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Experimental investigations 
on the growth of wall‑attached 
bubble in total dissolved gas 
supersaturated water
Lu Lin1,2, Ran Li1, Jingjie Feng1*, Shengyun Liu3*, Qin Zou1, Xiaolong Cheng1 & Honghui Lin1

Due to dam discharge, waterfalls, sudden increases in water temperature and oxygen production 
by photosynthesis, the total dissolved gas (TDG) in water is often supersaturated, which may have 
serious effects on aquatic ecology. When the atmospheric pressure is lower than the TDG pressure in 
water, the supersaturated dissolved gas in water will slowly release into air. Wall-attached bubbles 
were formed during the TDG release process. The generation and departure of wall-attached bubbles 
influence the release process of TDG in water. To simulate the growth period of the wall-attached 
bubbles under different pressures, a decompression experimental device was designed to record the 
supersaturated TDG release process. Based on experimental data and mathematical calculations, the 
quantitative relationship between the bubble growth rate and environmental pressure was obtained. 
The supersaturated TDG dissipation rate increases monotonically with increasing relative vacuum 
degree. Applied the calculation method about the wall-attached bubble growth rate, a formula of 
the supersaturated TDG adsorption flux was proposed, and a prediction method of the TDG release 
coefficient was established. The simulation results show that with the increasing relative vacuum 
degree, the TDG release coefficient increases correspondingly, and the adsorption from wall surface 
area can be obviously promoted. This study provides an important theoretical basis for the accurate 
calculation of the TDG release process and provides a scientific basis for the accurate prediction of 
the spatial and temporal distribution of supersaturated TDG under different pressure and solid wall 
conditions.

List of symbols
aB	� Projected bubble area (mm2)
ad	� Specific solid wall area of supersaturated water (m−1)
as	� Specific surface area of supersaturated water (m−1)
AB	� Wall-attached bubble surface area (mm2)
C*	� Equilibrium TDG concentration (mg L−1)
C	� TDG concentration (mg L−1)
D	� Equivalent diameter of bubbles (mm)
Dd	� Wall-attached bubble’s departure volume (mm3)
f	� Departure frequency of wall-attached bubbles (min−1∙cm−2)
FG	� Release rate of supersaturated TDG (mg L−1 min−1)
Fs	� Release rate of supersaturated TDG from air–water mass transfer (mg L−1 min−1)
Fw	� Release rate of supersaturated TDG from wall adsorption (mg L−1 min−1)
G	� Saturation of TDG (%)
J	� Air mass transfer flux from the liquid to bubbles (mg mm−2  min−1)
k	� TDG dissipation coefficient (min−1)
K	� Mass transfer coefficient at bubble surface (mm min−1)
Ks	� Mass transfer coefficient of air–water interface (m min−1)
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Mw	� TDG adsorption flux (mg m−2)
MB	� Wall-attached bubble adsorption flux (mg m−2)
Md	� Departure bubble adsorption flux (mg m−2)
N	� Wall-attached bubble number density (cell cm−2)
P	� Experiment pressure (kPa)
P0	� Standard atmospheric pressure (kPa)
t	� Time (min)
Ts	� Surface turbulent kinetic energy (m2 s−2)
VB	� Wall-attached bubble volume, (mm3)
Vd	� Departure bubble volume (mm3)
X	� Bubble retention time from the formation to the departure (min)
φ	� Relative vacuum degree
ρB	� Air density in wall-attached bubble (mg L−1)

In the natural environment, dam discharge, waterfall, sudden rise of water temperature and oxygen production 
by photosynthesis may lead to total dissolved gas (TDG) supersaturation in water. With cascade hydropower 
developing and high dam building, dam discharge is becoming the main type of TDG supersaturation. Due to 
the pressure difference between water and atmosphere, supersaturated TDG in water will slowly release to air. 
Supersaturation TDG exists for a long time in water, which may lead to bubble disease or even death of fish and 
cause serious adverse effects on aquatic ecology1,2. The release rate of TDG supersaturation is directly related to 
the extent of the TDG level in water and the TDG pressure difference between water and air3, and the findings 
of the effect on the air entrainment indicated that the energy dissipation efficiency considerably influenced the 
TDG level4. As the hydropower development is moving to high altitude area such as Qinghai-Tibetan Plateau, 
the release process of supersaturated TDG is quite different from the lower altitude rivers.

