
ORIGINAL RESEARCH
published: 02 December 2020

doi: 10.3389/fchem.2020.596412

Frontiers in Chemistry | www.frontiersin.org 1 December 2020 | Volume 8 | Article 596412

Edited by:

Alejandro Speck-Planche,

Metropolitan University of

Technology, Chile

Reviewed by:

Marco Tutone,

University of Palermo, Italy

Antonio Carta,

University of Sassari, Italy

*Correspondence:

Anshu Bhardwaj

anshu@imtech.res.in

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 19 August 2020

Accepted: 28 October 2020

Published: 02 December 2020

Citation:

Choudhury C and Bhardwaj A (2020)

Hybrid Dynamic Pharmacophore

Models as Effective Tools to Identify

Novel Chemotypes for Anti-TB

Inhibitor Design: A Case Study With

Mtb-DapB. Front. Chem. 8:596412.

doi: 10.3389/fchem.2020.596412

Hybrid Dynamic Pharmacophore
Models as Effective Tools to Identify
Novel Chemotypes for Anti-TB
Inhibitor Design: A Case Study With
Mtb-DapB
Chinmayee Choudhury 1 and Anshu Bhardwaj 2*

1Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research,

Chandigarh, India, 2 Bioinformatics Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology,

Chandigarh, India

Antimicrobial resistance (AMR) is one of the most serious global public health threats as

it compromises the successful treatment of deadly infectious diseases like tuberculosis.

New therapeutics are constantly needed but it takes a long time and is expensive to

explore new biochemical space. One way to address this issue is to repurpose the

validated targets and identify novel chemotypes that can simultaneously bind to multiple

binding pockets of these targets as a new lead generation strategy. This study reports

such a strategy, dynamic hybrid pharmacophore model (DHPM), which represents the

combined interaction features of different binding pockets contrary to the conventional

approaches, where pharmacophore models are generated from single binding sites.

We have considered Mtb-DapB, a validated mycobacterial drug target, as our model

system to explore the effectiveness of DHPMs to screen novel unexplored compounds.

Mtb-DapB has a cofactor binding site (CBS) and an adjacent substrate binding site (SBS).

Four different model systems of Mtb-DapB were designed where, either NADPH/NADH

occupies CBS in presence/absence of an inhibitor 2, 6-PDC in the adjacent SBS. Two

more model systems were designed, where 2, 6-PDC was linked to NADPH and NADH

to form hybrid molecules. The six model systems were subjected to 200 ns molecular

dynamics simulations and trajectories were analyzed to identify stable ligand-receptor

interaction features. Based on these interactions, conventional pharmacophore models

(CPM) were generated from the individual binding sites while DHPMs were created from

hybrid-molecules occupying both binding sites. A huge library of 1,563,764 publicly

available molecules were screened by CPMs and DHPMs. The screened hits obtained

from both types of models were compared based on their Hashed binary molecular

fingerprints and 4-point pharmacophore fingerprints using Tanimoto, Cosine, Dice and

Tversky similarity matrices. Molecules screened by DHPM exhibited significant structural

diversity, better binding strength and drug like properties as compared to the compounds

screened by CPMs indicating the efficiency of DHPM to explore new chemical space

for anti-TB drug discovery. The idea of DHPM can be applied for a wide range of

mycobacterial or other pathogen targets to venture into unexplored chemical space.
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INTRODUCTION

Tuberculosis (TB) is the leading cause of death worldwide due
to a single infectious agent (Balganesh et al., 2008; Global
Tuberculosis Report, 2019). The standard therapies of treating
TB with a combination of several antibiotics over a period of 6–
9 months (Dutt and Stead, 1997; Zumla et al., 2015) and have
severe limitations due to compliance which leads to emergence
of drug resistant Mycobacterium tuberculosis (Mtb) (Prasad and
Srivastava, 2013). Antimicrobial resistance (AMR) is one of the
most serious global public health threats (Passi et al., 2019).
The “End Tuberculosis Strategy” (Global Tuberculosis Report,
2019) of WHO calls for intensified research and innovation in
TB drug discovery using multidisciplinary approaches to identify
novel drug targets as well as fast and accurate techniques to
design new chemical entities with higher potency to address
the scourge of Mtb. In the last few decades, there has been
rapid development in computational drug discovery algorithms
for ab initio protein modeling, homology modeling, protein
folding dynamics, molecular docking, pharmacophore modeling,
virtual screening, quantitative structure activity relationship
(QSAR) etc. (Kumar Srivastava et al., 2012; Kurumurthy et al.,
2012; Choudhury et al., 2014, 2015, 2016a,b; Gaur et al.,
2017). Several new strategies are also designed for repurposing
existing drugs or discover new ones (Passi et al., 2018). The
increasing number of experimental structures of drug targets
deposited in the protein data bank (PDB) and atomistic details
of the bindingmodes of co-crystalized compounds/drugs/natural
ligands (substrates/cofactors) provide a strong primer for
structure-based lead generation and optimization. However,
choosing the right molecular interaction features in the active
sites of a drug target is the most important step of structure-based
drug design (Wieder et al., 2017). Most often, the interactions
made by the natural substrate(s) of the target protein/enzymes
as reported in their static experimental structures are considered
for designing new inhibitors. However, for target inhibition
by competitive binding via specific interactions in the binding
pocket, the static structure does not provide information on
all potential and stable molecular interactions in the binding
site. Also, this approach offers limited specificity and chemical
diversity when cofactor/substrates are involved as these are
common to both the host and the pathogen. Hence, utilization
of additional information on adjacent binding pockets and
their ligand binding potential along with the dynamics of
the binding pockets might prove beneficial to design/screen
novel chemotypes. These chemotypes can form specific stable
interactions with multiple binding sites of the target offering
better specificity and scope for introducing chemical diversity
(Duckworth et al., 2011; San Jose et al., 2013). In recent years,
target specific interactions in the form of pharmacophore models
for virtual screening gained immense popularity (Schuetz et al.,
2018; Schaller et al., 2020).

