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Abstract 

Next-generation sequencing has greatly advanced genomics, enabling large-scale studies of population genetics and complex traits. Genomic 
DNA (gDNA) from white blood cells has traditionally been the main data source, but cell-free DNA (cfDNA), found in bodily fluids as fragmented 
DNA, is increasingly recognized as a valuable biomarker in clinical and genetic studies. Ho w e v er, a direct comparison between cfDNA and 
gDNA has not been fully explored. In this study, we analyzed cfDNA and gDNA from 186 healthy individuals, using the same sequencing 
platform. We compared sequencing quality, variant detection, allele frequencies (AF), genotype concordance, population str uct ure, and genomic 
association results (genome-wide association study and e xpression quantitativ e trait locus). While cfDNA sho w ed higher duplication rates and 
lo w er effectiv e sequencing depth, both DNA types displa y ed similar quality metrics at the same depth. We also observed that significant depth 
differences between cfDNA and gDNA were mainly found in centromeric regions. While gDNA identified more variants with more uniform 

co v erage, AF spectra, population str uct ure, and genomic associations were largely consistent between the t wo DNA t ypes. T his study pro vides 
a detailed comparison of cfDNA and gDNA, highlighting the potential of cfDNA as an alternative to gDNA in genomic research. Our findings 
could serve as a reference for future studies on cfDNA and gDNA. 

I

I  

t  

e  

m  

e  

u  

a  

g  

(  

(  

P
 

h  

w  

d  

d  

D  

l  

f  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
w

ntroduction 

n recent years, advancements in sequencing technology, par-
icularly next-generation sequencing, have significantly accel-
rated research in genomics and genetics [ 1 ]. As a result, nu-
erous large-scale genomic cohorts have been established to

xplore the genetic history of populations and the genetic
nderpinnings of complex diseases and traits. Notable ex-
mples include the 1KGP (1000 Genomes Project) [ 2 ], the
nomAD (Genome Aggregation Database) [ 3 ], the TOPMed
Trans-Omics for Precision Medicine) project [ 4 ], the UKB
UK Biobank) [ 5 ], the ChinaMAP (China Metabolic Analytics
roject) [ 6 ], and the CKB (China Kadoorie Biobank) [ 7 ]. 
The whole-genome sequencing (WGS) data in these co-

orts is typically derived from cellular genomic DNA (gDNA),
hich is extracted from the nuclei of white blood cells. Un-
er normal conditions, gDNA consists of long, complete
ouble-helix strands. During library preparation, the long
NA molecules are fragmented into pieces of a specific

ength and subsequently sequenced using sequencing plat-
orms. gDNA data serves as a cornerstone in a variety of ge-
eceived: March 17, 2025. Revised: June 29, 2025. Editorial Decision: August 4,
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his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
nomic and genetic research fields, including population genet-
ics [ 8 , 9 ], pharmacogenomics [ 10 , 11 ], functional genomics
[ 12 ], genome-wide association studies (GWAS) [ 13 ], poly-
genic risk score [ 14 ], and Mendelian randomization analysis
[ 15 ]. 

Cell-free DNA (cfDNA) refers to fragmented DNA released
into various body fluids such as blood plasma, urine, and cere-
brospinal fluid [ 16 ]. The sources of cfDNA are diverse and de-
pend on the physiological condition of the host. These sources
include dying host cells, cell-free fetal DNA (cffDNA), circu-
lating tumor DNA, circulating microbial DNA, mitochondrial
DNA, and transplanted organs. Initially thought to be cel-
lular waste, cfDNA has since been recognized as a valuable
biomarker that reflects the physiological state of the body.
For example, cffDNA is released into maternal plasma via
the placenta. By drawing blood from pregnant women and se-
quencing plasma DNA using WGS technology, chromosomal
disorders in the fetus (e.g. Down syndrome) can be detected.
This is the basis of the well-known noninvasive prenatal test-
ing technology [ 17 ]. cfDNA testing is also used for the early
 2025. Accepted: August 7, 2025 

ons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nargab/lqaf119
https://orcid.org/0000-0002-9089-3126
https://orcid.org/0000-0001-7240-3819
https://orcid.org/0000-0003-2281-7807
https://orcid.org/0000-0001-7554-4975


2 Zeng et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of variant counts in cfDNA and gDNA 

cfDNA gDNA Overlap 

Samples 186 186 186 
Records 17 680 361 17 770 791 16 566 571 
SNPs 14 963 735 15 068 657 14 278 527 
Insertions and 
deletions (INDELs) 

2838 856 2829 511 2395 767 

Multiallelic sites 1151 672 1098 680 974 172 
Multiallelic SNP sites 43 232 43 297 37 922 
Ti / Tv 2.05 2.05 - 

 

 

 

 

 

detection of certain cancers [ 18 ]. Differences in molecu-
lar characteristics, such as fragment size, between tumor-
derived cfDNA and host-derived cfDNA can serve as potential
biomarkers for cancer diagnosis and monitoring. 

In recent years, cfDNA applications have expanded from
clinical testing to population genetics and GWAS. The investi-
gated traits encompass a wide range of maternal and neonatal
measurements, including prenatal tests, maternal and neona-
tal metabolites, and pregnancy complications [ 19–23 ]. Addi-
tionally, research has expanded beyond trait associations to
explore cfDNA molecular features, such as concentration and
end motif frequencies [ 24 , 25 ]. A recent review highlighted
cfDNA’s advantages in population genetics, including large
sample sizes, cost-effectiveness, and diverse research oppor-
tunities, while noting challenges related to its short fragment
length and regional bias [ 26 ]. 

