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Abstract 1 

Background: Genomic data is essential for clinical decision-making in precision oncology. 2 

Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, 3 

but they face two major challenges. First, these pipelines are highly complex, involving multiple 4 

steps and the integration of various tools. Second, they generate features that are human-5 

interpretable but often result in information loss by focusing only on predefined genetic 6 

properties. This limitation restricts the full potential of NGS data in biomarker extraction and 7 

slows the discovery of new biomarkers in precision oncology. 8 

Methods: We propose an end-to-end deep learning (DL) approach for analyzing NGS data. 9 

Specifically, we developed a multiple instance learning DL framework that integrates somatic 10 

mutation sequences to predict two compound biomarkers: microsatellite instability (MSI) and 11 

homologous recombination deficiency (HRD). To achieve this, we utilized data from 3,184 12 

cancer patients obtained from two public databases: The Cancer Genome Atlas (TCGA) and 13 

the Clinical Proteome Tumor Analysis Consortium (CPTAC). 14 

Results: Our proposed deep learning method demonstrated high accuracy in identifying 15 

clinically relevant biomarkers. For predicting MSI status, the model achieved an accuracy of 16 

0.98, a sensitivity of 0.95, and a specificity of 1.00 on an external validation cohort. For 17 

predicting HRD status, the model achieved an accuracy of 0.80, a sensitivity of 0.75, and a 18 

specificity of 0.86. Furthermore, the deep learning approach significantly outperformed 19 

traditional machine learning methods in both tasks (MSI accuracy, p-value = 5.11x10-18; HRD 20 

accuracy, p-value = 1.07x10-10). Using explainability techniques, we demonstrated that the 21 

model’s predictions are based on biologically meaningful features, aligning with key DNA 22 

damage repair mutation signatures. 23 

Conclusion: We demonstrate that deep learning can identify patterns in unfiltered somatic 24 

mutations without the need for manual feature extraction. This approach enhances the 25 
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detection of actionable targets and paves the way for developing NGS-based biomarkers 1 

using minimally processed data. 2 

 3 

Keywords: AI, Deep Learning, Biomarker, Microsatellite Instability, Homologous 4 

Recombination Deficiency, Cancer Genomics 5 
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Background 1 

Bulk and targeted sequencing of cancer are being progressively integrated into clinical routine 2 

workflows. Today, knowledge about genetic variants or expression profiles are key pillars of 3 

personalized oncology [1–5]. Several efforts and programs have been established to analyze 4 

patients' cancer genomes, benefiting oncologists’ decision-making [6,7]. In molecular tumor 5 

boards, genomic biomarkers play a substantial role when determining diagnosis of a patient, 6 

hereditary predispositions, treatment scheme and can monitor therapy response, or explain 7 

resistances. Two important and highly clinically relevant biomarkers that are characterized by 8 

sets of genomic alterations are microsatellite instability (MSI) [8] and homologous 9 

recombination deficiency (HRD) [9]. In MSI, the mismatch repair (MMR) system of a cell is 10 

impaired, leading to small-scale insertions and deletions (indels). MSI-high tumors are an ideal 11 

target for immunotherapy [8,10]. In contrast, HRD introduces a different mutational scar in the 12 

cancer genome [11,12]. This makes HRD tumors eligible for treatment with poly ADP ribose 13 

polymerase (PARP) inhibitors in certain situations [13,14]. Both MSI and HRD leave 14 

distinguishable and complex patterns in the cancer genome.  15 

Since the start of the Human Genome Project [15], bioinformaticians have been involved in 16 

designing computational algorithms to analyze genomes. Traditionally, extensive multi-step 17 

pipelines process sequencing data for specific applications. For instance, gene expression is 18 

determined by mapping transcriptome reads to the human genome and assigning counts to 19 

the respective genes [16–20]. Similarly, small- and large-scale mutations are detected by 20 

variant callers that compare the sequence of a cancer genome to a reference [21–24]. 21 