In practical engineering applications, there are many solid walls in rivers, such as vegetations under the water 
and suspended solids in the water, which can easily adsorb the bubble nuclei. The rougher the wall is, the larger 
the area it provides, and the release process of supersaturated TDG is accelerated5. Niu6 observed that the release 
rate of supersaturated TDG increased with an increasing amount of activated carbon in water. The process of 
the gas phase fraction separating out from water can promote the formation of bubbles, and the characteristic 
parameters affecting the bubble shape play a key role in the study of TDG mass transfer. Yuan7 proposed a 
supersaturated TDG dissipation model to describe the function of wall adsorption of TDG, and the equation 
for the adsorption flux of supersaturated TDG over a unit time was achieved from a macroscopic perspective. 
Based on experiments focusing on the adsorption effect of solid walls, the quantitative relationship between 
the adsorption coefficient and contact angle of solid surfaces was obtained8. Li9 experimented on a superheated 
superhydrophobic surface to study the formation and escape of single bubbles on the vessel wall, and revised 
Zuber’s10 prediction equation of the bubble escape diameter and frequency, and obtained the relationship between 
gas–liquid interface surface tension, liquid density, and equilibrium bubble diameter. In the observation of carbon 
dioxide dissolved in water, the interaction among bubbles growing in close proximity and the time evolution 
of the bubble radius was investigated11,12. Studies indicated the growth of gas bubbles in a water solution with 
a supersaturation level that is generally associated with diffusive mass transfer, and the density of the solution 
sufficiently changes with the gas concentration13,14.

Previous studies have shown that solid walls in water can effectively promote the release of supersaturated 
TDG, and the factors affecting bubble growth include dissolved gas concentration in gas–liquid mixture systems 
and pressure. To clarify the quantitative relationship between pressure and bubble growth rate on solid walls, a 
decompression experiment was designed in this paper to investigate the influence of solid wall media on TDG 
release under different pressure conditions.

Experimental study on the effect of pressure on bubble growth
Measurement instruments and method.  The experiment was conducted in the State Key Laboratory 
of Hydraulics and Mountain River Engineering of Sichuan University. The experimental device includes rectan-
gular Plexiglas sheet (PMMA) tanks with a length of 220 mm, a width of 160 mm and a height of 210 mm. The 
air pressure in the water tank was adjusted by a 180 W vacuum pump and a pressure gauge. The water depth in 
the tank was kept at 120 mm, and the back of the water tank was arranged against a black background to ensure 
clear wall-attached bubble images during the experiment. The light source was an LED (light emitting diode) 
lamp with a uniform distribution to the left of the water tank, and the camera was fixed in front of the water tank. 
A sketch of the experimental device is shown in Fig. 1.

In this experiment, wall-attached bubbles in TDG supersaturated water were observed under vacuum con-
ditions. Bubbles generated in TDG supersaturated water can be adsorbed on the wall and continue to grow 
up. When the size of wall-attached bubbles reached a certain volume, the bubbles would escape from the wall. 
According to the observation of the experiment, the growth rate of bubbles can be significantly improved under 
the condition of reduced pressure. The experiment time for each case was set to be 1 h.