To date, no comprehensive studies have compared cfDNA
and gDNA from the same group of participants, leaving dif-
ferences in sequencing quality and variant detection unclear.
To address this, we analyzed samples from 186 healthy indi-
viduals, sequencing both cfDNA and gDNA on the same plat-
form. We compared data quality metrics, variant detection,
allele frequency (AF) spectra, genotype concordance, popula-
tion structure, and genomic association analysis performance.

Our results show that cfDNA has a higher duplication rate
than gDNA in raw sequence files, leading to a lower effective
sequencing depth after duplicate removal. However, at equiv-
alent effective depths ( ∼37 ×), both DNA types exhibit highly
comparable quality metrics. We also observed that bases with
significant depth differences between cfDNA and gDNA were
predominantly found in centromeric regions. While gDNA de-
tected around 100K more single-nucleotide polymorphisms
(SNPs) than cfDNA, both displayed nearly identical AF spec-
tra, population structures, and high genotype concordance.
Genomic association results were also highly consistent. The
most notable difference was in insert size, influencing cover-
age, variant detection, and association signals for nonoverlap-
ping SNPs. This study offers a comprehensive comparison of
cfDNA and gDNA, highlight the potential role of cfDNA as
an alternative to gDNA in genomic and genetic studies. We
believe our findings will serve as a useful reference for re-
searchers working in this field. 

Materials and methods 

Sample information 

Participants in this study were recruited during their health
examinations between 2021 and 2022 in Shenzhen. Informed
consent was obtained from all participants prior to enroll-
ment. The study received approval from the Institutional Re-
view Boards of the Bioethics and Biosafety of BGI (BGI-IRB
21157). For each participant, 5 ml of blood was drawn and
processed to separate white blood cells and plasma. The white
blood cells were used to extract and sequence cellular gDNA,
while the plasma was utilized to extract and sequence cfDNA.

Quantitative traits 

Upon recruitment, participants completed a questionnaire
that included their date of birth, gender, ethnicity, province
of origin, medication use, and other demographic infor-
mation. Additionally, three anthropometric measurements—
height, weight, and body mass index—were recorded. A 5 ml
blood sample was collected from each participant and ana- 
lyzed for various biochemical indicators at BGI-GBI Biotech.
These indicators were categorized into five groups: liver- 
related ( n = 7), kidney-related ( n = 3), lipid-related ( n = 4),
protein-related ( n = 4), and glucose levels ( n = 1). Detailed 

information on these 22 traits is provided in Table 1 . 
Single-cell sequencing libraries were prepared using 

the DNA Nanoball (DNB) elab C4 scRNA Preparation Kit 
(MGI). Sequencing data were processed with the Open Source 
Pipeline ( https:// github.com/ MGI- tech- bioinformatics/ 
DNBelab _ C _ Series _ HT _ scRNA- analysis- software ) and 

analyzed using Scanpy (v1.10.4) [ 27 ]. We used Scrublet 
(v0.2.3) [ 28 ] to identify doublets in each library. Scrublet 
simulates doublets based on the observed data and calcu- 
lates a doublet score for each single cell using a k-nearest 
neighbor classifier. Briefly, we first created an AnnData object 
using the raw count data from each library. Next, we ran 

the Scrublet function with the following parameters: ex- 
pected_doublet_rate = 0.06, min_counts = 3, min_cells = 3,
log_transform = True, min_gene_variability_pctl = 85, and 

n_prin_comps = 30. The “call_doublets” function was then 

applied with a threshold = 0.2, and the doublet detection 

results were added to the metadata for further analysis. Qual- 
ity control was performed to exclude cells with gene counts 
outside 500–6000, total counts outside 1000–25 000, or mi- 
tochondrial gene percentages exceeding 10%. To account for 
sequencing depth variability, data were log-transformed using 
the ‘normalize_total’ function, and the top 2000 variable 
genes were identified with ‘highly_variable_genes’. Principal 
component analysis (PCA) of these genes was conducted, with 

the top 20 PCs used for Uniform Manifold Approximation 

and Projection to cluster cells in two dimensions. Batch 

effects were corrected with the ‘harmony_integrate’ function.
Cellular identity was assigned by identifying cluster-specific 
differentially expressed genes and comparing them to known 

markers, resulting in the annotation of five cell subpopula- 
tions: B cells, CD4 + T cells, CD8 + T cells, myeloid cells, and 

innate lymphoid cells (ILCs). 

Sequencing and genotyping 

Both cellular gDNA and plasma cfDNA were subjected to 

whole genome sequencing using the DNBSEQ platform with 

a paired-end 100 base pair (bp) mode and a targeted se- 
quencing depth of ∼35 ×. A total of 186 participants pro- 
vided both cellular gDNA and plasma cfDNA samples. The 
average original sequencing depths for gDNA and cfDNA 

were 62.55 × and 47.34 ×, respectively. For each participant,
the higher sequencing depth was down-sampled to match the 
lower depth to ensure a fair comparison. The raw sequencing 
data were stored in FASTQ (.fq) files. Quality control analysis 

https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software
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this research. 
as performed using the fastp software [ 29 ], which included
he removal of adapter sequences and low-quality sequence
ragments (reads). After quality control, we assessed and com-
ared various sequence quality metrics, such as sequencing
uality score, Q20, Q30, GC content, and insert size. 

eads alignment 

e employed Burrows-Wheeler Alignment tool (BWA) [ 30 ] to
lign the quality-controlled reads to the hg38 (GRCh38) ref-
rence genome [ 31 ], converting the aligned reads to BAM for-
at and subsequently sorting them. Duplicate reads were re-
oved from the sorted BAM files using SAMtools’ rmdup tool

