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Thermal stress has been shown to increase the chances of unsafe behavior
during industrial and driving performances due to reductions in mental and
attentional resources. Nonetheless, establishing appropriate safety standards regarding
environmental temperature has been a major problem, as modulations are also be
affected by the task type, complexity, workload, duration, and previous experience
with the task. To bypass this attentional and thermoregulatory problem, we focused
on the body rather than environmental temperature. Specifically, we measured
tympanic, forehead, finger and environmental temperatures accompanied by a battery
of attentional tasks. We considered a 10 min baseline period wherein subjects
were instructed to sit and relax, followed by three attentional tasks: a continuous
performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple
linear regression models, we evaluated which variable(s) were the best predictors of
performance. The results showed a decrement in finger temperature due to instruction
and task engagement that was absent when the subject was instructed to relax. No
changes were observed in tympanic or forehead temperatures, while the environmental
temperature remained almost constant for each subject. Specifically, the magnitude
of the change in finger temperature was the best predictor of performance in all
three attentional tasks. The results presented here suggest that finger temperature can
be used as a predictor of alertness, as it predicted performance in attentional tasks
better than environmental temperature. These findings strongly support that peripheral
temperature can be used as a tool to prevent unsafe behaviors and accidents.
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INTRODUCTION

Environmental temperature has an important impact on behavior. For instance, thermal
stress increases the chances of unsafe behavior during industrial work (Ramsey et al.,
1983), impairing cognitive functions (Mazloumi et al., 2014), as well as diminishing driving
performance (Hancock, 1986). Thermal stress has been proposed to drain attentional resources
(Vasmatzidis et al., 2002; Hancock and Vasmatzidis, 2003; Cheema and Patrick, 2012; Liu
et al., 2013; López-Sánchez and Hancock, 2017), therefore reducing task performance and
increasing the chance of accidents. Nonetheless, configuring appropriate safety standards
regarding environmental temperature has been a major problem, as modulations in task
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performance also involve the task type, complexity, workload,
duration and previous experience with the task (Hancock, 1986;
Pilcher et al., 2002; Hancock and Vasmatzidis, 2003; Gaoua
et al., 2011). Even more importantly, these difficulties reduce
the chances of suggesting an optimal environmental temperature
during work instead of advising harmless ranges.

The key to understanding the wide range of tasks affected
by environmental temperature should be rooted in an organism
physiological mechanism. Nevertheless, despite the important
bulk of literature regarding this phenomenon, no physiological
explanation for this process exist other than considering
environmental temperature as another stress factor (Hancock
et al., 2007). Furthermore, many reports present the effects of
environmental temperatures within the thermal comfort zone
(≈21–24◦C; Hancock, 1986; Pilcher et al., 2002; Steinmetz and
Mussweiler, 2011; Cheema and Patrick, 2012; Huang et al., 2014;
Schilder et al., 2014), supporting that this effect goes beyond
thermal stress. In fact, electroencephalogram (EEG) attentional
event-related potentials (ERP) during a decision making task
modulates within the thermoneutral zone (Vergara, 2015).
Therefore, these behavioral modulations putatively rooted on
attentional phenomena have, in fact, neural correlates supporting
thermal stress as an attentional phenomenon. We still lack
understanding of a precise physiological mechanism explaining
why environmental temperature can modulate behavior, and to
a lesser extent, within a range that should be stressless.

Interestingly, most previous studies have focused on
environmental temperature rather than thermoregulation
physiology. Temperature itself plays a critical role in
physiology that should be considered when suggesting
it as a stressor. Because warm-blooded organisms must
control their internal temperature within a small range, we
might expect that their internal physiology would be in
equilibrium with environmental temperature. This equilibrium
is achieved by autonomic modulations that produce peripheral
vasodilation/vasoconstriction to increase/decrease skin thermal
conductivity, thus also increasing/decreasing skin temperature
(Romanovsky, 2014). As such, the human body can regulate how
much heat dissipates into the environment. When skin blood
flow (mainly in the limbs) is not enough to couple with the
environmental temperature and associated conditions (such as
wind and humidity), sweating occurs if the temperature is too
hot, and an increase in thermogenesis (internal heat production
in brown adipose tissue) and shivering occur if the temperature
is too cold (for more details see Romanovsky, 2007).

This mechanism suggests that humans can find physiological
modulations for any change in environmental temperature,
even within the non-stress range. Despite the fact that
humans have an efficient homeostatic system that maintains
body temperature within a small range of variation (Satinoff,
1978), it would be highly adaptive for warm-blooded animals
increasing or reducing attention by means of alertness according
to the environmental temperature to better thermoregulate
behaviorally (Flouris, 2011; Terrien et al., 2011).

As such, we believe that attentional modulations due
to environmental temperature should be better captured
by variables related to thermoregulation physiology rather

than environmental temperature itself. This approach should
overcome time of exposure problems as well as subject variability
using the surface to volume ratio, the amount of fat tissue, the
clothing, or the task difficulty. If thermoregulatory processes
do in fact affect attentional performance, overcoming these
problems by measuring a biomarker of thermoregulation would
essentially lead to a biomarker of attentional performance.

In the present work, we focused on using peripheral
biomarkers of thermoregulatory processes to predict
attentional states. Specifically, we used the core body
temperature (tympanic temperature), the central border
temperature (forehead temperature), the peripheral
border temperature (fingertip temperature) and the
environmental temperature (room temperature) to predict
performance in three different attentional tasks. These tasks
were meant to measure sustained attention, resilience to
distractors, and attentional resources. We hypothesized that
body temperature rather than environmental temperature would
predict performance in attentional tasks and thus constitute an
appropriate predictor of task competence.