TDG supersaturated water was provided by the supersaturated TDG generation system, which was developed 
by Sichuan University, China15. The system compresses air into tap water16, which was used to simulate the river 
water, and the steady TDG supersaturated water was generated after the air entrained water transport through 
a multi-U-turn pipe to make the air and water completely mix. The generated TDG supersaturation water was 
induced into the experimental water tank. The pressure in the experimental water tank was adjusted to a con-
stant vacuum degree, and the temperature was kept at 20 centigrade during the whole experimental process. A 
digital camera was used to record the precipitation, growth and escape process of wall-attached bubbles. The 
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photographic equipment consisted of a Canon 600D digital camera with 17–85 zoom lens (Taiwan, China), a 
polarizer and a close-up lens. The TDG in the experimental water tank was measured at the beginning and the 
end of the experiment with a total dissolved gas pressure (TGP) detector named Pentair Point Four TGP port-
able trackers (California, U.S.). The TGP measuring range is 0–200%, and the accuracy is 2%. The concentra-
tion of TDG dissolved in water can be converted into TDG saturation according to actual needs. The pressure 
of experiment tank was measured by the pressure gauge set at the top the experimental water tank, with the 
accuracy of 1.6%.

Experimental conditions.  To express the pressure condition clearly, the relative vacuum degree ∅ is intro-
duced as Eq. (1).

where ∅ is the relative vacuum degree, P is the experimental pressure (kPa), and P0 denotes the local atmospheric 
pressure (kPa).

The conversion of TDG saturation to TDG concentration is shown in the following equation.

where C is the TDG concentration (mg L−1), C∗ is the equilibrium TDG concentration (mg L−1), and G is the 
saturation of TDG (%).

There were 30 combined working conditions in the experiment. The pressure conditions in this experiment 
represent the pressure conditions with relative vacuum degrees of 0, 0.2, 0.4, 0.6 and 0.8. For each group of pres-
sure conditions, six TDG initial saturation conditions were set as 110%, 120%, 130%, 140%, 150% and 160%. 
The water temperature in the experimental tanks was controlled at 20 °C during the whole experimental process. 
Measurements confirmed that the local atmospheric pressure is 95.5 kPa.

Results
Experimental results of TDG concentration.  The experimental results of TDG concentration were as 
Table 1 shows.

The variation in the TDG solubility at different relative vacuum degrees was expressed as:

where C∗
∅=0

 represents the TDG solubility at 1 atm (mg L−1) and C∗
∅
 represents the equilibrium TDG concentra-

tion at the relative vacuum degree ∅ (mg L−1).
US Army Corps of Engineering17 proposed that the dissipation process of supersaturated TDG involves a 

first-order kinetic reaction. The first-order kinetic reaction is shown as follows:

where t represents the dissipation time (min), C represents the TDG solubility (mg L−1); C∗ represents the TDG 
equilibrium solubility (mg L−1) and k represents the release coefficient of supersaturated TDG (min−1).

(1)∅ = 1− P/P0

(2)C = C∗G

(3)C∗
∅ = C∗

∅=0
(1− ∅)

(4)
dC

dt
= −k(C − C∗)

Figure 1.   Sketch of the experimental device.
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Table 1.   The experimental results of TDG concentration.

Experiment case number Initial TDG level (%) Relative vacuum degree ∅
Initial TDG concentration 
(mg L−1)

TDG concentration after 
1 h (mg L−1)

