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Abstract

Dimensionality reduction of microarray data is a very challenging task due to high com-

putational time and the large amount of memory required to train and test a model. Genetic

programming (GP) is a stochastic approach to solving a problem. For high dimensional data-

sets, GP does not perform as well as other machine learning algorithms. To explore the inher-

ent property of GP to generalize models from low dimensional data, we need to consider

dimensionality reduction approaches. Random projections (RPs) have gained attention for

reducing the dimensionality of data with reduced computational cost, compared to other

dimensionality reduction approaches. We report that the features constructed from RPs per-

form extremely well when combined with a GP approach. We used eight datasets out of which

seven have not been reported as being used in any machine learning research before. We

have also compared our results by using the same full and constructed features for decision

trees, random forest, naive Bayes, support vector machines and k-nearest neighbor methods.

Introduction

Microarray is a collection of DNA or RNA attached to a solid surface. The purpose of the

microarray is to do expression profiling or assessing the genome content in closely related cells

or organisms [1]. Microarray datasets have become a center of attention for researchers work-

ing in bioinformatics and machine learning domains. Studying the underlying patterns of dif-

ferential gene expression is a major challenge in these kinds of datasets, as the number of

instances for both training and testing is usually less than 100, while on the other hand number

of features ranges from 6000–60,000. High dimensionality implies high computational cost

and massive memory requirements for training. The capacity of these trained algorithms is

also compromised by what is known as the curse of dimensionality [2]. Several studies have

been carried out to find a robust machine learning method to classify such data [3].

Evolutionary algorithms (EA) are population-based, random search techniques where a

population of solutions gets updated iteratively using algorithm-specific heuristics until con-

vergence is achieved [4]. Genetic programming(GP) is one of the most popular techniques

among the EA community. Since GP’s introduction by Koza [5], the research community has

frequently applied it to solve problems such as optimization, control, data mining, image
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processing and signal processing [6]. Dimensionality reduction maps data to low-dimensional

space from high-dimensional space by assuming that the intrinsic structure of the high-dimen-

sional data can remain intact in the low-dimensional space. Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) are the two most commonly used dimension-

ality reduction techniques. These two techniques construct features which perform well with

various machine learning algorithms, but the high computational cost is one of the major limi-

tations of these methods. To address this issue of computational cost, Random Projection

(RP), which maps data to a randomly generated, low-dimensional latent space, was proposed

[7]. The motivation behind the current work was to explore the effectiveness of RP for feature

construction to improve the classification performance of a GP classifier for a high-dimen-

sional microarray dataset. The purpose of this work was to address the following objectives;

1. To investigate the performance of GP on very high-dimensional microarray datasets.

2. To investigate the performance of random projection-based features constructed with GP.

3. To investigate how k-Nearest Neighbours(KNNs), Support Vector Machines(SVMs), Deci-

sion Trees(DT), Naive Bayes(NB) and Random Forests(RFs) algorithms perform on very

high-dimensional microarray datasets as compared to GP.

Background

GP is a population-based method to evolve programs [8]. It typically follows these steps:

1. Initialization: produce an initial population of programs from terminal and function sets.

2. Until a certain stopping-criteria is fulfilled, perform:

• Evaluation: the fitness of each individual program is calculated by a pre-selected fitness

function.

• Selection: select a subset of programs to produce next generation of programs based on

their fitness scores.

• Evolution: generate new generation by either copying a program to the new generation

(reproduction) or combining different parts of programs or mutating a part of a program

randomly(crossover).

3. Return the solution with the highest fitness.

Terminal and function set

In GP, each program is a tree-like structure where terminal nodes are the feature values and

internal nodes are elements of a pre-determined function set, in our case (+, −,�, ×).

Fitness function

In order to measure the fitness of our program, we used Mathew’s Correlation coefficient

(MCC). The MCC is a correlation between the observation and prediction which in our case is

defined as:

MCC ¼
NtpNtn � NfpNfn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNtn þ NfnÞðNtn þ NfpÞðNtp þ NfnÞðNtp þ NfpÞ

q ð1Þ

Where Ntp, Ntn, Nfp, and Nfn are the number of true positives (TPs), true negatives (TNs), false
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positives (FPs) and false negatives (FNs), respectively. When the denominator is 0, MCC is set

to 0. The standardized fitness of a rule was calculated as:

fitness ¼
1þMCC

2
ð2Þ

Since MCC ranges between -1.0 and +1.0, the standardized fitness ranges between 0.0 and

+1.0, the higher values being better with 1.0 being the best.

Dataset description

For experimentation, we have chosen eight high-dimensional microarray datasets.