In this study we have considered DapB, one of the validated
drug targets in Mtb. DapB enzyme belongs to Diaminopimelate
(DAP) biosynthetic pathway (Cox, 1996; Cox et al., 2000;
Vashisht et al., 2012) and inhibition of this enzyme blocks the
production of meso-diaminopimelate thus leading to inhibition

of de novo lysine biosynthesis and peptidoglycan assembly
(Figure 1A). Both of these pathways are crucial for the survival
of the pathogen (Usha et al., 2012). Several groups made efforts
to identify inhibitors of Mtb-DapB by exploring the potential of
product analogs (Singh et al., 2013) as potential inhibitors, but
have met with very limited success. Pyridine- 2, 6- dicaboxylate
(2, 6-PDC) and few other heterocyclic aromatic product analogs
have been identified with IC50 as high as 26µM for Mtb-
DapB. Also, a number of sulphonamide inhibitors of Mtb-
DapB (substrate analog for 2,3-dihydrodipicolinic acid) were also
identified with Ki values ranging from 7 to 48µM (Paiva et al.,
2001). This indicates that only substrate or product mimicry
is not sufficient and new lead generation strategies should be
employed exploring the key features of the binding sites of
the enzymes.

Molecular dynamics (MD) based pharmacophore models
have emerged as quite powerful tools which not only account
for the flexibility of the target(s), but also help to identify novel
key interaction features in the binding sites (Spyrakis et al.,
2015) which is otherwise unexplored in the crystal structures
and may be harnessed to design new inhibitors (Choudhury
et al., 2014, 2015; Choudhury and Bhardwaj, 2020; Guterres
and Im, 2020). Literature reports several studies that have
used molecular dynamics to sample huge number of receptor
conformations and generated pharmacophore models from these
conformations which showed improved enrichment for specific
interaction features (Bottegoni et al., 2011; Wieder et al., 2016;
Culletta et al., 2020). MD simulations combined with virtual
screening of compound libraries have led to identification of
biologically active compounds for several targets. In this study,
hybrid pharmacophore models representing multiple ligand
binding regions of Mtb-DapB were designed based on the
stable molecular interactions identified from the multiple MD
trajectories of the target bound to the co-crystal ligand molecules
as well as hybrids of two such ligands bound to different
binding sites (Figure 1B). We comparatively investigated the
efficacies of the dynamics-based hybrid pharmacophore models
(DHPM) based on multiple binding sites and the conventional
pharmacophore models obtained from a single binding site, to
obtain novel, target specific and diverse chemotypes with higher
binding affinities as compared to the existing ones.

MATERIALS AND METHODS

Model Systems and Molecular Dynamics
(MD) Simulations
Six different model systems were designed from three available
experimental structures of Mtb-DapB for the study. The X-ray
crystal structure 1C3V (Cirilli et al., 2003) was used to design
three model systems, D-NDP-P, D-NDP and D-NDPHyb. The
first one (D-NDP-P) is Mtb-DapB bound to NADPH (natural
cofactor of Mtb-DapB) and 2,6-PDC (a mimetic of the natural
substrate of Mtb-DapB) as in the reported structure, the second
one (D-NDP) bound to only NADPH and the third one (D-
NDPHyb) bound to a hybrid molecule created by linking
NADPH and 2,6-PDC with a simple n-propyl linker. Similarly,
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FIGURE 1 | (A) Schematic diagram showing the role of Mtb-DapB in de novo lysine biosynthesis and peptidoglycan assembly, (B) Mtb-DapB model systems

designed in the current study.

the X-ray crystal structure 1P9L (Cirilli et al., 2003) was used to
generate two model systems, D-NAI-P and D-NAIHyb. The first
one (D-NAI-P) is Mtb-DapB bound to NADH (another natural
ligand of Mtb-DapB) and 2,6-PDC as in the reported structure
and the other model (D-NAIHyb) with a hybrid molecule created
by linking NADH and 2,6-PDC with the n-propyl linker. The
third crystal structure 1YL7 (Janowski et al., 2010) was used as in
the reported structure bound to only NADH (D-NAI). Figure 1B
depicts the model systems designed for this study.