1-a 110 0 26.35 26.07

2-a 110 0.2 28.74 27.84

3-a 110 0.4 31.14 29.22

4-a 110 0.6 33.53 32.27

5-a 110 0.8 35.93 34.37

1-b 120 0 38.33 36.53

2-b 120 0.2 26.35 25.33

3-b 120 0.4 28.74 26.87

4-b 120 0.6 31.14 28.32

5-b 120 0.8 33.53 31.28

1-c 130 0 35.93 33.17

2-c 130 0.2 38.33 35.29

3-c 130 0.4 26.35 23.66

4-c 130 0.6 28.74 24.98

5-c 130 0.8 31.14 26.49

1-d 140 0 33.53 28.99

2-d 140 0.2 35.93 30.73

3-d 140 0.4 38.33 33.22

4-d 140 0.6 26.35 21.68

5-d 140 0.8 28.74 22.73

1-e 150 0 31.14 24.08

2-e 150 0.2 33.53 26.18

3-e 150 0.4 35.93 28.20

4-e 150 0.6 38.33 30.07

5-e 150 0.8 26.35 18.93

1-f 160 0 28.74 20.23

2-f 160 0.2 31.14 20.94

3-f 160 0.4 33.53 23.02

4-f 160 0.6 35.93 24.98

5-f 160 0.8 38.33 26.81
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Figure 2.   Relationship between the TDG release coefficient and relative vacuum degree.
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The release coefficients under different experimental cases were estimated according to the first-order kinetic 
equation. Figure 2 shows that the release coefficients under different pressure conditions were linearly enhanced 
with increasing relative vacuum degree.

According to the experimental results under various conditions, the relationship between the TDG release 
coefficient and the relative vacuum degree by the fitting method is obtained as follows:

where k∅ represents the TDG release coefficient under relative vacuum degree ∅ (min−1) and k∅=0 represents the 
TDG release coefficient under relative vacuum degree 0 (min−1).

The coefficient of determination, R2 is 0.978.

Image source of wall‑attached bubbles.  The wall-attached bubble images under different pressure 
cases were taken for each group of experiments. Taking the group with an initial concentration of TDG of 160% 
as an example, the wall-attached bubble images at different pressure cases were recorded by the camera, as shown 
in Fig. 3. It was clear that the relative vacuum degree has an obvious promotional effect on the wall-attached 
bubble growth rate.

By using the image processing method, the wall-attached bubbles in each image were numbered in 
MATLAB18. Image Binarization proposed by Otsu19 was used to process the image. The equivalent diameter of 
bubbles was calculated as follows:

where D represents the equivalent diameter of bubbles (mm) and aB represents the projected bubble area (mm2).
The statistics of the bubbles’ equivalent diameter distribution under different pressure conditions are shown 

in Fig. 4.
According to the statistics of the equivalent diameter of wall-attached bubbles in Fig. 4, the equivalent diame-

ter of wall-attached bubbles has a centralized value at each case. But in the pressure group 5 ( ∅ = 0.8 ), as the wall-
attached bubbles grown faster than the other pressure groups, they experienced departure and regrowth withing 
20 min, which cause the equivalent diameter of the wall-attached bubbles exhibits a double peak distribution.

Discussion
The role of wall‑attached bubbles in the supersaturated TDG release coefficient.  Based on a 
previous study on the wall adsorption effect on the TDG release process, the calculation method of the super-
saturated TDG release coefficient based on wall-attached bubbles can be used to predict the TDG release pro-
cess. The release process of supersaturated TDG in water consists of three parts7. However, in static water, there 
are almost no free bubbles in water, so the TDG release process can be simplified into two parts: air–water mass 
transfer and wall adsorption, as shown in Fig. 5.

The amount of supersaturated TDG released in static water can be expressed as:

where FG represents the release rate of supersaturated TDG, (mg L−1 min−1); Fs represents the release rate of 
supersaturated TDG from air–water mass transfer, (mg L−1 min−1); and Fw represents the release rate of super-
saturated TDG from wall adsorption, (mg L−1 min−1).

(5)k∅ = k∅=0e
1.3987∅

(6)D =

√

4aB

π

(7)FG = Fs + Fw

Figure 3.   Bubble images of different pressure cases.
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(1)	 The release rate of supersaturated TDG from air–water mass transfer is:

(8)FG = k(C − C∗
∅)

Figure 4.   Statistics of bubbles’ equivalent diameter distribution.

Figure 5.   Sketch of the TDG mass transfer.
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where k represents the TDG release coefficient (min−1); C represents the concentration of supersaturated 
TDG (mg L−1); and C∗

∅
 represents the equilibrium concentration of supersaturated TDG (mg L−1).