1. Lung Cancer Histology- This Dataset is a comparison of two non-small cell lung cancer his-

tology sub-types [9]. It contains expression levels of 54,675 RNAs of 58 carcinoma’s sample:

18 squamous cell carcinoma(SCC) and 40 adenocarcinomas(AC). The complete dataset is

available at https://www.ncbi.nlm.nih.gov/sites/GDSbrowser? acc=GDS3627.

2. Oral Mucosa—This dataset provides insight into the carcinogenic effects of cigarette smok-

ing [10]. The dataset has expression levels of 54675 RNAs of 79 Oral mucosa samples: 39

smokers and 40 non- smokers. The complete dataset is available at https://www.ncbi.nlm.

nih.gov/sites/GDSbrowser?acc=GDS3709.

3. B lymphocytes-This dataset was generated during a study conducted on US white females

[11]. The objective was to analyse the effect of smoking on circulating B lymphocytes

because B cells are directly linked with the onset of smoking-induced diseases. The dataset

contains expressions levels of 22,283 RNAs from 79 blood samples of females: 40 non-

smokers and 39 smokers. The complete sets of data are available at https://www.ncbi.nlm.

nih.gov/sites/GDSbrowser?acc=GDS3713.

4. Placenta dataset- This dataset provides an insight into the effect of tobacco smoking on pla-

centa [12]. Smoking increases the risk of preterm delivery and other complications during

pregnancy. The dataset has expression levels of 11,155 RNAs taken from the placenta of 76

females: 64 non-smokers and 12 smokers. The dataset is available at https://www.ncbi.nlm.

nih.gov/sites/GDSbrowser?acc=GDS3793.

5. Melanoma- This dataset provides an insight into the molecular basis of primary melanoma

and melanoma metastasis [13]. It has the microarray expression levels of 22,283 RNAs from

83 melanoma samples: 31 primary melanomas and 52 melanoma metastasis. The dataset is

available at https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3966.

6. Breast cancer- It contains 97 cDNA microarrays, each representing 24,481 genes based on

the biopsy specimens of primary breast tumors of patients with germline mutations of

relapsed and non-relapsed. The pre-processed dataset is available at http://csse.szu.edu.cn/

staff/zhuzx/Datasets.html.

7. Skeletal muscle-This dataset gives an overview of molecular changes in the skeletal muscles

of young and old people [14]. The dataset has 54,675 RNA expression levels of 110 samples:

(62) young and (48) old. The pre-processed dataset is available at https://www.ncbi.nlm.

nih.gov/sites/GDSbrowser

8. Osteoarthritis- This dataset provides an insight into the molecular changes of Osteoarthritis

patients [15]. It has 48, 802 RNA microarray expression from 139 patients: 106 osteoarthri-

tis and 33 control. The pre-processed dataset is available at https://www.ncbi.nlm.nih.gov/

sites/GDSbrowser
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Experimental set up

To measure the performance of our method for feature selection and classification, we con-

ducted several experiments on the eight different microarray datasets. ECJ [16] was used for

GP and Weka package [17] was used to implement random projections for feature construc-

tion. The Weka API was also used for KNNs, SVMs, DT, NB and RFs classifiers. We used K-

fold cross-validation to avoid feature selection bias for all of the above methods, and the value

of k is 10. Our experimental design is shown in Fig 1.

In random projection, if we have d-dimensional data originally then it is projected through

the origin to a k-dimensional (k << d) subspace, using a random k�d matrix, R, whose col-

umns have unit lengths [18]. Using matrix notation where Xd�N is the original set of N d-

dimensional observations,

XRP
k�N ¼ Rk�dXd�N ð3Þ

Table 1, gives the summary of parameters used. Ramped half-and-half was used to generate

the initial population of algorithms/RPs, where the individual tree depth ranges from 2 to 8.

Tournament selection with size 7 and population of size 1024 was used. Elitism is applied to

copy the best individual into next generation. Once the maximum number of generations is

achieved, termination of the evolutionary process takes place. The whole experiment was

repeated 30 times with random seeds.

We use accuracy to measure the performance of models on training and test sets. For train-

ing data, the performance is measured as:

Training Set Accuracy ¼ MCC � 100

Fig 1. 10-fold cross-validation for GP. Training set and Test set performance evaluations goes into Tables 3 and 4

respectively. Performance has been measured in each of the GP run for each fold and used to calculate mean accuracies

and standard deviations by the end of 10-folds.

https://doi.org/10.1371/journal.pone.0196385.g001

Table 1. GP settings.

Function set +, -, x,�

Terminal set Feature values

Initialization method Ramped half-and-half

Tree depth 2–8

Crossover probability 0.8

Mutation probability 0.2

Selection method Tournament

Tournament size 7

https://doi.org/10.1371/journal.pone.0196385.t001
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And for test data the performance is measured as:

Test Set Accuracy ¼
1

2

Ntp

NtpþNfn
þ

Ntn

NtnþNfp

 !