 32 ]. Base quality score recalibration (BQSR) was performed
n the sorted BAM files using the GATK BaseRecalibrator
 33 ] and known site information. Further BQSR and sort-
ng were carried out using the GATK ApplyBQSR tool, which
lso generated index files. Comprehensive statistics for the cal-
brated BAM files, including contamination rate (FREEMIX),
apping rate, mismatch rate, unique rate, depth distribution
f bases, and coverage rates at 1 ×, 10 ×, 20 ×, 30 ×, 40 ×, and
0 ×, were then generated using SAMtools [ 34 ] stats and Ver-
fybamID [ 35 ]. 

ndividual-level variant detection 

ndividual-level variant calling involves identifying genetic
ariations in an individual’s genome relative to a reference
equence. W e employed GA TK HaplotypeCaller [ 36 ] to de-
ect variants from the BAM files for each sample, generating
VCF (genomic variant call format) files that include sequenc-
ng information for both variant and nonvariant positions.

e then used GATK GenotypeGVCFs to perform genotyp-
ng on single sample, this process yielded the genetic varia-
ions of each individual, stored in VCF files. After genotyp-
ng, we performed variant quality score recalibration (VQSR)
sing GATK VariantRecalibrator. Subsequently, for each indi-
idual, we calculated and compared several metrics: the num-
er of SNPs, the number of INDELs, the heterozygosity to ho-
ozygosity (het / hom) ratio, and the transition to transversion

ti / tv) ratio. 

opulation-level variant detection 

opulation-level variant calling aims to identify and analyze
enetic variants across multiple individuals within a pop-
lation [ 37 ]. We used GATK GenomicsDBImport to com-
ine individual-level genotype files (gVCF) for joint geno-
yping with GenotypeGVCFs. Following this, we performed
QSR using GATK VariantRecalibrator to obtain population-

evel genetic variations stored in VCF files. To compare the ge-
etic variations of cfDNA and gDNA at the population level,
e assessed various metrics: the number of variant records, the
umber of SNPs, the number of INDELs, SNP density, pop-
lation structure through PCA, the distribution of minor AF,
oncordance, and Pearson’s correlation. PCA was conducted
sing PLINK2 [ 38 ] with the “–pca” argument. 

enomic association analysis 

n this section, we evaluated the performance of the two
NA types in genomic association analyses using two cate-

ories of quantitative traits: regular phenotypes (Summarized
n Supplementary Table S1 ) and single-cell RNA-seq (scRNA-
seq) expression data. For regular phenotypes, we conducted
GWAS, while for scRNA-seq expression data, we performed
expression quantitative trait locus (eQTL) analysis. 

GWAS are widely used to identify genetic variants, par-
ticularly SNPs, associated with complex traits and diseases
[ 39 ]. Over the past two decades, > 7000 GWASs have suc-
cessfully identified significant SNPs linked to thousands of
phenotypes [ 40 ]. Most GWAS studies are conducted using
genotype data derived from gDNA sequencing, while only
a few have utilized cfDNA genotype data. In this section,
we compare the GWAS performance of gDNA and cfDNA.
Specifically, we used 22 previously mentioned traits as phe-
notype data and conducted GWAS using genotype data from
gDNA and cfDNA, respectively. Covariates included age, gen-
der, and the top five principal components (PCs) of the cor-
responding genotype data [ 39 , 41 ]. GWAS analysis was per-
formed using PLINK 2.0 [ 38 ], with identical arguments and
parameters applied to both gDNA and cfDNA. Key argu-
ments included “–glm” to fit a generalized linear model, “–
pheno-quantile-normalize” to normalize the phenotype data,
and “–covar-variance-standardize” to standardize covariate
data. Only SNPs with a minor allele frequency (MAF) > 0.05
[ 42 ], Hardy–Weinberg equilibrium (HWE) P -values > 1e-5,
and genotype missing rates < 10% were included in the
analysis. 

eQTL analysis identifies genetic variants significantly asso-
ciated with the expression of one or more genes [ 43 ]. Over
the past decade, eQTL summaries have been widely used to
interpret GWAS signals through transcriptome-wide associa-
tion studies [ 44 , 45 ]. To compare the eQTL analysis perfor-
mance of cfDNA and gDNA, we used five cell subpopula-
tions, including B cells, CD4 + T cells, CD8 + T cells, myeloid
cells, and ILCs. Using TensorQTL [ 46 , 47 ], we conducted cis-
eQTL analysis by regressing scRNA-seq expression data on
cfDNA and gDNA, respectively . Briefly , genes present in fewer
than 90% of samples within each cell type were excluded.
The remaining pseudobulk gene expression underwent inverse
normal transformation across samples and were subsequently
used as phenotype inputs in TensorQTL. The covariates in-
cluded sex, age, the first two genotype PCs, and 50 PEER
factors. PEER factors were derived from the top 2000 highly
variable genes; for cell types with fewer than 2000 genes, all
available genes were included. For cis-eQTL analysis, we fo-
cused on variants located within 1 Mb upstream or down-
stream of the gene’s transcription start site. We employed the
argument “–mode cis ” with a MAF threshold set to 0.01.
The “map_nominal” function was used to derive nominal
P -values for each variant-gene. Subsequently, the “map_ cis ”
function was applied to conduct 10 000 permutations, gen-
erating phenotype-level summary statistics and empirical P -
values. This approach enabled the calculation of genome-
wide false discovery rate (FDR) (q-value) for robust statistical
inference. 