Two hundred nano seconds (ns) simulations were carried
out under NPT ensemble on each model system using OPLS
force field (Harder et al., 2016) with the Desmond MD
simulation package (release 2017; Shaw et al., 2014). Complete
details of the MD Simulation methodology are given in
Supplementary Section 1.

MD Trajectory Clustering and Generation
of e-pharmacophore Models
Hierarchical clustering was performed on each trajectory (RMSD
3Å) to sample representative structures with minimum RMSD
of all the heavy atoms of the binding sites (residues within
5Å of the bound ligands). The protein ligand interactions were
analyzed for each cluster representative and the ones with the
most stable interaction features were considered further for
pharmacophore modeling using the e-Pharmacophore option
from the Phase (Dixon et al., 2006a)module of Schrodinger Suite.
To generate energy-based e-Pharmacophoremodels (Salam et al.,
2009) from the given protein ligand complexes, Phase first
estimates the Glide extra precision (XP) (Friesner et al., 2006)

energy terms for hydrophobic enclosure, hydrophobically packed
correlated hydrogen bonds, electrostatic rewards, π-π stacking,
cation-π, and other interactions. Each interaction is represented
by a pharmacophore feature site and is assigned an energetic
value equal to the sum of the Glide XP contributions of the
atoms comprising the site. Then, the sites are ranked based
on the energetic terms. Minimum inter-feature distance was
maintained to be 2Å, while minimum inter-feature distances
between the same types of features were assigned to be 4Å and
the donors were presented as vectors. Receptor based excluded
volume shells of 5Å thickness were created using the Van
der Waals radii of the receptor atoms. The scaling factor was
assigned as 0.50 and receptor atoms within 2Å of the ligand
were ignored while defining the excluded volume shells as per
the default settings. Conventional pharmacophore models were
generated individually from NADPH, NADH, and PDC from
model systems D-NDP-P, D-NDP, and D-NAI-P. Maximum
number of features were assigned as 7 for these conventional
models. None of the cluster representatives from the trajectory
of D-NAI was used for pharmacophore model generation as
none of the interactions formed between NADH and Mtb-
DapB in this system were stable (occupancy < 40%). First
type of hybrid pharmacophore models were generated directly
from the hybrid molecules in model systems D-NDPHyb and
D-NAIHyb. The maximum number of features were initially
assigned as 10 for these hybrid models, but best 6 to 7 features
were retained from the desired regions (highlighted in yellow
in Figure 1B) of the hybrid molecules, after discarding the
features associated with the adenosine and phosphate regions.
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The second type of hybrid pharmacophore models with 6 to
7 features were obtained by first merging the conventional
models from NADPH/NADH and PDC and then discarding
the features associated with ADP regions of NADPH/NADH.
The pharmacophore models obtained individually from 2, 6-
PDC were having only 3 to 4 features, which would not confer
specificity to the models. So, they were not used further for ligand
screening. The conventional pharmacophore models obtained
fromNADPH/NADH individually were named as N-typemodels
while the two types of hybrid pharmacophore models were
named as H-type pharmacophore models.

Pharmacophore Screening
The ZINC natural product subsets with 132,883 molecules
(ZINC) and Asinex screening library (Asinex.com – Asinex
Focused Libraries, Screening Compounds, Pre-plated Sets,
Asinex.com – Asinex Focused Libraries, Screening Compounds,
Pre-plated Sets) consisting of 530,881 molecules was selected
for our study. The Asinex library included the “BioDesign”
library of 175,851 pharmacologically relevant natural product
like compounds, “lead-like” library with 91,473 compounds
(those have been screened against a panel of early ADMET
tests including DMSO and water solubility, PAMPA, PGP and
CYP inhibition) and “Gold and Platinum Collections” with
263,557 molecules having a high degree of drug-likeness, in
accordance with Lipinski’s Rule of 5. These molecules were
subjected to preparation in LigPrep (Shelley et al., 2007),
generating their ionization states at pH 7.0 (±2.0) using Epik
ionizer and five lowest energy conformers were retained for
each compound. Then, these molecules were screened against
the N-type and H-type pharmacophore models using the
“Ligand and Database Screening” option of Phase module of
Schrodinger Suite (Dixon et al., 2006a). Twenty conformers were
generated per molecule and the outputs were minimized before
alignment against the pharmacophore models. The negative and
acceptor features were considered equivalent and the minimum
number of sites the molecule must match was assigned to be
5. Among many conformers of a ligand, the one with the
best fitness score (S) evaluated by a specific fitness function
(Dixon et al., 2006b) was retained for each compound. The
consolidated lists of all the compounds screened by the N- and
H-type models were named as N-set and H-set, respectively.
Various cheminformatics analyses were performed to compare
the structural, physicochemical and ADMET properties of the
N- and H-set. Mtb-DapB binding affinities of N- and H-set were
estimated by molecular docking studies and compared.