MATERIALS AND METHODS

Participants
Volunteer students from the Universidad de Chile were recruited
by publicly posting the research invitation on social media.
Students volunteered themselves by contacting us via e-mail.
Informed consent was given in advance, and all students willing
to participate were recruited. A total of 19 participants (8 females
and 11 males) of ages ranging from 19 to 36 years old were
recruited, with a mean age of 25.3 ± 5.5 years (mean ± SD).
All participants reported normal or corrected-to-normal vision
and no background of neurological or psychiatric conditions.
The sample size used in this study was estimated based on the
effect size of preliminary results. This study was approved by the
Ethics Committee for Research in Humans from the Faculty of
Medicine at the University of Chile with project number ID 060-
2015, ACTA AP-65. All subjects gave written informed consent
following the Declaration of Helsinki.

Tasks
The participants executed one control task and three cognitive
tasks during a single working session, a baseline, a continuous
performance task (CPT), a flanker task (FT) and a counting task
(CT), lasting approximately 10 min each. The baseline task (BT)
was aimed to measure the baseline body temperature variation.
In this task, participants were seated in front of a screen in the
same fashion as if they were to execute any of the other tasks
for approximately 10 min, which was the time estimated for each
of the remaining tasks. We instructed the subject to ‘‘Sit down
looking at the screen and relax. Please do not to fall asleep, and try
not to close your eyes for long periods of time’’. This instruction
was given to achieve a relaxed but aware state.

CPT Task
A common version of this test consists of the detection of a
letter with a low frequency of appearance (approximately 10%).
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However, many other versions exist wherein a sequence of letters
is targeted rather than a single letter (Riccio et al., 2002; Huang-
Pollock et al., 2012). To prevent the ceiling effect, we selected
one of the most difficult versions of this task. In doing so, we
flanked the target letter with an additional letter to the right
and left of the central letter, thus making the task to detect a
sequence of letters across the trial. This sequence was specifically
a 2-back task. As such, we displayed three letters at the same
time for 150 ms, followed by a fixation cross for 1650 ms. If the
central letter was the letter X and, two trials back, the central
letter was an O, participants reported by pressing a button (Go
condition). Reports of seeing this sequence when it was not
present were considered false alarms (False Alarm condition).
A description of the task can be found in Figure 1A. The Go
condition was randomly displayed in 15% of 400 trials in total,
and the letters employed for the displays included only C, G,
O, Q, H and X. All participants had to detect the same letter
sequence.

Flanker Task
The FT was configured after that of Green and Bavelier (2003).
In this task, six circles were arranged equidistance apart (2.1◦)
from the center of the screen in a circular fashion. In each
trial, a distractor outside the circular array was presented. The
distractor could have the shape of a square or a diamond and
was presented 0.5◦ to the left or right (inside the array) or
4.2◦ (outside the array) from the center of the circular array.
When the shape was presented inside the circular array, it
was of 0.3◦, while it was 0.9◦ when presented outside. The
subjects were asked to report whether a square or diamond was
present inside the circles. The other circles were either blank
or filled with different geometric shapes, such as triangles and
circles (see Figure 1B for example). Diamonds and squares
were never displayed inside the circles simultaneously in the
same trial, while four (Easy condition) or six (Hard condition)
filled circles with shapes were evenly distributed over 320 trials.
Additionally, in a counterbalance fashion, half of the trials were
compatible (the figure outside the circular array matched the
inside target shape), while the other half were incompatible
(the figure outside the circular array did not match the inside
target shape). The array was presented for 100 ms, followed
by an unlimited amount of time to answer. Participants had
to answer to continue the task. Once the answer was given, a
1000 ms fixation dot was displayed. Descriptions of the task and
conditions can be found in Figure 1B. For additional details
regarding the task, see Proksch and Bavelier (2002) and Green
and Bavelier (2003).

Counting Task
The CT was implemented as described in Green and Bavelier
(2003). In this task, a random number of squares was presented
on the screen. Participants reported the number of squares that
they observed. Squares (0.5◦ × 0.5◦) were randomly displayed
over a 10◦ × 10◦ square array centered on the screen. The set
of squares were displayed for 100 ms, followed by the display of
a visual fixation dot while awaiting the participants answer. The
participants needed to respond to continue the task (Figure 1C).

Once a response was given, the fixation dot was displayed for
1000 ms before the next trial. Task difficulty was modulated by
presenting anywhere from 1 to 10 squares, which were presented
in an even distribution across 200 trials.

During preliminary testing of the experimental procedure,
we detected a cumulative effect on fingertip temperature that
would reduce the comparability of the results within the tasks
(for details, see ‘‘Results’’ Section). Additionally, the participants
described the different tasks as differentially appealing, as they
considered the CPT tedious and monotonous, while the CT
was reported as fun or amusing. These differences conspired
to directly compare the results obtained from the same task in
pseudorandom order. Since our objective of employing many
tasks was to examine whether thermoregulatory variables could
predict more than one attentional task performance and that
randomizing task order would importantly increase the sample
size needed to detect such effects, we decided to have all the
subjects perform the tasks in a fixed order. Based on the
participant’s reports and to assure task engagement, we ordered
the tasks from the most monotonous to amusing in the following
order: BT, CTP, FT and CT. This sequence enabled us to increase
the comparability of the results within the tasks while decreasing
the comparability between tasks. For this reason, we include no
conclusions based on comparisons between task results.