Results 

We comprehensively compared the performance characteris-
tics of two distinct DNA sequencing methodologies across
various stages of sequencing and analysis. Figure 1 illustrates
the complete workflow and comparative metrics employed in

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 1. Study w orkflo w. Blue, red, y ello w, and purple were used to represent the processes of FASTQ quality control, B W A alignment, individual- and 
population-le v el v ariant detection, and genomic association analy sis, respectiv ely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample information 

In our study, we sequenced both cfDNA and cellular
gDNA from 186 participants. Detailed demographic data, in-
cluding age, gender, ethnicity, and place of origin were col-
lected and are presented in Supplementary Fig. S1 A–D. In
summary, the male-to-female ratio among participants is
∼1:1. Participants aged between 20 and 29 accounted for
59% of the total, with the majority being of Han ethnicity.
The participants’ places of origin spanned 25 provinces and
cities. 

Sequence depth 

The average raw sequencing depths for cfDNA and gDNA are
47.34 × and 62.55 ×, respectively ( Supplementary Fig. S2 A).
To enable fair comparisons, we down-sampled the raw se-
quence data (in .fq format) with higher depth to match the
lower depth for each participant. Following this adjustment,
the two types of DNA achieved identical sequencing depths of
46.73 × ( Supplementary Fig. S2 B). 

Sequence features 

From the cleaned fastq files after quality control, we obtained
several sequence features, including fastq quality score, Q20,
Q30, GC content, and insert size. The quality score was cal-
culated using the formula −10 × log 10 (p), where p repre-
sents the probability of error. Overall, the FASTQ quality
scores for both cfDNA and gDNA exceeded 30, indicating
high-quality sequencing data ( Supplementary Fig. S2 C). No-
tably, the quality scores of cfDNA were consistently higher
than those of gDNA across DNA fragments. This difference
is likely attributable to batch effects, as cfDNA and gDNA
were sequenced in separate batches. However, this should not
be interpreted as a general trend. Q20 (a quality score of
20) and Q30 (a quality score of 30) represent the percent-
ages of bases with quality scores > 20 and 30, respectively,
and follow the overall quality score pattern. Notably, both 

cfDNA and gDNA achieved > 95% Q20 and > 85% Q30 

(Fig. 2 A and B), demonstrating high-quality sequencing data 
for both DNA types on the BGISEQ platform [ 48 , 49 ]. Re- 
garding GC content, the averages were 41.72% [standard de- 
viation (SD) = 0.3%] for cfDNA and 40.76% (SD = 0.1%) 
for gDNA (Fig. 2 C). The ideal GC content in human genomes 
is around 41% [ 49 , 50 ] within a range of 39%–43%, indicat- 
ing both cfDNA and gDNA fall within normal values. 

For insert sizes across all samples, we present both the full 
distributions and the distribution of sample averages (Fig. 2 D 

and E). Both distributions indicate that the average insert sizes 
for cfDNA and gDNA are ∼170 and 350 bp, respectively.
gDNA originates from the complete genome of white blood 

cell nuclei, with DNA fragments generated through physical 
fragmentation during the sequencing process. On the DNB- 
SEQ platform, the typical insert size for gDNA in short-read 

paired-end whole genome sequencing libraries is ∼350 bp 

[ 51 ]. In contrast, cfDNA consists of naturally short DNA 

fragments ( ∼167 bp), primarily released from apoptotic cells 
[ 52 , 53 ], and is not subjected to physical shearing during 
sequencing. 

In summary, both cfDNA and gDNA exhibit high sequenc- 
ing quality across various metrics, with cfDNA showing the 
expected shorter insert size compared to gDNA. 

Reads alignment and second down-sampling 

After BWA alignment and BQSR quality control, we gen- 
erated aligned sequence data in BAM format. The aver- 
age duplication rates were calculated as 18.63% for cfDNA 

and 1.14% for gDNA, with ranges of 7.62%–36.28% and 

0.60%–1.94%, respectively ( Supplementary Fig. S3 A). The 
high duplication rate of cfDNA is attributed to the relatively 
small quantity of DNA extracted. To meet the DNA require- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 2. Comparisons of sequencing quality metrics between cfDNA and gDNA. ( A ) Q20 rate for cfDNA and gDNA, ( B ) Q30 rate for cfDNA and gDNA, 
( C ) GC content for cfDNA and gDNA, ( D ) insert size distributions of cfDNA and gDNA, and ( E ) average insert size for cfDNA and gDNA. 
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ents for sequencing, more cycles of polymerase chain re-
ction (PCR) are required, which introduce multiple copies
f identical DNA fragments. Consequently, duplicated reads
ust be removed during downstream analysis, leading to
 reduced effective sequencing depth for cfDNA. After du-
licated reads were removed, the sequencing depths for
fDNA and gDNA were 37.72 × and 45.98 ×, respectively
 Supplementary Fig. S3 B). To achieve comparable sequencing
epths between cfDNA and gDNA for each participant af-
er removing duplicated reads, we performed a second round
f down-sampling, adjusting the deeper gDNA data to match
he lower sequencing depth of cfDNA. Following this second
own-sampling, cfDNA and gDNA exhibited nearly identi-
al sequencing depths for each participant ( Supplementary 
ig. S3 C). 

ost-alignment metrics 

rom the depth-matched BAM files of cfDNA and gDNA, we
ompared several metrics: the sequence-only estimate of con-
amination (measured by FREEMIX), mapping rate, mapping
uality, mismatch rate, depth distribution of bases, and cover-
ge at different sequence depths. The average FREEMIX val-
es for cfDNA and gDNA were 0.16% and 0.34%, respec-
ively ( Supplementary Fig. S4 A), both well below the gener-
lly acceptable contamination threshold of 5% [ 54 , 55 ]. The
apping rates averaged 99.87% for cfDNA and 99.92% for