Generation of Molecular Fingerprints and
Library Comparison
Different types of hashed binary molecular fingerprints such as
liner, radial, MOLPRINT2D and 4-point 3D pharmacophoric
fingerprints were generated for N- and H- set molecules with
Schrodinger. Then, the H-set molecules were compared with the
N-set compounds on the basis of the above molecular finger
prints using Tanimoto, Cosine, Dice, and Tversky similarity
matrices. Max Similarity (MaxSim) scores (calculated using
Tanimoto, Cosine, Dice, and Tversky similarity matrices) were

obtained for each molecule of the query set (H-set) with respect
to the N-set molecules. MaxSim represents the similarity score
of each molecule from H-set with the nearest neighbor of the
N-set. Various drug likeliness and ADMET properties were also
calculated using QuikProp module of Schrodinger for the two
sets of molecules and were compared to each other.

Molecular Docking
The N- and H- set compounds were subjected to blind molecular
docking with the cluster representatives used for pharmacophore
model generation. As all the structures were prepared before
MD simulations, these cluster representatives were directly used
for grid generation. “Receptor Grid Generation” module of
Schrödinger was utilized to define interaction grids for molecular
docking keeping the centroids of all residues within 5Å of both
the bound ligands as grid centers. The size of the interaction
grid, which covered almost the whole protein including both the
binding sites was fixed to 20Å for inner box and 24Å as outer box
to facilitate a blind docking. Then, the N- and H-set compounds
were subjected to docking calculations with the interaction grids
of the selected cluster representatives using the Glide (Friesner
et al., 2006) module of Schrödinger software package first with
standard precision (SP) followed by eXtra Precision (XP) modes.
Five best energy poses were generated for each compound.
OPLS_2005 force field was used for docking with all default
parameters. The resultant complexes were further submitted
for binding energy estimation, where Molecular Mechanics-
Generalized Born Surface Area (MM/GBSA) based binding free
energy (1Gbind) were computed for the complex using Prime
module. The N- and H-type compounds were then compared
based on their DapB binding affinities (Docking scores and
1Gbind) as well as their potential to make interactions with key
residues as identified from the MD trajectories. Figure 2 shows
the overall workflow of the study.

RESULTS AND DISCUSSION

Overall Structure of Mtb-DapB Model
Systems
The Mtb-DapB is a homo-tetramer of 245-residue monomers
(Figure 3A) with two major domains connected with two short
hinge regions. The N-terminal domain (1–106 and 216–245)
contains six β-strands (β1–β5 and β10) and four α-helices (α1–
α3, α6). The C-terminal domain (107–211) consists of four
βstrands (β6–β9) along with two α-helices (α4 and α5) giving
rise to a mixed αβ-sandwich arrangement and a long loop
(L8, 156–179). Two short loops L4 (103–106) and L10 (212–
215) connect the two domains and act as hinge regions for the
domain movements. Mtb-DapB binds two ligands, a cofactor
either NADH or NADPH and a cyclic substrate. The ADP part
of NADH/NADPH is embedded in a solvent exposed groove
like region located in the N-terminal domain and extending to
the hinge region, while the nicotinamide part is placed in the
floor of a relatively less exposed cavity C1 (Figure 3B) formed
by residues from both N- and C-terminal domains. C-terminal
side of C1 binds the substrate dihydrodipicolinate which is
located near the nicotinamide ring of NADH/NADPH placed
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FIGURE 2 | Overall workflow of the study.

in the N-terminal side of C1. Nine experimental structures of
Mtb-DapB have been reported in PDB. Most of these crystal
structures and literature suggest both NADH and NADPH can
bind in the cofactor binding site of the N-terminal region.
A substrate mimetic competitive inhibitor 2,6-PDC (PDC) is
bound at C1. In this study, we considered three crystal structures
of Mtb-DapB, namely, 1P9L, 1C3V, and 1YL7 as they are high
resolution structures, the binding regions being occupied by
NADH/NADPH and PDC so that all the ligand interaction
features present in the binding sites can be thoroughly explored.
Six different model systems were created from these PDB
structures as narrated in the methodology section in order to
represent various states of the protein in the cell, bound to
one or more cofactors in presence and absence of the substrate
molecule. With respect to the several stages in the reaction cycle,
the geometric dynamic properties are quite likely to be different
when the protein binds to different ligands and hence one needs
to consider all these conformational states during ligand design.
The hybrid molecules in (D-NDPHyb) and (D-NAIHyb) were
designed in order to compare the stabilities of the interactions
made individually by the ligands when they are free and when
they are linked together with a linker. The stable interactions
formed by the hybrid molecule can be mimicked to design
inhibitors, which can compete for the binding sites of both the
ligands of Mtb-DapB.

