV of healthy adults [42].

HRV Index Category Mean SD Median Min Max

SDNN (ms)
Pilots (during simulations) 34.1 12.7 32.1 12.3 59.3
Pilots (before simulations) 40.0 11.7 40.9 19.3 58.0

Normative values 50.0 16.0 51.0 32.0 93.0

RMSSD (ms)
Pilots (during simulations) 23.8 10.2 22.6 6.2 48.0
Pilots (before simulations) 26.7 9.4 26.7 12.8 48.4

Normative values 42.0 15.0 42.0 19.0 75.0

LF/HF
Pilots (during simulations) 5.7 2.8 5.5 1.5 14.1
Pilots (before simulations) 5.5 2.4 5.8 2.8 12.0

Normative values 2.8 2.6 2.1 1.1 11.6

Figure 2 shows the average HRV values on each flight maneuver. As presented in Figure 2a,b,
the lowest average SDNN and RMSSD values were found when the pilots conducted the ‘Steep Turns:
Normal’ and ‘Circle to Land: Glide Slope Inoperative’ maneuvers, the two most difficult maneuvers
with the lowest overall passing rates, 73% and 67%, respectively. In general, the variability was
lower on the difficult maneuvers with low passing rates. The higher variability during the ‘Gap’
time may indicate that the pilots could be more relaxed during the cruise periods than conducting
active flight maneuvers. As shown in Figure 2c, the average LF/HF ratios were quite close for most
maneuvers within the value range of 5 to 7. That means the pilots were dominated by the sympathetic
activity when conducting all the maneuvers, reflecting their intensive response to the stressors during
the entirety of the flight simulations. The highest LF/HF ratio was found during the three takeoff

maneuvers (‘Takeoff: Normal’; ‘RTO: 1 Engine Inoperative’; ‘Takeoff: Engine Fire’), indicating the
increased dominance of SNS activity for the pilots during the takeoff phase. In addition, linear mixed
effect models were used to test the difference in mean HRV values by active maneuvers compared to
the ‘Gap’ time. The results are presented in Table S2.
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Figure 2. Average HRV values by flight maneuver types and difficulty (the error bars represent the
standard deviations): (a) SDNN; (b) RMSSD; (c) LF/HF.

Table 3 lists the fixed effects of the influencing factors on HRV indices, as estimated by the
multivariate linear models. Both the SDNN and RMSSD were higher for the younger pilots relative to
the pilots over 50 years old. Meanwhile, the LF/HF ratio was much lower for the pilots of 30 < Age < 40.
HRV indices were also related to BMI; the variability was lower, while the LF/HF ratio was higher
for the pilots with BMI > 30, which is defined as ‘obesity’ by the Centers for Disease Control and
Prevention (CDC). The participants with frequent flight experience as a pilot showed higher variability
than those who reported frequently flying in a simulator. However, the LF/HF ratio was slightly higher
for the participants with more actual flight experience. No statistically-significant relationship was
observed between HRV and CO2 condition settings. Exposure to lower CO2 concentration had little
effect on the variability, but showed a small increase in the LF/HF ratio.
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Table 3. The fixed effect estimates on HRV indices, controlling for examiner and flight profile number.

Variable
SDNN (ms) (R-Squared = 0.393) RMSSD (ms) (R-Squared = 0.443) LF/HF (R-Squared = 0.189)

Estimate Std. Error p-Value Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept 19.21 1.54 <0.001 12.89 1.20 <0.001 5.96 0.49 <0.001
Age > 50 0.00 (Reference)

41 < Age < 50 11.62 0.86 <0.001 4.13 0.68 <0.001 1.33 0.27 <0.001
30 < Age < 40 18.11 0.78 <0.001 16.56 0.61 <0.001 −3.28 0.25 <0.001

BMI > 30 0.00 (Reference)
25 < BMI < 30 4.20 0.91 <0.001 5.18 0.71 <0.001 −0.65 0.29 0.026
20 < BMI < 25 3.54 0.85 <0.001 4.37 0.67 <0.001 −0.28 0.27 0.305

Regularly fly 65+ hours/month in simulation 0.00 (Reference)
Regularly fly 65+ hours /month as a pilot 6.16 0.82 <0.001 0.43 0.64 0.507 1.36 0.26 <0.001

High CO2 0.00 (Reference)
Medium CO2 0.64 0.73 0.384 −0.15 0.57 0.797 0.64 0.23 0.006

Low CO2 0.10 0.75 0.895 −0.78 0.59 0.182 0.78 0.24 0.001
Gap time 0.00 (Reference)

Difficulty A −5.53 1.74 0.002 −2.86 1.36 0.036 −0.36 0.55 0.509
Difficulty B −2.03 1.37 0.138 −1.40 1.07 0.191 0.22 0.43 0.605
Difficulty C −4.13 1.27 0.001 −2.66 1.00 0.008 −0.24 0.40 0.558
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The relationships between the difficulty of maneuver and HRV indices were not consistent,
most certainly due to the fact that the majority of maneuvers had a difficulty level of C and the
difficulties A and B had a small sample size (Figure 2). Nevertheless, the model results indicated that
the SDNN and RMSSD were lower when the pilots conducted the graded maneuvers of any difficulty
compared with the ‘Gap’ time.