Temperature Measurements and
Manipulation
One hour before the arrival of the participant, the room
temperature was set at a constant temperature between
18 and 26◦C. The temperature was set among participants
to acquire a continuous environmental sampling from this
range. The temperature range was chosen based on previous
room/environmental temperature studies (Steinmetz and
Mussweiler, 2011; Cheema and Patrick, 2012; Huang et al.,
2014; Schilder et al., 2014), and we intended to find an optimal
room temperature rather than a safety range. Every participant
was subjected to the same temperature throughout the entire
experimental session. After the arrival of the participant,
an additional 30 min were spent on the description of the
experiment and reading/signing the informed consent forms.
Peripheral vasoconstriction for thermoregulation is expected
to plateau approximately 15–20 min after an environmental
temperature change (Charkoudian, 2003), followed in almost
identical fashion by skin temperature (Iampietro, 1971).
Therefore, the time in the lab before the experiment was
considered sufficient for acclimation.

To measure all four temperatures (tympanic, forehead,
fingertip and room temperature), we built a measurement
device using three Dallas DS18B20 thermometers, an
infrared thermometer MLX90614, and an Arduino UNO
board. We used the Arduino UNO for sampling the Dallas
DS18B20 thermometers using a 1-wire interface, while the
infrared MLX90614 thermometer was independently sampled
with the same Arduino. Data sampled by the Arduino was
sent in situ by a serial port to a computer. An ad hoc software
developed in Python received the information from the Arduino
and directly wrote it to the hard drive. This software also
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FIGURE 1 | Description of the three attentional tasks in the order in which they were performed. Before starting the attentional tasks, a baseline was taken under the
instruction “sit and relax” (for more details, see “Materials and Methods” Section). In the flanked continuous performance task (CPT; A), participants had to report
whether the sequence of central letters O-any letter-X appeared. In the flanker task (FT; B), participants had to report a square or a diamond inside one of six circles.
If the inside target figure (square or diamond) matched the external figure presented outside the circles, it was considered compatible, while those that did not match
were incompatible. In the counting task (CT; C), participants had to report the number of squares observed.

displayed a 3 min window presenting all four temperature
measurements. This helped assure minimum room temperature
variation throughout the experimental session. We also
positioned two photoresistors in the two bottom corners of
the screen. The tasks displayed a black or white square in
these corners at programmed times, allowing us to synchronize
the tasks with temperature measurements in time. These
photoresistors were also sampled with the same Arduino board
and recorded by the same Python ad hoc software.

The infrared thermometer was used to measure tympanic
temperature, while the Dallas thermometers were used to
measure the room, forehead and fingertip temperatures. The
infrared thermometer was placed in the same fashion as an
earphone in the left ear.We allowed the reading to reach a plateau
measurement of approximately 36◦C. Fingertip temperature was
measured by fixating the thermometer to the left ring finger
using adhesive tape. Participants were instructed to keep their left
hand still and open to avoid contacting the thermometer with
other surfaces. Forehead temperature was measured by fixating
the thermometer above the participants left eye using adhesive
tape. Finally, room temperature was measured by positioning
a thermometer 40 cm in front and 20 cm to the left of the
participant. The thermometer was lifted 5 cm from the desk in
front of the participant, ensuring that contact was made only
with the room air. In all experimental sessions, we observed a
standard deviation of room temperature in the range of 0.14◦C
to 0.59◦C, with an average of 0.3◦C. Therefore, the variability
of room temperature within the sessions was comparable among
the participants.

Data Analysis
Data analysis was designed to achieve the main goal of predicting
performance based on body temperatures. Nonetheless, to do

so, we first had to establish the existence of a cumulative effect
to define a proper analytic strategy. Once we established the
cumulative effect, we defined an analytical strategy to predict
performance based on body temperature. For establishing that
cumulative effects were taking place, we conducted a one-way
repeated-measures ANOVA to compare the effects of the
tasks (baseline, CPT, flanker, counting) on the environmental,
forehead, fingertip and tympanic temperatures. When the
sphericity assumption was not met, we corrected the p-value
based on the Greenhouse-Geisser method. We reported the
Greenhouse-Geisser epsilon (GGe), followed by the corrected
p-value (p[GG]). For all ANOVA models, the effect size was
reported using generalized eta-squared and denoted as η2G
(Bakeman, 2005). We maintained the ANOVA approach when
the normality assumption was not met, as ANOVA is robust
under such scenarios (Schmider et al., 2010). Nonetheless, we still
reported if the normality of the dependent variable was violated
using the Shapiro-Wilks test. Based on preliminary results, we
also included two more variables. The first, ∆FingerT◦ was
defined as:

1FingerT◦ = Final Finger Temperature – Initial Finger Temperature (1)

being the final finger temperature of the last 72 samples
(approximately 1 min) obtained from the fingertip thermometer
at the end of one of the four tasks. We considered the initial
finger temperature as the value obtained from the first 72 samples
(approximately 1 min) from the same task. The initial finger
temperature did not include instruction time and was restricted
to the beginning of the task. The second variable included
was the instruction finger slope. This variable was obtained as
the slope of finger temperature against time of one instruction
period obtained from a linear regression calculation. We were

Frontiers in Human Neuroscience | www.frontiersin.org 4 September 2017 | Volume 11 | Article 454

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Vergara et al. Finger Temperature as an Arousal Marker

unable to develop the same procedure described in ∆FingerT◦

due to high variability in the time spent in the instruction
period.