Comparative Analysis of the Structural
Dynamics of Mtb-DapB Model Systems
The six model systems used in this study are based on similar
initial structures, and provide a robust base to study how the

binding of different ligands in different combinations affects
the overall dynamics of Mtb-DapB and what conformation/s
of which complex would be best to be used for drug design.
Hence, various structural properties were analyzed from the
MD trajectories of the six model systems using the “Simulation
event analysis” and “Simulation interaction diagram” tools and
we observed significant conformational variances in the binding
sites of Mtb-DapB when bound to different ligands. Figure 4
shows the root mean squared deviations (RMSD) of the protein,
root mean squared fluctuations (RMSF) of the Mtb-DapB
residues RMSD, radius of gyration and solvent accessible surface
areas (SASA) of the ligands in the six model systems.

All the trajectories were well equilibrated by the end of 200 ns
as observed from the RMSD graph. Though the initial structures
of all the model systems are very similar, the model systems with
only NADPH/NADH as in D-NDP and D-NAI show high RMSD
from the respective initial structures as compared to the ones
that additionally bind PDC in C1. The model systems where
both the ligands were linked together to form hybrid molecules
(D-NDPHyb and D-NAIHyb) showed lesser RMSD from their
respective initial structures as compared to the ones where
the ligands are separate (D-NDP-P and D-NAI-P) suggesting
relatively stable complexes with the hybrid molecules. Also, the
model systems binding NADH showed higher deviations from
the initial structure except for D-NAIHyb. A quick look into
the RMSD profiles of the ligand/s (NADPH/NADH and PDC
considered together in case of D-NDP-P and D-NAI-P) with
respect to themselves and with respect to the protein show high
fluctuations in model systems D-NDP-P, D-NDP, D-NAI-P, and
D-NAI. These graphs suggest that NADH undergoes a drastic
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FIGURE 3 | Mtb-DapB structure. (A) Overall structural architecture of Mtb-DapB, (B) NADH and substrate binding regions with a detailed picture of the C1 cavity.

conformational change in D-NAI-P after 65 ns and then remains
stable till 200 ns, while it almost detaches from the cavity after
130 ns in D-NAI. This observation is strengthened from radius
of gyration and solvent accessible surface areas of the ligands
throughout the simulations showing high fluctuations of NADH
in D-NAI. As revealed from the C terminal L8 residues show
higher (3.5–7.5 Å) fluctuations in all systems, which is however
not a part of the binding pockets. In system D-NAI, the hinge
region residue K136 shows high fluctuation.

Comparative Analysis of Stability of
Protein-Ligand Interactions in Mtb-DapB
Model Systems
The simulation interaction diagram from Desmond gives the
summary of all stable interactions between the active site residues
and the ligands that last for more than 30% of the simulation.
Figure 5 shows the fractions of different types of interactions
made by the ligands with Mtb-DapB in the model systems
and the stable interactions that lasted more than 30% of the
simulation time for D-NAIHyb. Stable interactions for other
model systems may be seen in Supplementary Figures 1, 2. The
phosphate groups of the ADP part of NADPH in D-NDP-P make
stable H-bonds with positively charged residues K9 and R14. The
phosphate groups also make stable water bridges with F52 and
T53 with occupancies of 80 and 60%, respectively. The –NH2
and -C=O groups of nicotinamide part make the most stable H-
bonds with G75 (98%) and F105 (93%) as donor and acceptor,
respectively. The –OH group of the sugar moiety attached to the
nicotinamide ringmakes stable H-bondwith T77. Intramolecular
H-bonds were also formed between the sugar –OH and the
adjacent phosphate groups. In absence of PDC as in D-NDP,

the Adenine base of NADPH makes H-bonds with H54 (58%)
and N61 (36%). The –OH and the phosphate groups attached
to the sugar moiety adjacent to the adenine base make water
bridged interaction and H-bond with D33 (37%) and K9 (44%),
respectively. The other phosphate group makes H-bond with
F52 (42%). The sugar adjacent to the nicotinamide ring makes
stable H-bonds with T33 (79%) and a water bridge interaction
with T77 (64%). The H-bond interactions made by the –NH2
and -C=O groups of nicotinamide groups are same as those
in D-NDP-P. The nicotinamide ring showed π-stacking with
F17 as the latter is accessible due to absence of PDC. It was
observed that many of the interactions formed by NADPH in D-
NDP have occupancies<50% whereas the interactions formed in
D-NDP-P showed better occupancy suggesting relatively stable
binding of NADPH to Mtb-DapB in presence of PDC. NADH
shows relatively unstable binding with Mtb-DapB as compared
to NADPH both in presence and absence of PDC. The adenine
part of NADH in D-NAI-P makes H-bond interactions with
S211 (40%) and a cation-π interaction with R214. The phosphate
groups make interactions with positively charged R214 and K11.
Nicotinamide –NH2 and –C=O groups still make H-bond and
water bridge with G75 and F105, respectively. However, except
the interactions of R214, none of the other interactions showed
more than 50% occupancy suggesting a weaker binding. In
absence of PDC in D-NAI, NADH showed no stable interaction
with Mtb-DapB as it showed tendency to move out of the
binding pocket. PDC showed many stable interactions with the
C1 residues in presence of both NADPH and NADH. In D-
NDP-P, PDC makes H-bond/electrostatic interactions with the
hinge region residue K136 (two, 98 and 93%), R214 (95%),
T143 (two, 94 and 93%) G142 (45%), T77 (40%), H133 (54%),
water bridges with P103 and D138 and a π-stacking with H132
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FIGURE 4 | (A) RMSD of the protein, (B) RMSF of the Mtb-DapB residues, (C) RMSD of the ligands, (D) RMSD of the ligands w.r.t the protein, (E) Radius of gyration