DNA ( Supplementary Fig. S4 B), consistent with the DNB-
EQ PE-100 platform, which typically exceeds 99% [ 56 ]. The
apping quality score quantifies the likelihood of a read being

ncorrectly placed and is calculated based on sequence quality
[ 57 ]. Accordingly, the mapping quality is expected to follow a
similar pattern to sequence quality . Specifically , the mapping
quality scores for cfDNA and gDNA were 34.04 and 32.76,
respectively ( Supplementary Fig. S4 C). The mismatch rate, de-
fined as the number of reads with specific mismatch patterns
(e.g. A → C, A → G, and G → T) relative to the total number of
aligned reads [ 58 ], averaged 0.40% for cfDNA and 0.65%
for gDNA ( Supplementary Fig. S4 D)—both well within the
acceptable mismatch rate of < 1% [ 49 ]. 

We further analyzed the depth distribution of bases across
the 22 chromosomes for cfDNA and gDNA. We divided the
genome into windows of 10 000 bp and calculated the av-
erage depth of all bases within each window. The result-
ing distributions revealed greater variability in cfDNA base
depths, whereas gDNA base depths were more consistently
distributed ( Supplementary Fig. S5 A). Next, we calculated the
depth difference between cfDNA and gDNA for each window
and defined a window as significantly different if the depth
difference exceeded three standard deviations from the mean
( Supplementary Fig. S5 B). We identified 756 such windows
with significant differences. Upon annotating the starting sites
of these 756 windows using the track data downloaded from
UCSC Genome Browser ( https:// genome.ucsc.edu/ ), we found
that the majority (707, 93.5%) were located in the sub-table
“Difficult regions” of track “GIAB Problematic Regions,”
with most of these (513 / 707) positioned in centromeres. The
remaining windows included in track “Gap” (16) and uncat-
egorized regions (33) ( Supplementary Fig. S6 ). 

Coverage at a specific depth (e.g. 1 ×, 10 ×) refers to the per-
centage of bases in the genome that have been sequenced to at
least that depth. For example, a coverage of 90% at 1 × means

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://genome.ucsc.edu/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 3. Comparison of co v erage across different sequencing depths. ( A )–( F ) Co v erage at sequencing depths of 1 ×, 10 ×, 20 ×, 30 ×, 40 ×, and 50 ×, 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that 90% of the bases in the genome have been sequenced to a
depth of at least 1 ×, while the remaining 10% have lower cov-
erage or no coverage. Higher coverage indicates that a larger
proportion of bases have been sequenced to meet or exceed
the specified depth threshold. For both cfDNA and gDNA,
coverages at 1 ×, 10 ×, 20 ×, 30 ×, 40 ×, and 50 × were com-
puted and compared (Fig. 3 ). Notably, for sequencing data
with a depth of ∼30 ×, coverage at 20 × is typically the pri-
mary focus, while higher depths receive less emphasis in many
analyses. Our goal is to identify coverage patterns across dif-
ferent sequencing depths between cfDNA and gDNA, thus
we compared coverages at various depths both below and
above 30 × . 

We observed that at depths below 30 ×, gDNA consistently
exhibits slightly higher coverage than cfDNA, with an aver-
age difference of 1.37%. Specifically, at 1 ×, 10 ×, and 20 ×,
both cfDNA and gDNA achieve coverage rates of ∼95%, over
90%, and over 85%, respectively. This indicates that for both
DNA types, a high percentage of target bases are successfully
sequenced. However, at 30 × depth, coverage drops below
75% for both cfDNA and gDNA, with gDNA maintaining
a slight advantage (74.29% versus 69.74%). At 40 × depth,
the coverage rates for cfDNA and gDNA are nearly identical,
at 43.77% and 43.18%, respectively, with cfDNA showing a
marginally higher coverage (0.59%). By 50 × depth, cfDNA
coverage surpasses that of gDNA more notably, at 20.73%
compared to 16.51% (a difference of 4.22%). 

In summary, at sequencing depths below 40 × (or 37 ×, the
average depth for cfDNA and gDNA in this dataset), gDNA
consistently demonstrates higher coverage than cfDNA. Con-
versely, at depths above 40 ×, cfDNA coverage exceeds that of
gDNA. These findings suggest that across the genome, the dis-
tribution of base depths is more uniform in gDNA compared 

to cfDNA. 
To compare the coverage deviation between the two DNA 

types, we derived the probability density function (PDF) for 
their coverage distributions. In this analysis, n represents the 
size of the genome to be sequenced, L denotes the insert size of 
the DNA fragment, r indicates the sequencing depth (here, 100 

bp), and k specifies the read counts. For cfDNA and gDNA,
we assumed that their insert sizes were < 200 bp and > 200 

bp, respectively ( Supplementary Fig. S7 ). Consequently, we de- 
rived their PDFs separately. For simplicity, we calculated the 
probability mass function (PMF) for the coverage distribution 

when the read count equals 1 ( k = 1 ). Let x 1 and x 2 denote 
the random variable for cfDNA coverage and gDNA cover- 
age, respectively; the resulting PMFs for cfDNA and gDNA 

were as follows: 

PMF of cfDNA coverage = f ( x 1 , p 1 ) 