Information on gene expression or variants in cancer-related genes is then interpreted in the 22 

clinical context. However, this approach is fundamentally limited by human expertise. By 23 

constraining the analysis of next generation sequencing (NGS) data to pre-defined genomic 24 

features, potentially relevant information is neglected. This limitation is particularly evident for 25 

compound biomarkers such as MSI and HRD which are reflected by a large spectrum of 26 
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changes in the genome and can be defined through a range of molecular assays [25–27]. 1 

Therefore, having an objective, unbiased end-to-end tool that directly relates a disease-2 

specific genomic pattern to patient subgroups and outcomes could complement existing 3 

bioinformatics methods in precision oncology. 4 

One instrument that could serve such a purpose is deep learning (DL). With increasing 5 

computational resources and decreasing sequencing costs [28], DL has been increasingly 6 

applied in cancer bioinformatics [29,30]. For instance, DL has been applied to variant calling, 7 

such as prognostication or drug response prediction [31–34]. Nevertheless, most of these 8 

models still rely on heavily handcrafted features or make strong prior assumptions about 9 

feature interactions. Here, we build upon previous attempts to use attention-based multiple 10 

instance learning (attMIL) for genomic data analysis with minimal human intervention [35,36]. 11 

We extend and apply this approach on unfiltered somatic mutations to predict MSI status in 12 

colon, rectum, gastric, and uterine cancers and HRD status in breast, ovarian, prostate, and 13 

pancreatic cancers. To our knowledge, this is the first study to apply the attMIL DL method for 14 

somatic mutations in multiple clinical cohorts with external validation. Finally, we propose a 15 

set of explainability methods to gain insights into the potential biomedical features the model 16 

uses for its predictions. In summary, our approach provides an interpretable, genomics-based 17 

tool applicable for oncological tasks that could support clinical decision-making. 18 
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Methods 1 

Data acquisition 2 

Small-scale somatic mutations in form of single base substitutions (SBSs) and insertions and 3 

deletions (indels) of 3,185 whole exome sequenced (WES) cancer patients from The Cancer 4 

Genome Atlas Program (TCGA) (n=3,080 patients) and the Clinical Proteomic Tumor Analysis 5 

Consortium (CPTAC) (n=105 patients) were utilized. (Fig. 1a) TCGA controlled-access and 6 

CPTAC public mutation data were obtained in Mutation Annotation Format (.maf) files through 7 

the Genomic Data Commons (GDC) (Fig. 1b). In total we acquired 8.3 million mutations for 8 

TCGA and 70k mutations for CPTAC COAD.  9 

To reconstruct the mutation sequence context, mutation entries were mapped back to their 10 

genomic locations using the 'Chromosome', 'Start_Position', and 'End_Position' columns to 11 

generate their sequence context. Human reference genome builds GRCh37 and GRCh38 12 

were used for TCGA and CPTAC data respectively, with chromosome sequences obtained 13 

from the Ensembl genome database (Fig. 1c).  14 

For prediction of MSI status, four common cancer types were selected: colon adenocarcinoma 15 

(COAD) (n=338), rectal adenocarcinoma (READ) (n=110), stomach adenocarcinoma (STAD) 16 

(n=432), and uterine corpus endometrial carcinoma (UCEC) (n=450) (Fig. 1a & S1), resulting 17 

in a dataset of 1,330 patients from TCGA. MSI status was obtained through cBioPortal 18 

(https://www.cbioportal.org/) and previous studies conducted on TCGA data [37]. The MSI 19 

status of all patients was determined using consensus calls from polymerase chain reaction 20 

(PCR) -based assays, MANTIS [38], and MSIsensor [39], with previously described thresholds 21 

set at binarized values of 0.4 and 3.5, respectively (Additional File 1). For validation, 104 22 

COAD patients from CPTAC were used (Supplementary Material 1).  23 
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Furthermore, to simulate how our models perform on mutations from targeted sequencing 1 

panels, we filtered the WES-derived variant data using the gene lists from FoundationOne 2 