of the ligands (F) SASA of the ligands in the six model systems.

(56%). Similarly, in D-NAI-P, PDC makes H-bond/electrostatic
interactions with K136 (two, 88 and 83%), H133 (69%), water
bridges with D138, H132 and N104 and makes a π-stacking

with H132 (40%). The number and stability of interactions made
by PDC was observed to be higher in presence of NADPH
than NADH. From these observations of interactions made by
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FIGURE 5 | (A) The stable interactions that lasted more than 30% of the simulation time, (B) Fractions of different types of interactions made by the ligands with

Mtb-DapB in the model system D-NAIHyb as an example.

NADPH/NADH and PDC, we also get a hint that the strength
of cofactor binding is higher in presence of the substrate.
Another important observation is the interactions made by the
hybrid molecules, phosphate groups of the hybrid molecule
formed by linking NADPH and PDC (NDPHyb) made stable
H-bond/electrostatic interactions with K509 (45%), R214 (two,
65 and 53%), the nicotinamide part made π-stacking with F52,
and H-Bonds with F105 (45%) and A102 (60%). The PDC part
of NDPHyb retained its stable interactions in the D-NDPHyb
model system with K136 (99%), H133 (48%), T143 (two, 86%
each), S141 (41%), G142 (75%) and water bridges with D138
(93%). It was interesting to observe that, when NADH was
linked with PDC to form a hybrid molecule (NAIHyb), it formed
more number of stable interactions with Mtb-DapB owing
to its structural stability, which was not formed in D-NAI-P
or D-NAI.

The sugar moiety attached to the adenine part of NAIHyb
makesH-bond interactions with F52 (49%) andwater bridge with
A34 (42%). The phosphate groups make H-bond/electrostatic
interactions with K11 (42%) and R214 (two, 88 and 87%) while
the sugar attached to the nicotinamide ring makes H-bond
with T77 (70%). The n-NH2 and –OH groups of nicotinamide
ring H-bond with T76 (61%), A102 (55%) and F105 (56%),

respectively. The PDC part of NAIHyb retains its strong H-
bond/electrostatic interactions with K136 (two, 99% each),
T143 (two, 98, 97%), G142 (87%), H133 (48%) and water
bridges with D138 (97%), P103 (71%), and G78 (58%). Thus,
the hybrid molecules form stable protein-ligand complexes by
forming additional interactions with the Mtb-DapB binding
site, especially in the C1 region. From the above observations
it is clear that in all model systems, the interactions formed
by the C1 residues were relatively more stable than the ones
formed by other parts of the binding site. This observation
was considered while generating hybrid pharmacophore models,
which is discussed in the next section.

Dynamics Based Conventional and Hybrid
Pharmacophore Models
To explore interaction features of binding sites in different
conformational states, each of the six MD trajectories were
clustered using hierarchical clustering based on mutual RMSD
to obtain representative conformations which have RMSD of
least 3Å with respect to each other. From D-NDP-P, D-NDP,
D-NDPHyb, D-NAI-P, and D-NAIHyb model systems 3, 7, 3,
3, and 2 clusters were obtained, respectively. DapB-NAI system
was not considered for pharmacophore modeling as none of the
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interactions made by NADH in this model system showed >40%
occupancy. The cluster representatives were further verified
if they are showing all the stable interactions as identified
from the MD simulations. We observed that 2, 3, 2, 1, and
2 cluster representatives from the MD trajectories of D-NDP-
P, D-NDP, D-NDPHyb, D-NAI-P, and D-NAIHyb, respectively,
were able to show all stable interactions and were used to
generate the N- and H-type pharmacophore models. Apart from
the four representatives from D-NDPHyb and D-NAIHyb, the
conventional models generated from the two representatives
of D-NDP-P were combined to generate two H-type models.
Details of six H-type and six N-type models are described in the
Supplementary Tables 1, 2.