= 

{ 

1 − L 
n i f x 1 = 0 

L 
n i f x 1 = 

2 r 
L 

, where p 1 = 

L 

n 

PMF of gDNA coverage = f ( x 2 , p 2 ) 

= 

{ 

1 − 2 r 
n i f x 2 = 0 

2 r 
n i f x 2 = 1 

, where p 2 = 

2 r 
n 

Based on the formulas above, we derived the expected value 
and variance for cfDNA and gDNA coverage as follows: 

E ( x 1 ) = 

2 r 
n 

, Var ( x 1 ) = 4 r 2 
(

1 

Ln 

− 1 

n 

2 

)

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 4. Comparison of variant counts. ( A ) Number of identified SNPs in cfDNA and gDNA; ( B ) number of identified INDELs in cfDNA and gDNA; ( C ) 
number of SNPs in cfDNA and gDNA across increasing sequencing depths; and ( D ) number of INDELs in cfDNA and gDNA across increasing 
sequencing depths; ( E ) Number of INDELs in cfDNA and gDNA across increasing sequencing depths, stratified by INDEL length 
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E ( x 2 ) = 

2 r 
n 

, Var ( x 2 ) = 

2 r 
n 

(
1 − 2 r 

n 

)

We calculated the difference in variance between cfDNA
nd gDNA coverage as follows: 

V ar ( x 1 ) − V ar ( x 2 ) = 

2 r 
n 

(
2 r 
L 

− 1 

)
> 0 

Thus, 

V ar ( x 1 ) > V ar ( x 2 ) 

This explains why the cfDNA coverage distribution is
roader compared to that of gDNA. 

ndividual-level variant detection 

sing individual-level variant data stored in VCF files, we
ompared several metrics, including variant depth, Ti / Tv ra-
io, Het / Hom ratio, the number of SNPs, and the number of
NDELs. The variant depth for both cfDNA and gDNA was
35 × ( Supplementary Fig. S8 A), slightly lower than the av-

rage sequencing depth of 37 × at the individual level. The
verage Ti / Tv ratio was 2.02 for cfDNA and 2.01 for gDNA
 Supplementary Fig. S8 B), indicating high-quality SNP calling,
s the expected ratio for human whole-genome data typically
anges from 2.0 to 2.2 [ 59 ]. These values confirm the high
uality of the detected variants in both cfDNA and gDNA.
he average Het / Hom ratio was 1.33 for both cfDNA and
DNA ( Supplementary Fig. S8 C), which is within the nor-
mal range for Asians, where the median value is ∼1.4 [ 59 ].
This suggests normal heterozygosity levels in both cfDNA and
gDNA. 

On average, cfDNA and gDNA contained 3.74 million and
3.78 million SNPs, respectively (Fig. 4 A). The average number
of INDELs was 0.89 million for cfDNA and 0.96 million for
gDNA (Fig. 4 B). For both types of variants, gDNA detected
more than cfDNA. To the best of our knowledge, no previ-
ous studies have directly compared or reported the number of
identified variants, including SNPs and INDELs, for cfDNA
and gDNA at the same sequencing depth at both individual
and variant levels. In this study, we observed that gDNA iden-
tified more SNPs and INDELs than cfDNA. We hypothesize
that this may represent a general trend, as gDNA libraries have
longer insert sizes compared to cfDNA, and longer insert sizes
are associated with improved variant detection performance
[ 60 , 61 ]. 

For each sample, we plotted the number of identified SNPs
and INDELs as sequencing depth increased. The number of
SNPs showed a slight upward trend, with linear slopes of
887 and 1850 for cfDNA and gDNA, respectively (Fig. 4 C).
In contrast, INDELs exhibited a steeper increase, with linear
slopes of 5120 and 2510 for cfDNA and gDNA, respectively
(Fig. 4 D). To further understand this phenomenon, we cate-
gorized INDELs into four length groups: 1 bp, 2–10 bp, 11–
50 bp, and > 50 bp (Fig. 4 E). We found that only the 1bp IN-
DELs showed a significant difference in slopes between the
two groups. Notably, a sequencing depth of 30 × is sufficient

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 5. Comparison of two DNA types: AF spectrum, genotype values, and population str uct ure. ( A ) Scatter plot of AF for SNPs in cfDNA and gDNA; 
( B ) distribution of o v erlapping SNPs across different MAF intervals between cfDNA and gDNA, along with the average squared Pearson correlation 
coefficients of genotype values in each interval; ( C ) genotype concordance between cfDNA and gDNA across 186 participants; and ( D ) PC1–PC2 scatter 
plot comparing cfDNA and gDNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to capture most SNPs, with limited gains from deeper sequenc-
ing. However, shorter INDELs continue to increase due to
their detection challenges and can benefit more from higher
sequencing depth, especially for cfDNA. 

Population-level variant detection 

In this section, we performed population-level variant detec-
tion. Consistent with the individual-level results, gDNA iden-
tified more variants, including both SNPs and INDELs, than
cfDNA, with a high percentage of variants shared between
the two. Specifically, gDNA identified over 17.77 million vari-
ants, comprising 15.07 million SNPs and 2.83 million IN-
DELs, while cfDNA identified ∼17.68 million variants, in-
cluding 14.96 million SNPs and 2.84 million INDELs (Table
1 ). The population-level Ti / Tv ratio was identical for cfDNA
and gDNA at 2.05, reflecting the high quality of variant de-
tection in both datasets. 