CDx (324 genes) [40,41] and TruSight Oncology 500 (523 genes) [42,43]. Variants were 3 

filtered by matching their HUGO nomenclature entries to the gene lists. Since the gene panels 4 

both include only coding exonic regions, we kept mutations with the following variant 5 

classification: Missense_Mutation, Silent, Nonsense_Mutation, Frame_Shift_Del, 6 

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins. The full CPTAC dataset contained 70,861 7 

variants from 16,478 genes. After filtering by Trusight Oncology 2,718 variants from 432 genes 8 

remained after the FoundationOne Dx panel 1,758 variants from 280 genes remained 9 

(Supplementary Material 2). To match the mutation load of simulated CPTAC panel 10 

sequencing with WES, we imputed the mutation distribution by repeating the variants ten 11 

times.  12 

For prediction of HRD status, three, cancer types where HRD is prevalent were selected [40]: 13 

breast (BRCA) (n=967), ovarian (OV) (n=182), pancreatic (PAAD) (n=139) and prostate 14 

cancer (PRAD) (n=462) from TCGA (Fig. 1a & S2). The genomic HRD scar score [41] consists 15 

of three numerical properties: loss of heterozygosity (LOH) [42], telomeric allelic imbalance 16 

(TAI) [43], and large-scale transitions (LST) [44] from which a sum HRD status was 17 

determined. Using tissue-specific cutoffs [45], we generated binarized prediction targets with 18 

cutoffs set at 45 for BRCA, 54 for OV, 37 for PAAD, and 21 for PRAD [45] (Additional File 2). 19 

Due to the limited number of HR-deficient samples in CPTAC for these cancer types, external 20 

validation was not feasible for HRD predictions. 21 

Data Preparation 22 

In our experiments we compared our DL model to a state-of-the-art (SOTA) machine learning 23 

(ML) tool to have a baseline reference regarding performance. Data preparation for both 24 

models differed in fundamental parts. 25 
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The input data for the DL model consisted of the sequence context surrounding each mutation. 1 

Four 20-nucleotide sequences were extracted: the mutation itself, the upstream sequence (5’), 2 

the downstream sequence (3’), and the reference sequence at the mutation site. For mutations 3 

shorter than 20 nucleotides - such as single-nucleotide substitutions - the remaining positions 4 

were padded with gap characters (’-’). Similarly, shorter reference sequences were also 5 

padded to ensure consistent length. For all experiments, a window size of 20 nucleotides was 6 

defined to capture the specific indel signatures associated with MSI and HRD mechanisms 7 

(Fig. 1d). 8 

To account for the double stranded nature of DNA, the reverse complement of each mutation 9 

sequence was provided as well and processed as blocks as described above. Additionally, a 10 

binary indicator was included to specify the DNA strand on which the mutation occurred. All 11 

sequences were numerically encoded by mapping nucleotide bases (A, C, G, T) and gap 12 

characters (’-’). 13 

For the ML model, mutations were represented in their SBS and indel forms, comparable to 14 

Catalogue Of Somatic Mutations In Cancer (COSMIC) v3.4 [46] features. Therefore, we used 15 

178 input features for the ML model, 96 for SBS mutations and 83 for indels. Feature values 16 

were normalized by mutation count of the respective patient (Supplementary Methods). 17 

Data Splitting 18 

To enhance generalizability and mitigate potential site-specific biases, a site-specific training 19 

split based on the Tissue Source Site (TSS) codes within the TCGA patient identifiers was 20 

conducted [47]. TSS codes were mapped to their respective institutions (Supplementary 21 

Material 3, Additional File 3). The test set for each model comprised patients from specific 22 

institutions excluded from the training set to ensure comparable results. The training data was 23 

divided for a 5-fold cross-validation in an approximate 70:15:15 split (Fig. S1 & S2). 24 