Figure 6 shows one representative from H- and N-type
pharmacophore models and Supplementary Tables 1, 2 and
Supplementary Figures 3, 4 give the details of all the models
belonging to the three categories. All the models consisted of 5
to 8 features. The H-type models were designed to represent the
stable interactions made by both PDC and the cofactor, excluding
the ADP region. The reasons for excluding the ADP region are
as follows, (1) ADP is a common metabolite in both human
and Mtb, so mimicking its interaction features might cause
specificity issue (2) combination of strong interaction features
from both the cofactor and substrate might fetch chemically
diverse molecules with good binding affinity and (3) interactions
of the cofactors, substrate and PDC were relatively stable with
the C1 residues (ADP region of the cofactors/hybrid molecules
do not bind near C1). H-type pharmacophore models were
obtained by two different ways. First, from the interactions of the
Hybrid constructs (excluding the ADP part) as in D-NDPHyb
andD-NAIHyb and secondway was bymerging the conventional

models from NADPH/NADH and PDC of D-NDP-P followed
by eliminating the features obtained from the ADP part of
NADPH/NADH (Figure 1).

To validate the performances of our pharmacophore models,
known Mtb inhibitors are obtained from ChEMBL. As
mentioned before, only a few inhibitors of Mtb-DapB have
been reported in literature and these product analog inhibitors
(Singh et al., 2013) and sulphonamide inhibitors (Paiva et al.,
2001) show IC50 > 26µM and Ki values ranging from 7 to
48µM, respectively. Secondly, our pharmacophore models are
based on the interactions of the cofactors (N-type) and the
cofactor-substrate hybrid molecules (H-type) with Mtb-DapB.
No DapB inhibitor acting through interaction with both of
the binding site residues is reported yet. Hence, we selected
compounds from ChEMBL with low MIC values (≤1µM)
as the test set to evaluate the model performance. A total
of 4,298 molecules with MIC ≤ 1µM reported in ChEMBL
database and 155 Mtb active molecules reported by GSK were
subjected to structure similarity-based clustering. The molecules
clustered with Tanimoto similarity ≥ 0.85 were eliminated
and the rest 2,349 molecules were used as the active dataset.
In addition, 2,934 Mtb inactive compounds are also selected
from ChEMBL (reported as “inactive” or with MIC ≥ 50µM).
A total of 12,934 molecules including 10,000 random decoy
molecules are obtained from DUD.E database and along with
2,934 Mtb inactive molecules from ChEMBL were taken as
the inactive data set. Hypothesis validation program of Phase
module of Schrodinger suite was used to screen both the
active and inactive datasets against all the 6 H-type and 6 N-
type models. Interestingly, it was observed from the percentage
screen plots that, the H-type models were able to screen more

FIGURE 6 | Snapshots of one example from N-type and H-type pharmacophore models, with their respective feature tables.
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number of Mtb-active compounds as compared to the N-Type
models. Though the percentage of Mtb hits by the H-type
models are very low (10–15%), but they are ranked high in
the list of hits. And considering that these are not exactly
active on Mtb-DapB (as target is not reported), but they are
active on Mtb whole cells, it can be safely concluded that the
models represent Mtb specific interaction features, which are not
available in a reasonably large random decoy library. The ROC
curves (Supplementary Figure 5) for these hypothesis validation
screening, are not near the random line. The numbers of active
and inactive compounds screened by each H and N-type model
is given in Supplementary Table 3. For these sets of Mtb-active
and decoy molecules, the H-type pharmacophores based on the
interaction features of NADPH-PDC showed better performance
to screen Mtb-active molecules as compared to the H-type
models based on NADH-PDC.

The ligand dataset curated from publicly available chemical
databases was then screened by these N- and H-type models

and molecules that matched at least 5 features were retained as
hits. The unique consolidated list of compound hits screened
by the N- and H-type models were named as N-set and H-
set, respectively. N-Set contained 2,884 molecules while the H-
set contained 3,707molecules. Supplementary Figures 6, 7 show
the pharmacophore models mapped to the respective top hits
with best fitness scores.

Comparative Analysis of N-set and H-set
Compounds
As the aim of this study is to explore the hybrid pharmacophore
model as an effective tool to screen new chemotypes with
better affinities with DapB as compared to the conventional
models, we compared different aspects of N-set and
H-set compounds, such as their structural similarities,
their binding energies with Mtb-DapB and drug like and
ADMET properties.

FIGURE 7 | (A) Distributions of the XP docking scores and the MMGBSA 1Gbind ligand efficiency values of thewill top 1,000 H-set and the top 1,000 N-set