For the 16.6 million overlapping SNPs shared between
cfDNA and gDNA, we calculated the MAFs in each dataset
separately and plotted a scatter plot comparing the MAFs of
the two DNA types. The squared Pearson correlation coeffi-
cient (R 

2 ) for MAFs between cfDNA and gDNA was 0.999
(Fig. 5 A), indicating that the AF spectrums derived from the
two DNA types are nearly identical. We also examined the cor-
relation of genotype values between cfDNA and gDNA across
different MAF intervals. All shared SNPs were grouped into 

MAF intervals with increments of 0.01. For each SNP within 

an interval, we calculated the R 

2 of genotype values between 

cfDNA and gDNA across all individuals and then averaged 

the R 

2 values for SNPs within that interval. These averages 
were plotted in Fig. 5 B, with the overall mean correlation 

across intervals being 0.98. This result demonstrates a high 

consistency of genotype values between cfDNA and gDNA 

for both rare and common variants. 
In addition, we assessed the site-level concordance between 

the two DNA types using GATK. Specifically, for each indi- 
vidual, concordance was calculated as the ratio of SNPs with 

identical genotype values between the two DNA types to the 
total number of overlapping SNPs. The scatter plot showing 
concordance across all 186 individuals is presented in Fig.
5 C. The average concordance was 0.979, with values ranging 
from 0.961 to 0.989, indicating a high degree of consistency 
in genotype values between the two DNA types in the popu- 
lation. 

We performed PCA on the genotype data from cfDNA and 

gDNA and generated a PC1–PC2 scatter plot for all individ- 
uals (Fig. 5 D). Different dot shapes (circles for cfDNA and 

triangles for gDNA) were used to represent DNA types, while 
colors indicated the individuals’ places of origin. Notably, for 
each individual, the cfDNA and gDNA data points were al- 
most perfectly overlapped, demonstrating the high consistency 
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Figure 6. GWAS performance comparison of cfDNA and gDNA in HDL trait. ( A ) Mirrored Manhattan plot for GWAS of high-density lipoprotein (HDL) 
cholesterol le v els based on 2150 200 o v erlapping SNPs betw een cfDNA and gDNA; ( B ) Manhattan plots f or GWAS of HDL le v els using 32 699 unique 
SNPs from the gDNA dataset (top) and 22 210 unique SNPs from the cfDNA dataset (bottom); ( C ) scatter plot of −log 10 ( P -values) for overlapping SNPs 
in GWAS results between cfDNA and gDNA; and ( D ) scatter plot of beta values for overlapping SNPs in GWAS results between cfDNA and gDNA. 
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f population structure inferred from cfDNA and gDNA. PC1
rimarily reflects the latitudinal geographical location, as in-
icated by the color-coded provinces of origin. One outlier
as identified whose place of origin is Gansu, located in the
exi Corridor, a historically significant commercial hub on

he Silk Road connecting China to the West since the Han
ynasty [ 62 ]. This individual was excluded from subsequent
WAS. 
In summary, based on population-level variant detection,

e concluded that cfDNA and gDNA identified comparable
umbers of SNPs, with gDNA detecting slightly more. The
onsistency of PCA and AF indicated that the batch effects
ere minimal between the two datasets, as evaluated by the
ethods recommended by previous studies [ 63 , 64 ]. Through

nalyses of AF spectra, genotype values, and population struc-
ure, we demonstrated the high genotype consistency between
fDNA and gDNA. 

enomic association analysis 

n this section, we conducted association analyses between the
wo DNA types and two categories of quantitative traits: reg-
lar phenotypes and scRNA-seq expression data. For regular
henotypes, we performed GWAS using PLINK 2.0 [ 38 ]. For
cRNA-seq expression data, we carried out eQTL analysis us-
ng TensorQTL [ 46 , 47 ]. 

Given the relatively small sample size of 185 participants,
he GWAS analysis identified only a few genome-wide sig-
ificant SNPs across all 22 phenotypes using genotype data
rom both cfDNA and gDNA. After masking SNPs in re-
eated region [ 65 ], filtering SNPs with MAF < 0.05, HWE P -
alue < 1e-5, and genotype missing rate > 10%, 172 410
nd 2182 899 SNPs remained for cfDNA and gDNA, re-
pectively, with 2150 200 SNPs overlapping between the
wo. Overall, the GWAS results based on cfDNA and gDNA
ere highly consistent, as evidenced by the Manhattan plots,
scatter plots of P -values, and scatter plots of beta values
(Fig. 6 and Supplementary Fig. S9 ). The squared Pearson cor-
relation coefficients (R 

2 ) for P -values and beta values of over-
lapping SNPs between the two DNA types averaged 0.967
and 0.989, respectively, across all 22 phenotypes. For nonover-
lapping SNPs, correlation coefficients could not be computed;
however, mirrored Manhattan plots demonstrated high con-
sistency at the same loci between cfDNA and gDNA GWAS re-
sults. We highlighted the comparison results for exemplar phe-
notypes, such as high-density lipoprotein cholesterol (HDL-C)
levels, in Fig. 6 , with results for the remaining phenotypes pre-
sented in Supplementary Fig. S9 . 

Similar to the GWAS comparison results, the eQTL analy-
sis demonstrated high consistency between cfDNA and gDNA
(Fig. 7 and Supplementary Fig. S10 ). Among the 186 partic-
ipants with both cfDNA and gDNA, 179 also had scRNA-
seq expression data. After masking SNPs in repetitive regions,
14 937 426 SNPs remained for cfDNA and 15 050 832 for
gDNA, with 14 249 022 overlapping between the two. SNPs
with a MAF < 0.01, located beyond ±1 MB from the cis-
window, with a FDR > 0.05, or an effect size (beta) of 0
were excluded from the eQTL results. Consequently, the ac-
tual number of SNPs in the eQTL results was significantly
lower than the total number of SNPs analyzed. Across five cell
subpopulations (B cells, CD4 + T cells, CD8 + T cells, myeloid
cells, and ILCs), the squared Pearson correlation coefficients
for −log 10 ( P -values) of overlapping SNPs ranged from 0.8756
to 0.9829, with an average of 0.9533. Similarly, the squared
Pearson correlation coefficients for beta values of overlap-
ping SNPs ranged from 0.9858 to 0.9926, averaging 0.9897.
For nonoverlapping SNPs, mirrored Manhattan plots revealed
high concordance in P -values at the same loci between cfDNA
and gDNA. 