(2)	 The release rate of supersaturated TDG from wall adsorption:

where Ks represents the mass transfer coefficient of the air–water interface (m·min−1) and as represents the 
specific surface area of supersaturated water (m−1).

	   The quantitative relationship between the mass transfer coefficient of the air–water interface and the 
surface turbulent kinetic energy was proposed by Li20.

where Ts represents the surface turbulent kinetic energy (m2 s−2).
(3)	 The formula for calculating the adsorption rate of TDG by solid walls in supersaturated water is as follows:

where ad represents the specific solid wall area of supersaturated water (m−1). Mw represents the TDG 
adsorption flux, (mg m−2), which can be expressed as the sum of the amount of TDG contained in the 
wall-attached bubbles and the amount of TDG released from the escaped bubbles.

The release process of supersaturated TDG in static water includes mass transfer at the water–air interface, 
internal release of TDG in water and mass transfer at the wall-attached bubble interface. The formula of TDG 
adsorption flux can be expressed as follows:

where MW represents the TDG adsorption flux (mg m−2), MB represents the amount of TDG contained in the 
wall-attached bubbles (mg m−2) and Md represents the amount of TDG released from the escaped bubbles 
(mg m−2).

The amount of TDG contained in the wall-attached bubbles MB was defined as the wall-attached bubble 
adsorption flux, and N was defined as the wall-attached bubble number density, the calculation formula is as 
follows:

where ρB represents the air density in wall-attached bubbles, (mg L−1); VB represents the wall-attached bubble 
volume, (mm3); N represents the wall-attached bubble number density, (cell cm−2).

The amount of TDG released from the escaped bubbles Md was defined as the bubble escapable adsorption 
flux, and the calculation formula is as follows:

where Vd represents the wall-attached bubble departure volume, (mm3).
The TDG release coefficient under the influence of a solid wall was simplified as follows:

where k represents the TDG release coefficient, (min−1); Mw represents the TDG adsorption flux, (mg m−2); t  
represents time, (min); ad represents the specific solid wall area of supersaturated water (m−1); C represents the 
concentration of supersaturated TDG (mg L−1); C∗

∅
 represents the equilibrium concentration of supersaturated 

TDG (mg L−1); Ks represents the mass transfer coefficient of the air–water interface (m min−1) and as represents 
the specific surface area of supersaturated water (m−1).

Analysis of the growth rate of the wall‑attached bubble.  Due to the release process of supersatu-
rated TDG in water, the wall-attached bubble diameter increases gradually. The mass transfer process of TDG 
on the surface of wall-attached bubbles is shown in Fig. 6.

The air mass transfer flux from the liquid to bubbles can be expressed as follows:

where J represents the air mass transfer flux from the liquid to bubbles (mg mm−2 min−1); K represents the mass 
transfer coefficient at the bubble surface (mm min−1); C represents the TDG concentration (mg L−1); and C∗

∅
 

represents the equilibrium TDG concentration under relative vacuum degree ∅ (mg L−1).
By substituting Eq. (4) into Eq. (16), the mass transfer flux of supersaturated TDG on the bubble surface can 

be expressed as:

(9)Fs = Ksas(C − C∗
∅)

(10)Ks = 0.085Ts
1/2+0.0014

(11)Fw =
dMw

dt
ad

(12)Mw = MB +Md

(13)MB = ρBVBN × 10−2

(14)Md = ρBVdN × 10−2

(15)k =

dMw
dt ad + (C − C∗)Ksas

(C − C∗)

(16)J = K(C − C∗
∅)

(17)J = K
[

(

C0 − C∗
∅

)

e−kt
]
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where C0 represents the initial TDG solubility, (mg L−1).
According to mass conservation, the relationship between the TDG release process and wall-attached bubble 

volume growth rate can be expressed as:

where VB represents the wall-attached bubble volume, (mm3); AB represents the wall-attached bubble surface 
area, (mm2); and ρB represents the air density in wall-attached bubbles, (mg L−1).