Additionally, to this source-specific split, for MSI experiments we validated our findings on 25 
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CPTAC. For the training data positive samples for MSI ranged from 20 to 22 % between folds, 1 

and from 15 to 17 % for HRD (Table S1 & S2).  2 

Baseline Gradient Boosting 3 

To establish a SOTA ML classifier on somatic mutations as baseline for performance, Extreme 4 

Gradient Boosting (XGB) models were employed using the scikit-learn v1.2.0 and xgboost 5 

v2.1.1 libraries in Python. For MSI and HRD classification tasks, default parameters of the 6 

xgb.XGBClassifier() and fit() function were used.  7 

Deep Learning Model Setup 8 

The DL model employed in this study was directly adopted from the implementation provided 9 

by Anaya et al. [35], in TensorFlow v2.12.0. The model comprises two main components: a 10 

trainable mutation encoder and an attention multiple instance learning (attMIL) module 11 

(Supplementary Methods) (Fig. 1d & 1e).  12 

The mutation encoder consists of a 2D convolutional layer followed by a dense layer, 13 

transforming each mutation’s sequence context into a feature vector. Convolutions are applied 14 

separately to the forward and reverse complement sequences, and the resulting features are 15 

concatenated and passed through the dense layer. The output dimensionality is set to 128 16 

(Fig. 1d).  17 

In the attMIL module [48], mutation-level feature vectors are aggregated into a patient-level 18 

representation using an attention mechanism. Weighted sum pooling is employed, where 19 

feature vectors are summed and weighted by their attention scores. The aggregated patient 20 

vector is then passed through two dense layers, with the final layer using a sigmoid activation 21 

function for binary classification tasks. For MSI and HRD, binary cross-entropy was used as a 22 

loss function (Fig. 1e).  23 
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Models were trained with the Adam optimizer and a batch size of 128. For MSI models, training 1 

was conducted for up to 300 epochs with a learning rate of 0.001. HRD models were trained 2 

for up to 500 epochs with a learning rate of 0.01. The training and deployment of the models 3 

were carried out on an NVIDIA RTX A6000 with 46 GB of RAM. 4 

Model performance was evaluated using accuracy, F1 score, receiver operating characteristic 5 

(ROC) area under the curve (AUC), and precision-recall (PR) AUC, specificity, sensitivity and 6 

absolute values of true positives (TP), false positives (FP), true negatives (TN) and false 7 

negatives (FN) for classification tasks. To estimate significance between model ROC AUCs 8 

we utilized the DeLong’s test, for accuracy McNemar, for count data (TP, FP, TN, FN) the 9 

Wilcoxon Signed-Rank test and for all other metrics a paired t-test was applied. Furthermore, 10 

for patient level significance tests, such as DeLong’s test and McNemar we aggregated the p-11 

value for all five folds with Fisher’s method. To generate a binary classification from continuous 12 

prediction values we used the best cutoff of the ROC AUC on the training set.  13 

Explainability Techniques 14 

Several explainability techniques were applied to interpret the model’s predictions. This 15 

approach allowed us to interpret how the attMIL model encodes and evaluates mutations, as 16 

well as how these encodings contribute to patient-level predictions. Dimensionality reduction 17 

was performed using Uniform Manifold Approximation and Projection (UMAP) (python library 18 

umap-learn v0.5.5), which facilitated the visualization of mutation- and patient-level feature 19 

vectors by projecting them into lower-dimensional space to identify sample clusters. Mutation-20 

level features were extracted from a layer that encodes individual mutations into vector 21 

representations, while patient-level features were obtained from the aggregation layer, which 22 

integrates information across all mutations for a given patient. Mutation encodings were then 23 

stratified based on attention value and grouped using k-means clustering (k=7) with the 24 

sklearn.cluster library, allowing the analysis of the importance of similar mutations to the 25 

model. The choice of k=7 balanced sufficient granularity to capture distinct mutation patterns 26 
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with avoiding excessive fragmentation. To further understand the relationship between these 1 

clusters and biological processes, mutation catalogs from the clusters were generated and 2 

compared to known COSMIC mutational signatures associated with defective mismatch repair 3 