For the main goal, predicting performance, we used
multiple regression analysis. To perform this analysis, we
used performance in the different tasks (excluding baseline)
as dependent variables and all temperatures recorded plus
the ∆FingerT◦ and instruction finger slope as regressors.
The variables analyzed for each task were those most widely
reported as performance markers. We also reported whether the
dependent variable and residual data passed the assumption of
normality, as well as homoscedasticity. Homoscedasticity was
evaluated with the Non-constant variance score test, and for
normality, we used the Shapiro-Wilk test. No normalization
was used for any variable to maintain the meaning of the
ranges observed. Finally, considering the obvious relationship
among the independent variables, we tested collinearity for
all the models using the variance inflation factor (VIF).
Linear models presenting VIFs higher than three were then
revised by checking each regressor alone and in combination,
retaining the regressors that explained more variance
(R squared-based) while also presenting VIFs below 3. This
value was selected as a conservative value for the assumption
of independence between independent variables (García et al.,
2015).

For the CPT task, we used the Go and False Alarm
reaction times and the percentage of correct answers as
dependent variables. For the FT, we used incompatible
minus compatible reaction times for the Easy and Hard
conditions. Finally, for the CT, we first ran one multiple
regression model with the error percentage as the dependent
variable for each set of squares displayed (from one to
ten). Based on these results, we unified the model by
including the number of squares as an interaction. As already
mentioned above, the independent variables (or regressors) were
environmental temperature, fingertip temperature, forehead
temperature, tympanic temperature, instruction finger slope and
∆FingerT◦.

To visualize the stability of the participant’s room temperature
and how consistent the fingertip temperature changed within
each participant, we used an average centering (of each task)
by subject. This allowed us to compare differences across
experimental sessions by removing the differences in room
temperature conditions as well as the differences in the starting
fingertip temperatures. Additionally, as we wanted to present
the real range at which the temperatures were measured, we
added the grand average (of the sample). Thus, the figures are
informative of the temperature ranges obtained. This procedure
is summarized by the following equation,

T◦ij = (xij − xj)+ xg (2)

where xij is an individual observation i of the temperature
of a particular participant j, xj is the participant’s j average
temperature, xg is the grand average temperature for all
j participants and T◦ij is the centered temperature in an
observation i and participant j. The same equation was used
for centering the room, forehead, tympanic and fingertip

temperatures. Equation 2 was used only for visualization
purposes, while data were included without this centering for
analysis.

As different participants took different amounts of time to
complete the tasks or read the instructions, we also calculated
a representative time length of each task/instruction using the
following normalization scheme: we estimated a bin size for each
task/instruction by calculating the average length of the group
of participants. Each individual’s task-related temperature vector
was then interpolated in that common space, taking the average
length of the CT as the one with the norm equal to one. The
CT was arbitrarily selected as the reference only to maintain the
length ratio between tasks. Selecting another task as the reference
would have led to the same results.

Software
For all statistical analysis, we used R-project (R Core Team, 2015)
with the following packages: lattice (Sarkar, 2008), ez (Lawrence,
2016) and car (Fox and Weisberg, 2011). Data processing
and figures were developed with Python 2.7.1 and Anaconda
2.4.1 (Python Core Team, 2015) using the following packages:
Pandas (McKinney, 2010), Matplotlib (Hunter, 2007) and rpy2
(rpy2 Core Team, 2015). All analyses and data processing were
kept in a Jupyter Notebook (Kluyver et al., 2016).

RESULTS

Tasks and Cumulative Differences
We tried to determine whether changes in environmental,
tympanic, forehead, or fingertip temperatures could be seen
when compared against a baseline. No significant differences
were detected between the four tasks (baseline, CPT, flanker and
counting) for room temperature (F(3,54) = 0.88, GGe = 0.505,
p[GG] = 0.396, η2G = 0.0004; normality: W = 0.95, p = 0.007;
Figure 2E), forehead temperature (F(3,54) = 0.67, GGe = 0.447,
p[GG] = 0.460, η2G = 0.001; normality: W = 0.91, p = 0.0001;
Figure 2A) and instruction finger slope (F(2,36) = 0.30, p = 0.73,
η2G = 0.011; normality: W = 0.89, p = 0.0001). Instruction finger
slope did not consider the BT, as the instructions were too brief in
some cases to obtain the slope. Therefore, ANOVA results only
contrasted the differences among attentional tasks. However,
we did detect significant effects of tympanic temperature
(F(3,54) = 9.55, GGe = 0.48, p[GG] = 0.001, η2G = 0.02;
normality:W = 0.94, p = 0.001; Figure 2B), fingertip temperature
(F(3,54) = 35.04, GGe = 0.48, p[GG] = 2.79e-07, η2G = 0.20;
normality: W = 0.97, p = 0.169; Figure 2C) and ∆FingerT◦

(F(3,54) = 5.8, GGe = 0.68, p[GG] = 0.005, η2G = 0.19; normality:
W = 0.95, p = 0.007; Figure 2D). When reviewing post hoc
analysis using the Holm-Sidak test, no significant results were
found for tympanic temperature, probably due to the lack of
normality and the observed low effect size. However, we did
find significant post hoc results for the fingertip temperature,
specifically between the baseline (M = 29.88, SD = 3.69) and
both the flanker (Holm: M = 25.81, SD = 3.87, p = 0.006) and
CTs (Holm: M = 24.91, SD = 3.67, p = 0.0006). As shown in
Figures 2C,D,F, fingertip temperature reductions during each
instruction and during the tasks explains the results obtained.
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FIGURE 2 | Description of the cumulative effect of the tasks on fingertip temperature under constant room temperature. (A–C) Present boxplots in successively
performed tasks for forehead (A), tympanic (B), fingertip (C), ∆FingerT◦ (D), and room temperature (E). On the right (F), we present forehead, tympanic, fingertip,
and room temperature averages centered (see Equation 2) over the normalized time (see “Materials and Methods” Section). The temperatures were centered to
visualize the consistency in fingertip temperature reduction and room temperature stability across participants.