3.2. HRV and Pilot Performance

Tables 4–6 lists the GAMM results for the continuous HRV metrics, controlling for other influencing
variables. The exponentials of the estimates represent the odds for a pilot passing a maneuver. As shown
in the tables, the odds of passing a maneuver slightly increased with the increase of SDNN and RMSSD
and decrease of LF/HF ratio. An interquartile range (IQR) increase in SDNN (21.97 ms) and RMSSD
(16.00 ms) was associated with an increase of 37% and 22% in the odds of passing a maneuver,
respectively. An IQR decrease in LF/HF ratio (4.69) would lead to a 20% increase in the passing odds.
In addition, as reported in our previous paper [37], dose-response effects were also observed for the
difficulty of maneuver and CO2 condition: the odds ratios of passing a maneuver were higher at lower
CO2 concentration and lower difficulty level of maneuver.

Table 4. GAMM results of SDNN, CO2 condition and maneuver difficulty on passing a maneuver,
controlling for examiner and flight profile number and treating pilot ID as a random effect.

Variable Estimate Odds Ratio (95% CI) p-Value

Intercept 2.02 – 0.004
SDNN 0.014 1.37 (0.93, 2.02) 1 0.111

High CO2 1.00 (Reference)
Medium CO2 0.50 1.65 (1.06, 2.59) 0.028

Low CO2 0.63 1.87 (1.17, 3.01) 0.009
Difficulty A 1.00 (Reference)
Difficulty B −0.46 0.63 (0.17, 2.27) 0.478
Difficulty C −1.43 0.24 (0.07, 0.79) 0.020

1 Odds ratio for an IQR increase in SDNN (21.97 ms).

Table 5. GAMM results of RMSSD, CO2 condition and maneuver difficulty on passing a maneuver,
controlling for examiner and flight profile number and treating pilot ID as a random effect.

Variable Estimate Odds Ratio (95% CI) p-Value

Intercept 2.19 – 0.001
RMSSD 0.013 1.22 (0.87, 1.73) 1 0.251

High CO2 1.00 (Reference)
Medium CO2 0.52 1.68 (1.07, 2.63) 0.024

Low CO2 0.63 1.88 (1.17, 3.02) 0.009
Difficulty A 1.00 (Reference)
Difficulty B −0.45 0.64 (0.18, 2.30) 0.478
Difficulty C −1.44 0.24 (0.07, 0.79) 0.020

1 Odds ratio for an IQR increase in SDNN (16.00 ms).

Table 6. GAMM results of LF/HF, CO2 condition and maneuver difficulty on passing a maneuver,
controlling for examiner and flight profile number and treating pilot ID as a random effect.

Variable Estimate Odds Ratio (95% CI) p-Value

Intercept 2.67 – <0.001
LF/HF −0.038 1.20 (0.94, 1.51) 1 0.137

High CO2 1.00 (Reference)
Medium CO2 0.56 1.76 (1.12, 2.75) 0.014

Low CO2 0.65 1.92 (1.19, 3.08) 0.007
Difficulty A 1.00 (Reference)
Difficulty B −0.44 0.64 (0.18, 2.31) 0.497
Difficulty C −1.48 0.23 (0.07, 0.76) 0.016

1 Odds ratio for an IQR decrease in LF/HF (4.69).
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4. Discussion

Active airline pilots were flying the simulator under high stress levels as indicated by their
lower variability and higher LF/HF ratio, compared with the normative values of healthy adults [42].
The stress of the pilots was generally higher when performing maneuvers during the takeoff, approach
and landing phases. Their stress was reduced during the ‘Gap’ periods, which may represent the cruise
phase when the pilots are not performing active maneuvers. Lower HRV was associated with aging,
high BMI and performing hard maneuvers with low passing rates. Overall, the pilots performed better
on maneuvers as rated by the examiners during the flight simulations when their stress was lower,
as indicated by the increase of SDNN and RMSSD and decrease of LF/HF ratio, controlling for CO2