(dMMR) and HRD.  4 

Finally, the relationship between the model’s prediction scores and various tumor properties 5 

was examined for potential trends. For MSI, these included associations with cancer type, 6 

tumor mutational burden (TMB), indel mutation density, driver mutations in dMMR genes (e.g., 7 

MLH1, MSH2, MSH3, MSH6, PMS2) and POLE, as well as the methylation status of MLH1 8 

promoter. For this, TCGA patients included in the model’s validation and test sets were 9 

selected, and the binarization threshold was determined based on the optimal cutoff for the 10 

ROC AUC derived from the training set. For HRD, correlations were evaluated in relation to 11 

cancer type, BRCA1/2 status, continuous genomic scarHRD scores and their components 12 

(i.e., LOH, TAI, and LST), TMB, and mutations in additional HR pathway genes (e.g., ATM, 13 

BRIP1, CHEK2, NBN, PALB2, RAD51C).  14 

For XGB models, Shapley additive explanations (SHAP) values were calculated with the 15 

python library shap (v0.45.1) for each input feature. By default, 20 most important features are 16 

ranked by SHAP value and displayed in increasing order. 17 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.06.631471doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631471
http://creativecommons.org/licenses/by-nc/4.0/


 

11 

 

Results 1 

DL detects microsatellite instability from sequencing panels 2 

MSI arises because of defects in the mismatch repair (MMR) pathway [49,50], and leads to 3 

characteristic small-scale indels in repetitive sequences as well as distinctive patterns of SBSs 4 

(Fig. 2a), which in principle are recognizable by DL-based models [11,51–53]. We trained an 5 

attMIL model to detect MSI status in 1,330 patients from TCGA, including patients from COAD, 6 

READ, STAD and UCEC. After training, we externally validated this model on the COAD 7 

cohort from CPTAC (n=105 patients). The attMIL model achieved an accuracy of 0.98±0.01, 8 

a ROC AUC of 1.00±0.00, sensitivity of 0.95±0.02 and a specificity of 1.00±0.00 confirming its 9 

ability to detect MSI-related patterns (Table S3). When analyzing the absolute number of 10 

misclassified patients across 5-fold cross-validation (ensemble of 5 models), we observed no 11 

false positive patients and only 1.20±0.45 false negatives in the total population of 105 12 

patients. These results were based on an optimal threshold determined in the training set. For 13 

real-world application, the threshold could be adapted to yield a high positive predictive value. 14 

For example, in the external test set, a threshold corresponding to a sensitivity of 0.99 would 15 

yield a specificity of 0.99±01, which is much higher than for many clinically used tests. 16 

Next, we compared the DL performance to that of a SOTA ML model to investigate whether 17 

DL is indeed more powerful than standard ML for this application. As expected, XGB also 18 

achieved excellent performance on the CPTAC datasets, with an accuracy of 0.89±0.07, a 19 

ROC AUC of 0.99±0.01, sensitivity of 0.99±0.02 and a specificity of 0.80±0.16 (Fig. 2b, Table 20 

S3). However, a significant difference in performance between DL and ML models was seen 21 

when comparing F1 scores (DL 0.97±0.01; ML 0.76±0.15) with a p-value of 0.04 (Table S3). 22 

Furthermore, when investigating misclassified patients, we found that the XGB model 23 

produces a large amount of false positive patients (16.40±12.93 of 105 patients). These data 24 
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show that MSI prediction is a relatively easy task which even classical ML solves well, 1 

however, our new DL approach was still substantially, and clinically meaningfully, better. 2 

In the real world, most patients do not undergo whole exome sequencing (WES), but just panel 3 

sequencing of a few hundred genes. We evaluated the performance of DL and ML models on 4 

pseudo panel sequencing data. To this end, the number of somatic mutations was filtered to 5 

include only genes present in two targeted sequencing panels: FoundationOne Dx [54,55] and 6 