This confirmed a cumulative effect of the tasks on fingertip
temperature throughout the experiment starting with the CPT
task. Interestingly, the baseline did not exhibit a decrement
in fingertip temperature. The reduction in temperature was
strongly triggered by the instructions, while a smaller decrement
in temperature was found during the task execution. When
reviewing the post hoc ∆FingerT◦ results, the only significant
result was observed between the CPT (M = −0.871, SD = 1.17)
and baseline (Holm: M = 0.407, SD = 1.19 p = 0.0006).
Nonetheless, the attentional task distributions were mostly below
zero (fingertip cooling) except for the baseline, which presented
a distribution mostly above zero (fingertip warming; Figure 2D).
Since our sample size was rather small, we suggest that the
negative results observed when contrasting the BT with the
flanker and CTs may be false negatives due to low statistical
power.

Overall, the results support a cumulative effect throughout
the experiment, depicted as a reduction in finger temperature
triggered by attentional tasks. We could see a constant, or even
incremental, fingertip temperature as a general pattern only
during the BT. Room temperature was stable throughout all the
sessions, as depicted in Figure 2E and supported by ANOVA
results, suggesting that the reduction in finger temperature was
not due to room temperature change. It is worth noting that
some participants presented increases in fingertip temperature
within a task. This last phenomenon allowed us to test whether
this decrease or increase in fingertip temperature might indicate
the performance obtained during the task using ∆FingerT◦.

Performance Prediction
Once we confirmed that a cumulative reduction in fingertip
temperature was taking place and that ∆FingerT◦ was mostly
positive during baseline rather than negative during the

remaining tasks, we examined whether we could predict
performance for all three attentional tasks based on temperature
variables. To that effect, we tested all the different temperature
variables measured and obtained while leaving only those that
were significant. In the case of collinearity, we discarded the
variable or set of variables that presented the highest R2 and
exhibited a VIF lower than 3 (for more details see ‘‘Materials and
Methods’’ Section).

We first examined whether the temperature data could
predict performance in the CPT, specifically testing the accuracy
and reaction answer times in the Go and False Alarm
conditions. We did not find significant predictors for accuracy.
However, we found that ∆FingerT◦ did predict the Go reaction
times (F(1,15) = 10.17, p = 0.006, R2 = 0.40; normality DV:
W = 0.97, p = 0.83; normality residuals: W = 0.94, p = 0.42;
homoscedasticity: χ2 = 1.31, df = 1, p = 0.25) and False
Alarms (F(1,14) = 9.79, p = 0.007, R2 = 0.41; normality
DV: W = 0.92, p = 0.18; normality residuals: W = 0.98,
p = 0.99; homoscedasticity: χ2 = 0.53, df = 1, p = 0.46). In
these two models, only ∆FingerT◦ was a significant predictor
of reaction time, specifically predicting that a decrease in
fingertip temperature of one Celsius degree during the task
would be associated with a reduction of 43.19 ms (±13.77)
in the Go condition reaction time (β = 43.91, t = 3.18,
p = 0.006) and 119.98 ms (±38.33) in the False Alarm
condition reaction time (β = 119.98, t = 3.13, p = 0.007).
As is depicted in Figures 3A,B, CPT reaction times could
be predicted using fingertip temperature decreases/increases.
Importantly, fingertip temperature did not predict reaction
times and instead predicted only changes in reaction time
(∆FingerT◦).

For the FT, we focused on the difference in reaction times of
incompatible and compatible conditions, separately analyzing
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FIGURE 3 | Reaction times for the CPT Go (A) and False Alarm (B) conditions under different ∆FingerT◦ values. The dashed lines depict linear regression model
prediction.

the Easy and Hard conditions according to Proksch and
Bavelier (2002) and Green and Bavelier (2003). The increment
in the difference between incompatible and compatible
reaction times conditions was interpreted as resiliency to
distractors. Higher values depicted higher difficulties in ignoring
distractors. We detected a considerable distribution of outliers
by subject, presenting an average of approximately 600 ms,
with observations up to 10 s. For this reason, we decided to
remove outliers using criteria based on two-standard deviations
(based on grand average and grand standard deviation). We
found only one significant predictor for the Hard condition:
∆FingerT◦ (Figure 4A; F(1,16) = 11.5, p = 0.003, R2 = 0.41;
normality DV:W = 0.96, p = 0.67; normality residuals:W = 0.88,
p = 0.03; homoscedasticity: χ2 = 0.007, df = 1, p = 0.93).
No significant regressor was found when predicting the Easy
condition, as a low fit was obtained when using ∆FingerT◦

(Figure 4B; F(1,16) = 0.38, p = 0.54, R2 = 0.02; normality DV:
W = 0.94, p = 0.38; normality residuals: W = 0.93, p = 0.20;
homoscedasticity: χ2 = 0.15, df = 1, p = 0.69). Specifically, the
model related to the Hard condition predicted an increase of
497.9 ms (±146.9) in the difference between the incompatible
and compatible conditions by each increase of one Celsius degree
in ∆FingerT◦ (β = 497.9, t = 3.39, p = 0.003). As such, increasing
∆FingerT◦ was associated with more difficulty in ignoring
distractors, while the opposite ∆FingerT◦ was decreasing (hand
cooling). These results were robust enough, as using three

standard deviation criteria for removing the outliers led to the
same results, albeit with lower fits (data not shown). The fact
that no significant prediction was made for the Easy condition
supports that this effect is only observable when the task is
sufficiently difficult.