By applying the boundary condition that when t = 0 , VB = 0 , the differential Eq. (18) can be solved as 
Eq. (19).

Due to the contact angle between water, gas and solids, the shape of wall-attached bubbles is not a complete 
sphere21. The volume of the wall-attached bubbles was calculated accurately from the images accounting for the 
contact angle effect, as described by Lin18. Thereafter, the mass transfer coefficient at bubble surface K in Eq. (19) 
under different relative vacuum degrees ∅ can be calculated. The relationship between K and ∅ is shown in Fig. 7.

According to the experimental results under various conditions, the quantitative relationship between K and 
∅ by the fitting method was obtained as follows:

where K∅ represents the mass transfer coefficient at the bubble surface under a relative vacuum degree of ∅ 
(mm min−1) and K∅=0 represents the mass transfer coefficient at the bubble surface under a relative vacuum 
degree of ∅ = 0 (mm min−1).

The coefficient of determination, R2 is 0.985.

(18)
dVB

dt
=

KAB

ρB

[

(

C0 − C∗
∅

)

e−kt
]

(19)VB =
KAB

(

C0 − C∗
∅

)

ρBk

(

1− e−kt
)

(20)K∅ = K∅=0e
2.1755∅

Figure 6.   Mass transfer process of TDG on the surface of wall-attached bubbles.
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Analysis of the number density of wall‑attached bubbles.  The number density (cell cm−2) of wall-
attached bubbles for each experimental case can be obtained by program calculation in MATLAB, and the sta-
tistical results are shown in Fig. 8.

According to the experimental results, the supersaturation level of TDG is the key factor that influences the 
wall-attached bubble number density. The quantitative relationship of the wall-attached bubble number density 
increasing with TDG supersaturation by the fitting method is obtained as follows:

where N represents the wall-attached bubble number density (cell cm−2). G represents the supersaturation of 
TDG, (%).

The coefficient of determination, R2 is 0.997.

Analysis of wall‑attached bubble departure in static water.  According to observations during 
experiments, wall-attached bubbles departure from the wall to the water surface when they grow to a certain 
diameter22.

The volume of the departure bubbles comprises the important part of the release of TDG in water. The 
departure time of wall-attached bubbles was defined as X , which represents the retention time from the forma-
tion to the departure. The experiment water tank was static so the mass transfer from nucleated bubbles was 
considered as diffusion, and the effect of advection was not considered in this study. According to the statistical 
results regarding the relative vacuum degree of 0.8 in the experiment, the departure diameter of wall-attached 
bubbles ranged from 1.5 to 2.3 mm, and the average bubble departure diameter in static TDG supersaturated 
water was 1.94 mm. The statistical results were consistent with Brennen’s23 conclusion that all bubble nuclei 
would grow to the same maximum radius. As the value of wall-attached bubble departure diameter was very 
small, and the appearance of bubble rising was infrequent in the static experiment observation, the entrainment 
enhancing water flow of rising bubbles was not considered in this study. According to the quantitative relation-
ship between the TDG release process and the wall-attached bubble volume growth rate, the value of X can be 
calculated as follows.

The departure frequency of wall-attached bubbles was defined as follows:

where f  represents the departure frequency of wall-attached bubbles, (min−1 cm−2) and N represents the wall-
attached bubble number density, (cell cm−2).

The departure frequency of wall-attached bubbles can be simulated as shown in Fig. 9. In the simula-
tion results, the departure frequency of wall-attached bubbles decreased obviously with decreasing TDG 
concentration.