TruSight Oncology [56,57]. Reducing the mutation set to the TruSight Oncology 523 gene 7 

panel revealed a significant divergence in performance between DL and ML models, with the 8 

attMIL model achieving an accuracy of 0.96±0.04 outperforming XGB’s 0.61±0.05 (p-value 9 

1.67x10-38) and a F1 score of attMIL of 0.96±0.04 compared to 0.50±0.02 of XGB (p-value 10 

7.56x10-5) (Fig. 2b). As expected, the task became more challenging with fewer mutations 11 

available, indicated by lower overall accuracy - however, the DL model maintained a 12 

reasonably good performance. In addition, we found that especially the XGB model had 13 

reduced performance regarding specificity, from 0.80±0.16 to 0.54±0.28, when lowering the 14 

number of variants for model input, due to high false positive number (24.60±15.26 of 105 15 

patients) (Table S4). This suggests that the classical ML model is considerably biased towards 16 

positive predictions. When the genes were further narrowed to 324 from the FoundationOne 17 

Dx panel, performance differences persisted despite increased variance (accuracy attMIL 18 

0.83±0.10 vs. XGB 0.59±0.06, p-value 7.94x10-21; F1 scores attMIL 0.78±0.17 vs. XGB 19 

0.47±0.11, p-value 0.06) (Fig. 2b, Table S5). These results indicate that the DL model 20 

outperforms classical ML in clinically relevant genomic subsets present in commercial 21 

sequencing panels. 22 

DL detects biomedically relevant MSI patterns 23 

Subsequently, we investigated if the feature representations obtained by the DL model result 24 

in a clinically relevant clustering of patients, which would provide further proof that the DL 25 

model learned clinically relevant patterns. We investigated a possible clustering of at both the 26 
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mutation and patient levels (Fig. 2c). While no substantial differences were apparent at the 1 

mutation level, a clear separation emerged at the patient level. MSI and MSS cancers 2 

segregated distinctively, indicating that the DL model was able to encode their respective 3 

patients differently (Fig. 2c). 4 

We then evaluated which mutations were most influential for the model’s predictions by 5 

extracting mutation encodings from the embedding layer. These encodings were clustered 6 

using k-means (k=7) and ranked by the mean attention values of their mutations to identify 7 

highly and minimally influential groups (Fig. 2c). When examining the mutation catalogs of the 8 

clusters with the highest attention scores (clusters II+III), they were enriched in C and G indels 9 

(Fig. 2c). Comparing this to the indel mutation signature ID7 [46] (Fig. 2a) associated with 10 

MSI, which depicts deletions of mononucleotide stretches but also of dinucleotide repeats, this 11 

suggests that the model is capturing relevant MSI-associated mutational patterns.  12 

When analyzing a mutation cluster with average attention scores (cluster I), we observed 13 

several similarities to the SBS6 and SBS15 mutation signatures associated with defective 14 

MMR (dMMR) [46] (Fig. S3a). Similarities encompassed the features of the C>T mutation 15 

class, with comparable peaks in the sequence context pairs of an up- and downstream GG, 16 

AG and CG. This could further indicate that the model may have learned to group and assign 17 

weights to MSI-specific mutations. Other SBS clusters mostly contain similar mutations with 18 

C>A mutations in a TT context (Fig. S3b). Comparing this to the Shapley additive explanation 19 

(SHAP) analysis of the handcrafted features of XGB, XGB also utilizes deletions of a single 20 

C/G similar to the DL model (Fig. S4). However, other features that strongly influenced the 21 

XGB model's predictions, such as indels at repetitive sites or certain C>G/C>A mutations, did 22 

not resemble classical dMMR signatures, suggesting either the identification of novel patterns 23 

or a potential bias towards irrelevant features. 24 
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DL identifies MSI-associated patterns beyond mutation counts 1 