The last conclusion was straightforward to retest in the CT,
as increasing the number of squares increased the difficulty
of the task. We found that the best and only predictor of
performance in the CT was∆FingerT◦. Particularly, we observed
that the percentage of error when counting the squares was
independent of ∆FingerT◦ at a low number of squares, while
progressively higher slopes in the relationship between error
percentage and ∆FingerT◦ were achieved as the number of
squares increased (see Figures 5A,B). Nonetheless, at high
difficulties (8, 9 and 10 squares), we observed a quick decrement
in the slope of this relation. This finding suggests that a task
shows a relation between ∆FingerT◦ and error percentage only
when it is not too easy or too hard. To model this complex
relationship in one linear model, we included an interaction
term between ∆FingerT◦ and the number of squares. However,
this was not enough to model the decrement of slopes from
eight or more squares (see Figure 5B). Therefore, we decided
to only model squares 1 through 7. When modeling this
interaction as a linear change, we obtained significant results
(F(3,122) = 36.2, p = 2.2e-16, R2 = 0.47; normality DV: W = 0.84,
p = 0.1.2e-12; normality residuals: W = 0.87, p = 7.5e-09;

FIGURE 4 | Differences between incompatible and compatible reaction times in the FT for Easy (A) and Hard (B) conditions under different ∆FingerT◦ values. The
Easy (A) condition does not present a significant prediction, while the Hard condition (B) does. The dashed lines depict linear regression model prediction.
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homoscedasticity: χ2 = 47.02, df = 1, p = 7.0e-12); however,
is important to note that the change in slope had exponential
growth. For the sake of simplicity, we modeled this exponential
slope growth with a quadratic function by introducing the
number of squares squared (#squares2). This strategy also led
to significant results (F(3,122) = 44.34, p = 2.2e-16, R2 = 0.52;
normality DV: W = 0.84, p = 0.1.2e-12; normality residuals:
W = 0.83, p = 1.8e-10; homoscedasticity: χ2 = 55.5, df = 1,
p = 9.2e-14). In an attempt to improve the model’s assumptions
(previous models presented heteroscedasticity), we decided to
fix the intercept to zero, as zero squares should have zero
errors. After applying this strategy, we also obtained significant
results (F(3,123) = 83.92, p = 2.2e-16, R2 = 0.67; normality
DV: W = 0.84, p = 0.1.2e-12; normality residuals: W = 0.82,
p = 4.1e-11; homoscedasticity: χ2 = 54.6, df = 1, p = 1.4e-13),
but the model assumption was not improved. The last model,
seen in Figure 5C, specifically suggests that reductions in finger
temperature (negative values of ∆FingerT◦) predict a decrease
in the percentage of errors only at a high number of squares
(6–7) (∆FingerT◦: β = −0.002, t = −0.069, p = 0.94; squared
number of squares: β = −0.005, t = 15.8, p = 2e-16; interaction:
β = 0.002, t = 2.23, p = 0.027). Overall, these results support
that performance in the CT and ∆FingerT◦ are related only
when the task is not extremely easy or hard. Importantly, the
relation is robust enough to be detected using different linear
modeling approaches despite the fact that no linear regression
met homoscedasticity assumptions.

In summary, ∆FingerT◦ was the best predictor of
performance in all the tasks analyzed. Better predictions
were achieved when the tasks were not extremely easy or hard.
This finding suggests that thermoregulatory related variables,

specifically ∆FingerT◦, could predict alertness, as performances
in all the tasks were predicted by ∆FingerT◦. Importantly,
∆FingerT◦ change was triggered by the tasks and even the task
instructions, but not by the baseline. Nevertheless, it is worth
noting that changes in fingertip temperature were unlikely due
to thermoregulatory processes, as the room temperature was
kept virtually constant (Figures 2B,C) and the participants had
sufficient time to acclimatize (see ‘‘Materials and Methods’’
Section).

DISCUSSION

We selected three attentional tasks to predict performance using
peripheral thermoregulatory variables: a CPT to measure the
ability of maintaining attention over time (Huang-Pollock et al.,
2012), a FT to measure the ability to ignore distractors (Proksch
and Bavelier, 2002; Green and Bavelier, 2003), and a CT to
measure the availability of attentional resources (Green and
Bavelier, 2003). In all three tasks, we could predict performance
using reaction times and accuracy within a 18–24◦C range when
the task was not extremely easy or hard. This strategy allowed
the prediction of performance regardless of the task type and
complexity.