condition and flight maneuver difficulty.
The findings on the impact of age and BMI on HRV are consistent with other studies. Previous

studies of short-term HRV [43–46] have suggested inverse relationships between age and the
time-domain HRV indices. The LF/HF ratio tends to increase with age in population of age <44 years [43],
but possibly decrease with aging for elderly subjects of age >44 years [47] or >65 years [48]. Respiratory
sinus arrhythmia is a normal physiologic process that becomes less prominent as people age, partly
because of decreases in baroreflex sensitivity. This may account for some of the changes in HRV
observed in aging populations [49]. The ANS activity is also related to the body weight regulation [50].
In a study of 25 healthy adults [51], increasing BMI is correlated to increased sympathetic activity
(higher LF power) and lower parasympathetic activity (lower HF power). It could be speculated that
obesity yields to increased energy expenditure as modulated by sympathetic activity. A study of
786 young men [52] also showed that increased BMI was associated with a shift in sympathovagal
balance trending towards sympathetic dominance in young adults.

In this study, the relationship between CO2 condition and HRV was not significant, which
was probably caused by concentrations in the flight simulator at or below 2500 ppm, a level not
associated with HRV impacts in prior studies. For example, Kaye et al. [53] investigated the impact
of acute CO2 exposure on cardiovascular and psychological responses to stress in healthy adults
with concentrations from 5% to 35%. They concluded that a single breath of 35% CO2 could produce
sympathetic and HPA axis activation, indicating the anxiogenic response to hypercapnia by the
tested subjects. Lower doses of CO2 exposures did not show any significant effects on cardiovascular
parameters. Elevating the end-tidal CO2 from 5% to 6% could increase HF and LF components of HRV
in awake volunteers under both spontaneous and mechanical ventilation [54]. A recent study of indoor
air quality and cardiovascular health [55] indicated that no association was observed between HRV and
CO2 concentration in homes. The CO2 concentrations in airplane cabins are much lower than the effect
levels [53,54]. For this reason, the ANS activities were not likely on the causal pathway between CO2

and cognition of pilots, yet HRV has an independent relationship with the odds of passing a maneuver.
The interaction between stress and pilot performance on different maneuvers may have two aspects.

On the one hand, exposure to stress may be detrimental in performing executive-function tasks.
Recent studies have signified the relationships between HRV and cognitive function [56]. Reduced
cognitive performance associated with lower HRV may be a consequence of the failure of the ANS to
properly regulate brain perfusion [57]. More importantly, vagally-mediated HRV has been related
to the prefrontal cortex functioning, which is involved in the inhibition of SNS activation [58,59].
Attenuated SNS activity and increased PNS activity are associated with higher prefrontal cortex activity
level [58]. Prefrontal cortex activity is correlated with many important cognitive functions such as
working memory, sustained attention, behavioral inhibition and general mental flexibility [56,60,61].
All of these cognitive functions are essential for human executive functions that have to do with
plan, direct action and self-regulation to perform goal-directed behavior. As a consequence, HRV is
also related to cognitive performance of executive tasks. Hansen et al. [62] reported the subjects with
higher RMSSD performed better on executive function such as working memory and attention tasks.
The following study showed that physically-trained subjects had higher HF component and better
cognitive performance on executive tasks than de-trained subjects who did no physical activity for
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a four week period [63]. A cross-sectional study of 4763 elder participants [64] showed that reduced
total variability was associated with poorer cognitive performance as indicated by lower Montreal
cognitive assessment (MOCA) score. ZAl Hazzouri et al. [22] collected the short-term ECG data of 2118
middle-age participants and correlated the HRV metrics with their cognitive test performance five years
later with a prospective study design. They concluded that higher quartile of SDNN was associated
with better executive function as indicated by higher Stroop test score. A study using visuospatial
working memory (VSWM) test also showed that the decrement in HRV would lead to poor cognitive
performance with an increase in memory load [65]. All of this evidence suggests that stress could
profoundly impair goal-directed behavior with increased HPA-axis and SNS activity [66,67], and may
contribute to the cognitive deficits observed in mental disorders and extreme environments [56].
As such, we can infer that stress could be detrimental to pilot performance on the hard maneuvers
composed of challenging executive tasks being conducted under stressful conditions.