In summary, the results of genomic association analyses, in-
cluding GWAS and eQTL studies, consistently showed strong
agreement between cfDNA and gDNA. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf119#supplementary-data
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Figure 7. eQTL performance comparison of cfDNA and gDNA in B cells. ( A ) Mirrored Manhattan plot for eQTL analysis of B cells based on 7894 
o v erlapping SNPs between cfDNA and gDNA; ( B ) Manhattan plots for eQTL analysis of B cells using 5670 unique SNPs from the gDNA dataset (top) 
and 5671 unique SNPs from the cfDNA dataset (bottom); ( C ) scatter plot of −log 10 ( P -values) for overlapping SNPs in eQTL results between cfDNA and 
gDNA; and ( D ) scatter plot of beta values for overlapping SNPs in eQTL results between cfDNA and gDNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

cfDNA and gDNA are two types of DNA that both carry
the genetic information of the subject but differ in several
key characteristics due to their origins. gDNA, derived from
the nuclei of white blood cells, consists of long, intact DNA
molecules, while cfDNA is fragmented DNA primarily re-
leased from apoptotic cells into body fluids. Two major dif-
ferences between cfDNA and gDNA sequencing data are the
rate of duplicated reads and insert sizes. 

First, cfDNA data has a higher rate of duplicated reads com-
pared to gDNA. This is a consequence of library construction,
as the low cfDNA amount ( ∼10 ng / ml plasma) requires more
PCR amplification cycles to produce sufficient material for se-
quencing. The necessary step of removing duplicated reads re-
sults in a lower effective sequencing depth for cfDNA. There-
fore, to achieve an equivalent amount of usable sequencing
data, cfDNA typically requires a higher raw sequencing depth
than gDNA. 

Second, the difference in insert sizes arises from their ori-
gins. gDNA begins as long, intact DNA strands that are phys-
ically or enzymatically sheared during library preparation to
achieve a specific fragment length. In contrast, cfDNA origi-
nates as short DNA fragments naturally released from cells,
eliminating the need for shearing. This inherent shortness in
cfDNA insert sizes are strongly related to the uneven genomic
coverage [ 66 ] and a smaller number of detected variants. In
this study, we discussed the relevant aspects and found signif-
icant depth differences between the two DNA types, mainly
in centromeric regions. This phenomenon may be due to the
fact that centromeric regions themselves are highly repetitive
sequences [ 67 ], and the analysis of these regions has always
been a challenge in the field of short-read sequencing [ 68 , 69 ].
We hypothesize that the performance of the two different in-
sert sizes of DNA during alignment differs in similar repet-
itive regions, with gDNA having a higher proportion of cor-
rect alignments due to its larger fragment size, thus resulting in 

significant differences in the performance of the two materials 
in these regions. From this perspective, we speculate that the 
differences observed in variant detection (e.g. the number of 
INDELs varying with sequencing depth and the nonoverlap- 
ping SNPs in population genetic analysis) may also stem from 

alignment differences caused by different insert sizes. From 

previous works, we have also found similar conclusions: in- 
sert size affects the accuracy of variant detection, and longer 
insert sizes are more precise [ 70 ]. 

A unique characteristic of cfDNA is its ability to offer 
molecular insights beyond genetic information, including con- 
centration [ 24 ], fragment size and patterns [ 71 , 72 ], and epi- 
genetic status [ 73 ], among others. These features serve as valu- 
able biomarkers for monitoring and predicting physiological 
conditions. Depending on the research design and objectives,
researchers may opt to sequence either cfDNA or gDNA. 

Our study may have several aspects to be improved. First,
the sample size of 186 is relatively small, even though it is 
large enough to obtain reliable results of the comparison of 
data quality metrics and variant detection, there are no well- 
established significant genome-wide signals associated with 

the studied 22 phenotypes. Therefore, we lack the conclu- 
sion for the GWAS performance comparison between cfDNA 

and gDNA on significant hits even though we expect nearly 
identical results based on the current nonsignificant associa- 
tions. Second, for the current genomic association analysis,
we investigate some general phenotypes (e.g. height, HDL- 
C) and scRNA-seq expression data, but no other omics data,
for example, proteome data or epigenome data. Many studies 
have been conducted to investigate the associations between 

the genotype data with these omics data and obtained par- 
ticular quantitative trait locus (QTL), such as pQTL (protein 

QTL) [ 74 ] and meQTL (methylation QTL) [ 75 ]. These associ- 
ation analyses help identify genetic variants that are associated 
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ith protein levels and DNA methylation, elucidating how
enetic variations influence molecular and phenotypic traits
rom multiple perspectives. For a more comprehensive com-
arison between cfDNA and gDNA, we should have also per-
ormed these association analyses to see if there is a difference
n identifying these QTLs. 

ead contact 

urther information and requests should be directed to and
ill be fulfilled by the lead contact, Huanhuan Zhu (zhuhuan-
uan1@genomics.cn). 
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