Cumulative Effect
The results presented herein showed how only sitting and
relaxing (baseline) do not trigger conspicuous changes in
fingertip temperature, while all three attentional tasks triggered
a reduction in its temperature as early as when the instructions
were read. Participants were acclimated before starting these
tasks, suggesting that an autonomic response is triggered

FIGURE 5 | Depiction of interaction between the number of squares presented in the CT and ∆FingerT◦. Scatter plots for each number of squares (N) presented in
the CT are shown on the left (A). We also include a solid line for linear regression and its slope (β) in each scatter plot. For better visualization of the change in slope
(the interaction), a line plot of the slopes (β) and the number of squares is presented (B). Finally, the prediction of the linear model containing the interaction between
the number of squares (x-axis) and ∆FingerT◦ (color scale) was plotted with the actual data obtained (gray dots; C).
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by an alert state that shares thermoregulatory mechanisms.
Fingertip temperature reductions have a cumulative pattern
that decreases with time, as they were higher in the beginning
and got smaller throughout the experiment. In all the
tasks tested, bigger decrements (high negative values of
∆FingerT◦) within the tasks were associated with better
performance. As such, longer exposures should have equated
with worse performance, which is apparently consistent with
previous studies based on environmental temperature (Hancock,
1986; Pilcher et al., 2002; Hancock and Vasmatzidis, 2003;
Hancock et al., 2007; López-Sánchez and Hancock, 2017).
However, this can also be explained by an autonomic response
related to an arousal that shares vasoconstriction/vasodilation
thermoregulatory mechanisms. Additionally, our results suggest
that reductions in ∆FingerT◦ ranges throughout the tasks
are produced by the bottom environmental temperature limit.
Vasoconstriction in the fingertip likely reduces the amount
of heat that arrives at the limbs, thereby reducing fingertip
temperature (Charkoudian, 2003, 2010; Johnson and Kellogg,
2010). At the same time, fingertip temperature cannot be
reduced beyond that of the environmental temperature, even if
vasoconstriction continues to increase. As fingertip temperature
gets closer to that of the environment, reductions should
get smaller and slower as the thermal gradient decreases.
The cumulative process discussed here is the main reason
why we decided not to randomize the task orders. Since
fingertip temperature reduction size depends on the order of
the task, a larger sample size would have been required to
generate enough statistical power to compare the same task
in different orders when predicting with ∆FingerT◦. We are
aware that this may constitute a limitation of the study, but it
enabled us to better understand whether ∆FingerT◦ can predict
performance (in this circumstance). Estimating the importance
of the ∆FingerT◦ magnitude when predicting task performance
is not possible with these data. Since we maintained similar
reductions for each task (by fixing the order of the tasks), the
CTs presented a smaller ∆FingerT◦ range than that of the and
FT. Nonetheless, the ∆FingerT◦ sign seems to be robust enough
to inform aroused (when negative) or inattentive (when positive)
states.

Performance and ∆FingerT◦

Changes in fingertip temperature (direction and module) were
large enough to predict performance in all three of the tasks. All
the other measured temperatures (tympanic, forehead, fingertip
and room) were also tested as predictors, and they were not
significant in the presence of ∆FingerT◦. However, why only
the fingertip temperature changed remains unclear. Notably,
vasoconstriction/dilation occurs mainly in the limbs, as hands
and feet have a higher surface to volume ratio. This means that
hands and feet will have stronger thermal oscillations due to
autonomic activity and environmental temperature compared
to forehead temperature (Cheung, 2015). Finally, the stable
maintenance of tympanic temperature strongly suggests that
this is a vasoconstriction/dilation phenomenon that is not
necessarily directly tied to thermoregulation. Notably, fingertip
temperature reduction during the reading of the instructions

(measured using the instruction finger slope) did not predict
posterior performance within the task. We speculate that the
fingertip reduction during the instructions accounts only for
engagement with the instructions and thus may not directly
predict further performance in the task. The fact that this
response occurred as early as the instructions suggests that this
autonomic response is a preparatory answer for the upcoming
task. Arousal is known to lead to major autonomic modulations
(Kreibig, 2010) that are also related to other aspects, such
as motor preparation (Drabant et al., 2011). However, this
preparatory answer seems to be a general response that does
not necessarily imply better performance in the upcoming task.
When considering in-task fingertip temperature modulations,
∆FingerT◦ predicted the reaction times for CPT in the Go
and FA conditions. This means that ∆FingerT◦ predicts speed
but not precision in CPT, unlike in the counting and FTs
in which precisions were predicted. Sustained attention tasks
had the speed vs. precision tradeoff that was not present in
the flanker and CTs. Specifically, performance is modulated
by the task instructions, changing the participant’s priorities
and therefore modifying the results (Peebles and Bothell,
2004; Helton et al., 2009). Notably, giving the instruction to
prioritize speed and precision equally leads to lower performance
and increases variance (Seli et al., 2012). In our current
research, we biased the instructions to prioritize speed, which
explains why precision was compromised. We think that the
speed-precision tradeoff and our current instructions made
the participants use their attentional resources to improve
speed but not precision. Altogether, these results support
that ∆FingerT◦ was a predictor of alertness. Currently, most
predictions to avoid accidents are ‘‘offline’’, as safe work
conditions are encouraged rather than warned against ongoing
unsafe behaviors (Huting et al., 2016; Klerman et al., 2016).
Some studies have shown that real-time warning is possible
using eye tracking, skin conductance, electrocardiogram, and
electroencephalography (Dahiphale and Rao, 2015; Larue et al.,
2015). However, to our knowledge, no reports include finger
temperature as a relevant real-timemaker of alertness. Therefore,
it is worth discussing its advantages and limitations. Problems
with giving real-time warnings and safe work conditions
include difficulty and workload, which are already known
to be problems when dealing with thermal stress (Ramsey
et al., 1983; Pilcher et al., 2002; Hancock et al., 2007). The
FT and CTs allowed us to test how difficulty affected the
prediction made by skin temperature. Our results supported
previous findings (Hancock, 1986; Pilcher et al., 2002; Hancock
et al., 2007) in that difficulty was critical for the proper
prediction of performance by ∆FingerT◦. However, our main
goal was to find a thermoregulatory marker to bypass the
problems associated with the task type, extension, complexity
and difficulty. In fact, ∆FingerT◦ was not enough to bypass
task difficulty only for the top and bottom performances.
Naturally, when participants give correct or incorrect answers
approximately 100% of the time, predicting performance using
another variable is impossible since performance is constant.
Nonetheless, if we accept that ∆FingerT◦ measures alertness,
we could interpret a participant’s engagement despite his or
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her performance. We think that this is a limitation of the task
(which can present the top and bottom effects) rather than
a limitation of the ∆FingerT◦ prediction. This suggests that
fingertip temperature can be used as an alertness marker to
detect whether a participant is engaged or disengaged in a
task, which is similar to what was previously shown in a study
using finger temperature as a stress marker (Yamakoshi et al.,
2007).