Results and discussion

We have used eight datasets, all of them have a very low number of instances and very large

number of features. As we can see in Table 2, that shows the results of using GP with the full

feature set, it has not given us good training accuracy as compared to other machine learning

algorithms. In most of the cases, SVM and RF have achieved very good training accuracy

results.

Similar is the case when calculated the Test set accuracy as shown in Table 3.

SVMs has performed exceptionally well for almost all the high-dimensional datasets. For

Skeletal Muscle and Adenocarcinoma datasets, it has achieved greater than 96%. RF has also

achieved very good results with all the datasets. The most impressive of them are skeletal mus-

cle and Melanoma datasets. In case of KNNs (k = 3), Skeletal Muscle, Adenocarcinoma, and

Melanoma datasets have shown good results. For NB and DT, Melanoma and skeletal muscle

have shown better results as compared to other datasets. With GP, Adenocarcinoma and Mela-

noma datasets have shown better performance from the rest of the datasets.

As shown in Table 4, the newly constructed features by using random projections have

shown the different story as that of using full feature subset. We have constructed three sets of

features for each of the datasets. GP has shown excellent results in all the cases. In case of 50

constructed features, GP has shown best results all the time. As the number of constructed fea-

tures increase, the accuracy gradually decreases. But in case of other algorithms, the patterns

are different. For Adenocarcinoma dataset, as we use a higher number of features average

Table 2. Training set accuracies of GP and machine learning algorithms.

Dataset Features GP DT NB KNNs SVMs RF

Adenocarcinomas (58) 54675 97.4 ± 2.2 99.04 ± 0.9 94.82±1.2 100± 0 100± 0 100± 0

Oral Mucosa(79) 54675 84.5±3.8 99.57 ± 0.9 98.45 ± 0.7 87.76± 1.3 100± 0 100± 0

B-Cells (79) 22283 89.8 ± 3.2 100± 0 99.71± 0.5 80.45±2.9 100± 0 100± 0

Placenta (76) 11155 83.3 ± 4.3 91.52 ± 4.7 80.55 ± 2.6 86.69±1.9 96.93±2.1 100± 0

Melanoma (83) 22283 97.3 ± 1.5 99.19 ± 0.65 100±0 92.5±1.6 100±0 100±0

Breast cancer (97) 24482 86±3 98.85 ±0.72 55.9± 3.6 75.25± 2.5 100± 0 100± 0

Skeletal Muscle (110) 54675 91 ± 4.4 99.39 ±0.8 99.09±0.5 96.36±0.6 100±0 100±0

Osteoarthritis (139) 48802 86.28±2.6 99.43 ± 0.6 71 ± 9.2 79.13± 1.2 100± 0 100± 0

https://doi.org/10.1371/journal.pone.0196385.t002

Table 3. Test set accuracies of GP and machine learning algorithms.

Dataset Features GP DT NB KNNs SVMs RF

Adenocarcinomas 54675 83 ± 15 83 ± 12.9 87.67 ± 11 89.67 ± 13.5 96.67± 6.67 89.67 ± 9.2

Oral Mucosa 54675 62±16 77.32 ± 12 74.82±13.5 72.14±9.3 82.5±15 76.78± 16

B-Cells 22283 69±16 80 ± 15 83.75 ± 13.7 72.5± 10.8 91.25±9.7 91.25±11.25

Placenta 11155 74 ± 11 71.24 ±15.6 73.92±14.5 78.92± 10.6 63.21±11.5 81.6±6.2

Melanoma 22283 86.8 ± 11 84.16 ± 11 92.91 ± 8 87.63±7.9 92.78 ±8 95.27 ± 5.8

Breast cancer 24482 57.2 ±16 63.11 ±18.8 54.66± 4.1 57.44 ± 19 68.11±14.9 71.11 ± 11

Skeletal Muscle 54675 79.39±13 86.36 ±10 92.72 ± 7.9 90 ±9.4 96.36 ± 7.2 96.36 ±8.1

Osteoarthritis 48802 73±11 86.2± 8.5 57.58 ±20 76.9 ± 4.2 92.08±5.9 78.4 ±5.5

https://doi.org/10.1371/journal.pone.0196385.t003
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accuracy increases slowly. Most significant change is in case of DT and RF where there is a rise

of 12% in average accuracy.

For Oral mucosa, 50 constructed features have shown better results for all the algorithms

except KNNs and RF. when compared to 100 and 150 features. In case of B-Cells dataset, DT

and KNNs have shown better results with a lower number of features along with GP. As for

the highly unbalanced dataset of Placenta, the accuracy was maintained for all of the algo-

rithms except DT. Most of the times, there is a very small difference in accuracy when using

RF, NB, KNNs, and SVMs.