Calculation of the adsorption flux through the wall‑attached bubbles.  Under environmental 
conditions of a relative vacuum degree ∅ = 0 , the bubble growth rate was slow, and it was difficult for wall-
attached bubbles to escape. By considering the TDG release process, the TDG adsorption flux under this condi-

(21)N = 0.017(G − 100)1.74

(22)X = −
1

k
exp

(

1−
VdρBk

KAB

(

C0 − C∗
∅

)

)

(23)f =
N

X
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tion can be simulated, as shown in Fig. 10. With TDG concentration decreasing, the growth rate of wall-attached 
bubbles gradually slowed down, and the wall adsorption rate of supersaturated TDG decreased over time.

The growth period was defined to describe the time of a group of wall-attached bubbles from appearance to 
departure. In the following simulations, the statistical value of a group of wall-attached bubbles’ average depar-
ture time was used to represent the value of the growth period. At a high value of the relative vacuum degree 
( ∅ = 0.8 ), due to the promotion effect of pressure on the bubble growth rate, the growth period of wall-attached 
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Figure 9.   Simulation result of the wall-attached bubbles’ departure frequency.
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Figure 10.   The simulation of TDG adsorption flux ( ∅ = 0).
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Figure 11.   Simulation of the supersaturated TDG adsorption flux ( ∅ = 0.8).
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bubbles was significantly shortened. Considering the influence of bubble growth and escape on supersaturated 
TDG release, the total amount of TDG adsorption flux under this condition can be simulated, as shown in Fig. 11.

The simulation cases of different pressure condition.  The simulation is based on a water tank that 
has different amounts of plants, and the air pressure over the water tank depends on the local altitude. The 
volume of water was assumed to be 1 m3, and the initial supersaturated TDG was assumed to be 150% for the 
modeling calculation. The diagram of the simulated water tank is shown in Fig. 12.

The simulation cases of the pressure condition considered 5 cases with relative vacuum degrees of 0, 0.1, 0.2, 
0.3 and 0.4. As the calculation result of Eq. (10), the mass transfer coefficient of the air–water interface in the 
case of static water was 0.0014 min−1. According to the leaf surface contact angle of the vegetation in natural 
water, a contact angle of 90° was chosen for simulation. The departure diameter of wall-attached bubbles can 
be calculated as 3.01 mm18. The initial TDG release coefficient in the case of different pressures was calculated 
according to Eq. (5), and the simulated TDG release time was 2 h. The TDG release coefficients under different 
vegetation superficial areas and different pressure conditions were calculated, as shown in Fig. 13.

The simulation results show that both pressure and vegetation surface area can promote the release process of 
supersaturated TDG. Under lower pressure, the effect of vegetation surface area on the TDG release coefficient 
can be more obvious.

Conclusions
In practical engineering applications, there are many solid walls in lakes and rivers, such as vegetation and 
suspended solids, which easily adsorb bubbles and promote wall-attached bubble growth. An experimental 
water tank with controllable pressure was designed in this paper to study the release process of supersaturated 
TDG under different environmental pressures and the function of walls to TDG dissipation. The quantitative 
relationship between the relative vacuum and the TDG release coefficient was obtained. By making analyses of 
the wall-attached bubbles growth rate and departure frequency, the quantitative relationship between the wall 
adsorption flux of TDG and the wall-attached bubbles growth period was obtained. To discuss the effect of solid 
wall adsorption on the TDG release coefficient, a prediction of the TDG release coefficient accounting for the 
wall adsorption effect was proposed. Based on the experimental research conclusions, the effects of the solid wall 

Figure 12.   The simulated water tank.
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Figure 13.   Calculation results of the TDG release coefficient.
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surface and pressure on the TDG release process were simulated, and the results show that with the increasing 
relative vacuum degree, the TDG release coefficient increases correspondingly, and the adsorption mechanism 
of solid wall area can be obviously promoted under lower environmental pressure.

The study in this paper provides a new angle of view to research on the TDG release mechanism. The results 
could provide basic data and scientific theory to evaluate the TDG release process in difference atmosphere and 
promotion of wall.
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