Finally, we investigated whether the model's predictions were driven by subtle patterns within 2 

the mutations or if it was simply confounded by factors such as mutation counts. To this end, 3 

we investigated if the model's predictions are associated with other relevant properties of the 4 

patients’ cancers related to MSI (Fig. 2d). These properties included the ground truth label, 5 

features of genomic instability, driver mutations, and the methylation status of MMR-related 6 

genes. The model's normalized prediction scores were highly indicative of MSI and MSS 7 

status across all cancer types, effectively reflecting the underlying distinction between the two 8 

groups. Next, as expected, a correlation trend between the prediction score and TMB and 9 

indel density was observed. However, patients with high TMB/indel count in an MSS context 10 

were not predicted as MSI by the DL model. This suggests that the model learns subtle, 11 

clinically relevant patterns and does not simply count mutations as indicators for MSI. We also 12 

observed that driver mutations in key MMR pathway proteins are not necessarily indicative of 13 

a positive model prediction, nor were they always correlated with consensus labels from 14 

MANTIS, MSIsensor or PCR (Fig. 2d). A close relationship was found between the model 15 

scores and the MLH1 promoter methylation, as silencing of this gene has a more significant 16 

impact on MMR function than mutations alone [58]. 17 

These results emphasize DL's potential as an alternative tool for analyzing NGS data, 18 

specifically for panel sequencing data. Our results demonstrate high performance 19 

generalizability, and explainability of the DL-based attMIL model.  20 

DL predicts HRD and highlights mutational patterns in alternative 21 

repair pathways 22 

We next investigated HRD, which arises from defects in key homologous recombination (HR) 23 

pathway genes, as well as from other associated genomic defects. When HR fails to repair 24 

double-strand breaks (DSBs), cells rely on alternative pathways, such as microhomology-25 
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mediated end joining (MMEJ), which in turn induce specific mutational patterns we detected 1 

with our DL model. (Fig. 3a) [59,60]. We trained an attMIL model to detect HRD using data 2 

from 1,750 patients across BRCA, OV, PAAD, and PRAD cohorts from TCGA, with internal 3 

validation performed in a source-site-specific manner. After 5-fold cross-validation, the attMIL 4 

model performed slightly better than XGB (attMIL accuracy: 0.80±0.01, XGB accuracy: 5 

0.75±0.02 (p-value 1.07x10-10); attMIL ROC AUC: 0.88±0.01, XGB ROC AUC: 0.86±0.01 (p-6 

value 0.72); DL PR AUC: 0.67±0.01, XGB PR AUC: 0.75±0.02) (Fig. 3b, Fig. S6a)). Regarding 7 

specificity, both models performed well with (attMIL 0.86±0.05, XGB 0.98±0.00 (p-value 8 

0.049)), however sensitivity was comparably low with 0.74±0.06 for attMIL and 0.52±0.03 for 9 

XGB (p-value 0.003), indicating that predicting HRD is a more challenging task than predicting 10 

MSI (Table S6).  11 

We then investigated the explainability of DL-based HRD predictions. The patient level UMAP 12 

shows a gradient between HRD and HR- proficient (HRP) patients, but no clear separation as 13 

in the MSI case (Fig. 3c). Furthermore, the mutation level features for HRD and HRP also 14 

cluster very much together. In the k-mean clustering heatmap of mutation features, we again 15 

identified groups of mutations with high attention scores. The second highest attention group 16 

(cluster II) consists of indel mutations, primarily monomer stretch insertions and deletions of 17 

C and G, as well as various other indels in repetitive regions. Notably, the highest attention 18 

scores (cluster III) were assigned to microhomologies and deletions at 5-nucleotide repeats, 19 

consistent with indel signatures ID6 [46] (Fig. 3a) and ID8 [46] (Fig. S4a). Both signatures are 20 

associated with alternative repair pathways to HRD, namely MMEJ and non-homologous end 21 

joining (NHEJ). A group of mutations with mean attention attribution (cluster I) displays mostly 22 