compounds, (B) Examples of interactions of the best scoring H-set and N-set compounds bound to the respective binding sites.
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Comparison of Mtb-DapB Binding Affinities
In order to quantify the binding affinities of the H-set and N-
set compounds with Mtb-DapB, all the 3,707 H-set and 2,884
N-set compounds were docked with each of the 10 representative
structures (described in the “Dynamics based conventional
and hybrid pharmacophore models” section) used to generate
the pharmacophore models. The best scoring pose for each
compound among the 10 docking calculations was retained.
This was followed by MMGBSA binding free energy calculations
taking all these protein ligand complexes. Figure 7A shows the
distributions of the XP docking scores and theMMGBSA1Gbind
ligand efficiency values of the top 1,000 H-set and the top 1,000
N-set compounds. The graphs show that, 72.3% of the top 1,000
H-set compounds had docking scores below −7, while only
34% of the N-set compounds have this range of XP-docking
score. 20.1% of the top scoring 1,000 H-set compounds had
docking score <-8, while only 7.7% of the N-set compounds had
this score. The MMGBSA 1Gbind ligand efficiency values were
obtained by normalizing the MMGBSA 1Gbind by the number
of heavy atoms present in the respective compounds. Figure 7A
shows that 80.9% of the top 1,000 H-set compounds showed
ligand efficiency above 2.2, while only 40.4% of the top 1,000
N-set compounds showed this range. These comparative graphs
clearly indicate that the H-set compounds have better binding
affinities with Mtb-DapB as compared to the N-set compounds.
Examples of the best scoring H-set and N-set compounds have
been shown in Figure 7B.

Comparison of Structural Features
The structures of the H-set compounds were compared with
those of the N-set compounds using different measures. The H-
set compounds were chosen as the query library and compared
against N-set as the reference library. For each compound in
the query library, the nearest neighbor in the reference library
was obtained using fingerprint similarities based on different
matrices. Four different types of binary hashed fingerprints such

as linear, radial, MOLPRINT2D and atom triplets were calculated
for the two libraries. The nearest neighbor similarities were
obtained based on different similarity matrices, viz., Tanimoto,
Cosine, Dice and Tversky similarity matrices and plotted as
histograms. Supplementary Figure 8 shows the similarity score
distributions between H-set vs. N-set. Histograms in Figure 8A

clearly indicate that more than 70% of the H-set compounds
have scores below 0.6 with respect to the N-set compounds. This
shows that the hybrid pharmacophore models screen structurally
different molecules as compared to the conventional models.

Comparison of Druglike Properties
Various drug likeness parameters of the H-set and N-set
compounds were calculated using QuikProp and the drug
like properties of both sets were compared to each other.
Figure 8B shows the histograms of various drug likeness
parameters of the H- and N-set compounds. The solubility,
bioavailability and the drug likeness scores were found to follow
strikingly different trends in case of N and H set compounds.
Supplementary Figure 9 shows distribution of different druglike
properties of the H-set and N-set compounds. The #star
descriptor indicates the number of property or descriptor
values [such as molecular weight, dipole moment, ionization
potential, electron affinity, SASA and its components, volume,
HB donor and acceptor, globularity, solubility, lipophilicity,
bioavailability, toxicity etc. (refer Supplementary List 1 for
detailed information)] that fall outside the 95% range of similar
values for known drugs. A higher value range (about 40%
molecules have a value ≥5) of #stars for the N-set compounds
suggests they are less drug-like than H-set molecules with
few stars (only 1% molecules have a value ≥5). Similarly,
the #RO5 values (Number of violations of Lipinski’s rule of
five) are also higher for the N-set compounds as compared
to the H-set compounds (Figure 8B) showing better drug
likeliness of the later. The #metab descriptor is a predicted
value representing number of likely metabolic reactions gives

FIGURE 8 | (A) Distribution of the maximum similarity (MaxSim) scores of the H-set compounds with respect to N- set compounds based on the linear and radial

fingerprints. MaxSim represents the similarity score (calculated using Tanimoto and Cosine matrices) of each molecule from H-set with the nearest neighbor of the

N-set. Distribution of this MaxSim scores for the molecules of one set with respect to the other set gives an idea about the structural similarities between the libraries

(B) Histograms of important drug likeness parameters of the H-and N-set compounds.
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an estimation of the off-target interactions and toxicity of the
compounds. The N-set compounds show a higher number
as compared to the H-set compounds. Hence with all these
comparative observations of the structural and physicochemical
properties, and drug-likeliness scores, we can summarize that,
the hybrid pharmacophore models lead to a structurally
diverse and more druglike chemical space as compared to the
conventional models.

CONCLUSIONS

The present study reports a robust computational approach,
wherein, six different model systems of Mtb-DapB binding
different combinations of ligands were modeled and each of
them were subjected to 200 ns molecular dynamics simulations.
The structural and enthalpic stabilities of these model systems
were monitored throughout the simulations and it was revealed
that the hybrid ligands designed by linking two native ligands
(cofactor and substrate) of Mtb-DapB are able to make highly
stable non-covalent interactions in the binding pockets. These
stable interactions formed by the hybrid ligands with two
adjacent binding site regions of Mtb-DapB were utilized to
generate hybrid dynamics-based pharmacophore models. The
abilities of these hybrid models to screen molecules with new
chemotypes, better binding affinities, and drug-like properties
were comparatively assessed with that of the conventional
models generated from the native ligands. Cheminformatics
based structure comparison, docking scores, binding energies
and ADMET properties of the molecules screened by the hybrid
pharmacophore models were found to be more druglike, thus
establishing the hybrid models as efficient tools to venture into
novel anti-TB chemical space.
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