On the other hand, stress could be associated with improved cognitive performance on
non-executive function tasks. Exposure to stress may have a positive effect on non-executive function
that is driven reflexively by stimulation. Luft et al. [68] studied the differences in athletes’ HRV
between executive tasks and non-executive tasks. They found that lower time-domain HRV measures,
which means higher stress, was related to faster reaction time on non-executive tasks. The subjects with
lower HRV showed faster mean reaction time on a non-executive or easy task under the threat-of-shock
condition in which participants were threatened to receive an uncomfortable, but not painful, electric
shock through the hand [69]. Stress is thought to be able to enhance memory formation but to impair
memory retrieval [70]. Stress can facilitate the processing of sensory information caused by an increase
in attention mediated by cortical arousal [71]. Acute exposure to stress may be beneficial to the
instructed stimulus-response learning with moderate working memory demand [72]. As such, in some
cases, necessary hyper vigilance or so-called eustress possibly make the pilots more alert, enhancing
their reaction and cognitive adaptation to maneuvers. For example, the pilots performed well on the
‘Takeoff: Normal’ maneuver, though they had high LF/HF ratios.

In this study, the LF/HF ratio was used as a marker of sympathovagal balance. However,
the interpretation of LF remains actively debated, which is considered by some researchers as
a measure of sympathetic regulation [73] and by others as a parameter of both sympathetic and vagal
regulation [74]. Another interpretation is LF can serve as a marker of sympathetic modulation in some
contexts, and more represent parasympathetic activity in other contexts [74,75]. We further analyzed
the influencing factors of the LF power and HF power of HRV, as shown in Figure S2 and Table S3.
The results show that the changes in LF and HF power were basically in the same direction but with
different magnitude. As the GAMM results, an interquartile range (IQR) increase in LF (944 ms2) and
HF (266 ms2) was associated with an increase of 17% and 23% in the odds of passing a maneuver,
respectively. The above results indicate that the HF component is highly correlated with the RMSSD
measures, both as markers of parasympathetic regulation of heart; the LF component is likely to be
influenced by both sympathetic and parasympathetic activity. Consequently, the LF/HF ratio could
reflect sympathovagal balance to some extent, but the interpretation of LF and LF/HF ratio still warrants
further elucidation.

There are several limitations to consider when interpreting the results of this study. While we
had a baseline measurement of HRV before the simulation, the measurements were likely impacted
by the stress of the impending simulations. Therefore, the HRV values of pilots may not be directly
comparable to the normative HRV values derived from a literature review [42]. A number of studies
have revealed large inter-personal variation for the majority of HRV measures [19,42]. The underlying
factors for the discrepant values mainly include demographic of subjects, breathing protocols and
spectral power analysis methods. In addition, the stress level and performance of pilots presented in
this study could be different from those on an actual flight. These simulated flights were not conducted
under an actual ‘check ride’ or actual ‘in-flight emergency’. In both of these cases where the pilot’s
license and job, and possibly life, is on the line while performing these maneuvers, their stress level
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could be even higher than what we have demonstrated in this study. Though complying with the
PTS standards, the examined maneuvers, such as one engine inoperative and glide slope inoperative,
are generally much more challenging than the maneuvers occurred on normally functioning airplanes.
As we were interested in the impact on pilot performance, we had the pilots controlling the simulator
manually without any auto-pilot aid. Under these conditions, the pilots may more prone to error when
conducting difficult maneuvers than during normal flight operations. Our research findings were
solely based on male pilots. This reflects the current distribution of pilots in the workforce (94% male),
but limit the generalizability to female pilots.

The HRV data that we have collected from airline pilots reflected their physiologic response
produced by stressful situations in flight. This is a rare opportunity to evaluate the real-time stress
response of pilots in an FAA-approved flight simulator under varying environmental conditions.
Studying HRV data in this way can help us better understand how active pilots respond to stress
physiologically. The implications of occupational stress and physiologic response can be applied to
other workers in high-stress occupations.

5. Conclusions

In this study, we studied the HRV of thirty active commercial airline pilots and their performance
on flight maneuvers when flying three flight simulation sessions in an FAA-certified A320 flight
simulator. The pilots were stressed both before and during the flight simulations, and have higher
stress response when conducting advanced flight maneuvers. Lower HRV was associated with age,
high BMI and performing difficult maneuvers. The model results showed that exposure to stress could
affect pilot performance, independent from the effects of CO2 exposure; higher HRV and more balanced
ANS activity of a pilot were associated with higher odds of passing a maneuver.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/2/237/s1.
Figure S1: Overall passing rates of pilots on each maneuver in the flight simulator (the error bars represent the
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Flight maneuvers and performance criteria, Table S2: Difference in mean HRV values by flight maneuver types
(referent: Gap time), treating pilot as a random intercept, Table S3: The fixed effect estimates on LF and HF,
controlling for examiner and flight profile number.
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