For Melanoma dataset and Breast cancer datasets, a higher number of constructed features

show better results in all the methods except DT. In case of skeletal muscle dataset, KNNs and

SVMs show better results as we increase the number of features while the inverse is true for

DT, NB, and RF. In case of Osteoarthritis dataset, a higher number of features has shown bet-

ter classification accuracies as compares to other feature subsets for all the methods.

When we compare results from full feature set with constructed features, GP has shown sig-

nificant an increase in overall accuracy with random projection-based constructed features as

shown in Fig 2 and a decrease in standard deviation. For all the dataset there is an increase of

15% to 40%. For DT, there is a decrease of 5% to 15% in overall accuracy. For NB, there is a

decrease of 2% to 5%. In case of KNNs, B-Cells, Melanoma, Adenocarcinoma and Osteoarthri-

tis datasets have shown better results as that of the full feature set with an increase of 2% to

10%. For SVMs, there is an increase of 2% to 20% for most of the datasets except Adenocarci-

noma, Oral mucosa, and B-cells. For RF, there is an increase of 1% to 7% in the overall accu-

racy of newly constructed feature sets for most of the datasets.

Table 4. Comparison of random projections based feature construction.

Dataset Features GP DT NB KNNs SVMs RF

Adenocarcinomas(58) 50 99.83±0.009 73.33±1.6 87.66±3 86±1.3 91.33±0.7 77.67±1.5

100 98.46±0.08 76.33±3.3 90±3.3 93.3±1.0 91.67±1.2 89.67 ± 1.5

150 97.14±0.9 86±2.7 90±3.3 91.67±1.3 95±1.6 89.67±1.5

Oral Mucosa(79) 50 99.95±0.002 79.82±1.8 74.82±3.44 57.14±6.6 81±1.4 78.3±2.2

100 98.57±0.08 70.89±0.16 69.46±3.8 62.14±2.1 77.32±2.6 81.25±5.9

150 96.93±0.17 68.39±0.95 65.71±2.7 64.64±1.3 81.75±1.4 78.75±6.7

B-Cells(79) 50 99.41±0.03 77.32±2.6 74.82±3.44 82.32±2.2 85±4.7 82±5.5

100 97.28±0.15 72.32±4.2 76.07 ±3.0 77.57±2.2 88.75±3.5 83.75±5.1

150 96.59±0.19 71.25±9 78.57±2.2 76.25±6.7 87.5±3.9 83.75±5.1

Placenta(76) 50 99.91±0.005 77.49±2.5 68.75±9.8 70.71±4.7 84.28 ± 0.45 84.28±0.45

100 99.30±0.03 73.39±5.1 67.5±10.7 69.46±5.1 84.28±0.45 84.28±0.45

150 97.95±0.11 70.71±4.2 68.75±9.8 69.46±5.1 84.28±0.45 81.6±1.2

Melanoma(83) 50 97.64±0.13 88.19±4.1 94.16±1.8 95.13±2.4 91.67±1.3 96.52±1.0

100 97.06±0.16 84.3±2.9 92.77±1.67 95.13±1.53 96.3±2.8 97.77±0.7

150 96.37±0.51 85.5±3.3 95.2±1.4 96.3±1.14 97.63±0.7 97.77±0.7

Breast cancer(97) 50 97.87±0.12 52.77±0.8 49.44±1.9 43.22±0.3 54.66±0.2 56±0.14

100 96.75±0.18 52.55±2.5 49.33±1.9 47.22±11 51.55±1.2 55.88±0.1

150 96.90±0.17 51.67±2.2 51.44±1.3 52.1±2.4 52.55±0.9 57±0.45

Skeletal Muscle(110) 50 99.24±0.04 65.45±2.2 69.09±7.4 74.54±0.57 89.09±2.2 83.63±0.5

100 98.69±0.07 71.81±5.4 66.36±2.0 83.63±5.1 98.18±0.57 82.72±0.28

150 98.27 ±0.09 63.36±0.8 68.18±1.43 85.45±1.72 97.27±2.0 81.81±2.8

Osteoarthritis(139) 50 99.90±0.005 71.97±1.5 72.74±3.7 78.4±0.46 86.97±3.1 78.46±1.9

100 99.23±0.04 70±9.4 69.12±2.4 84.23±2.5 90.65±0.52 81.31±1.04

150 98.73±0.07 82.03±0.8 67.69±2.9 83.51±2.7 94.23±0.68 77.74±2.17

https://doi.org/10.1371/journal.pone.0196385.t004
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Conclusion and future work

In the light of above results, it is evident that random projections are very effective for feature

construction when combined with the genetic programming as a classifier. For future work,

we will explore this method to address other high-dimensional problems like DNA-binding

protein prediction [19], detection of tubule boundary [20], methylation site prediction [21],

phosphorylation site prediction [22] and protein-protein interaction prediction [23,24], etc.
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