Physiological Mechanisms of Temperature
Modulation
We proposed using peripheral thermoregulatory variables to
better estimate the effects of the widely reported environmental
temperature effect on attention (Hancock, 1986; Pilcher et al.,
2002; Hancock et al., 2007; Cheema and Patrick, 2012; Huang
et al., 2014; López-Sánchez and Hancock, 2017) by including
subjective thermoregulatory differences. Our experiment was
designed to present constant values for all the temperatures
for each participant to then compare temperatures among
participants. Specifically, comparing different environmental
temperatures (ranging between 18–24◦C), presumably affecting
body temperature, would lead to different attentional states. Our
results showed that even in the thermoneutral zone and under
acclimated conditions, peripheral vasoconstriction/dilation
could be triggered for non-thermoregulatory reasons. As
such, we proposed that the reduction in fingertip temperature
triggered by a task is a light stress response that increases
arousal for fulfilling the task. It is well known that thermal
stress induces vasoconstriction/dilation (Charkoudian, 2003;
Johnson and Kellogg, 2010), which changes hand and feet
temperatures (Cheung, 2015). If we also consider that
cognitive-demanding tasks produce vasoconstriction (Iani
et al., 2004) and that subjective self-reported stress (non-
thermal stress) ratings can also be followed with a similar
∆FingerT◦ strategy (Yamakoshi et al., 2007), peripheral
vasoconstriction is also triggered by psychological phenomena.
The vasoconstriction observed in this study, likely triggered
by the tasks, may have important physiological implications.
Peripheral vasoconstriction reduces body thermal conductivity,
thus increasing internal body temperature. It is known that
the brain increases its temperature during tasks (Abrams
and Hammel, 1964; Shevelev, 1998; Kiyatkin et al., 2002;
Zhu et al., 2009; Wang et al., 2014), which is attributed to
brain-increased metabolism. However, our results suggest that
this increase should be at least partially caused by peripheral
vasoconstriction. Conversely, we did not find any change in
body core temperature (as measured by tympanic temperature),
suggesting that vasoconstriction is not enough to increase
body temperature. Another explanation could be that most
extra heat produced by brain metabolism plus the increase
in body thermal isolation due to peripheral vasoconstriction
is counteracted by cerebral blood flow. One of the most
important mechanisms controlling brain temperature is cerebral
blood flow (Zhu et al., 2009; Wang et al., 2014). If increased
heat production and duration are not big and long enough,
respectively, water in blood will capture the heat without
increasing the body core temperature due to its specific

heat (Sawka et al., 2011). We should expect that longer task
durations might be associated with minor increases in body
core temperature or that vasodilation (fingertip warm up)
will dissipate heat. Under any circumstance, if environmental
temperature increases too dramatically (>30◦C), the alert
driving vasoconstriction might counteract thermoregulatory
mechanisms. Including the reduction in metabolic rate to reduce
heat production (Seebacher, 2009) should have even worse
effects on cognitive functions by also limiting brain activity. In
fact, hyperthermia was previously reported to reduce cluster
size activation in an fMRI study during an attentional task
(Liu et al., 2013). As such, our results further highlight the
need for properly controlling safety environmental temperature
ranges during work as well as the duration of exposure to
high temperatures. Despite its limitations, the present study
marks the importance of using proper physiological research
to understand psychological consequences. Our current results
support that classic thermoregulatory mechanisms are triggered
by psychological processes, increasing both complexity and
strategy to couple with thermal stress.

Perspective and Possible Applications
The work presented herein suggest that peripheral body
temperature can be valuable for predicting the alertness
and performance of participants. Furthermore, our results
suggest that utilizing the raw fingertip temperature value
not only measures thermoregulatory acclimation but also
alertness when using ∆FingerT◦. We expect that under
harsher environments (environmental temperatures beyond the
18–24◦C), raw fingertip temperature values can be important
predictors of performance. However, caution is advised, as the
effects of difficulty on our predictions narrow the possible
applications of ∆FingerT◦ to only demanding tasks or untrained
personnel. Additionally, the non-randomization of tasks restricts
the extrapolation of our results, and further research is needed to
test the robustness of how∆FingerT◦ functions as a performance
predictor, particularly in relation to its module rather than
direction. Nonetheless, we believe that fingertip temperature and
derived measurements can greatly help avoid accidents using
real-time warnings.
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