SBSs of various classes related to SBS3 [46], reflecting the general high mutation load of HRD 23 

cancers (Fig. S4a). These findings are in line with the highly ranked indel features of the XGB 24 

model, which mostly consist of microhomologies or deletions of single C/G nucleotides (Fig. 25 

S4b). Additionally, the XGB model identified several C>G mutations as important predictors, 26 

which, to our knowledge, previously have not been brought into context with HRD. 27 
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DL predicts HRD with biologically meaningful features 1 

Following the same approach as before with a MSI, we again compared the model’s 2 

predictions to target-specific tumor properties. (Fig. 3d). We observed that higher prediction 3 

scores correlated with a greater likelihood of patients being HRD-positive, suggesting that the 4 

model’s prediction scores reflect a ranking of HRD probability among samples. Upon 5 

examining the model’s prediction across cancer types, we noted that the proportion of patients 6 

predicted as HRD varied: approximately 1:4 BRCA patients and 3:5 OV patients were 7 

predicted as HRD positive, whereas there were no positive cases in PAAD and only 1:20 in 8 

PRAD, aligning with the distribution of the HRD status of patients in these cancer types (Table 9 

S2). It remains unclear whether this is a result of the model learning to differentiate tissue 10 

types or solely predicting HRD status. The model predictions were not correlated to LST, LOH, 11 

TAI individually, but only to the HRD scar signature, which is composed of all three 12 

components [45] 13 

In summary, we show that deep learning models can effectively predict key biomarkers like 14 

MSI and HRD across cancer types while using biologically meaningful features and 15 

generalizing well to external cohorts, outperforming traditional machine learning approaches, 16 

especially in panel sequencing data. 17 

 18 
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Discussion 1 

In this study, we demonstrated that DL models can learn to predict clinically relevant 2 

biomarkers solely from sequences of small-scale somatic mutation of cancer genomes, 3 

without using any prior assumptions or expert knowledge. By comparing an attMIL DL 4 

framework with a XGB ML model, we found that for both targets, MSI and HRD, DL 5 

outperforms ML. The DL model was explainable and specific, biologically plausible, genomic 6 

features were associated with known mutational patterns. Although this model still relies on 7 

variants called by classical bioinformatic tools as input, it represents a first step towards end-8 

to-end DL workflows for cancer genomes. 9 

Our findings indicate that DL models offer advantages over traditional ML approaches. For 10 

MSI prediction, the DL model outperformed an ML model, especially when applied to limited 11 

data during inference. While both models performed similarly on full datasets, the DL model 12 

maintained excellent performance even with targeted sequencing panels, such as the TruSight 13 

Oncology 500 gene panel. This suggests that DL models are more robust to data sparsity and 14 

could streamline clinical workflows by reducing the need for additional MSI testing. In addition, 15 

as sequencing panels are widely used in clinical routine, DL models performing well not only 16 

on WES/WGS data, could help bring genomic advancements to a broader population.  17 

In predicting HRD, the DL model was slightly better than that of the ML model with a 18 

performance comparable to other tools [61–63]. HRD is primarily characterized by large-scale 19 

genomic alterations rather than small indels alone. This suggests that small-scale somatic 20 

mutations may not provide sufficient information for accurate HRD prediction. Incorporating 21 

further information about the sequencing data, such as variant allele frequency, genomic 22 

region or affected gene as well as data on structural variations and large-scale 23 

rearrangements could enhance model performance.  24 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.06.631471doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631471
http://creativecommons.org/licenses/by-nc/4.0/


 

18 

 

DL models excel in adapting to diverse datasets without predefined features, making them 1 

ideal for the heterogeneity of tumor genomes. Unlike classical ML models, they process 2 

sequencing data end-to-end, uncovering both known and novel patterns. 3 

This study is not without limitations. External validation for HRD predictions was not feasible 4 

due to limited data availability, restricting the generalizability of our findings. Furthermore, in 5 

the case of MSI, DL predictions based on NGS and PCR labels should be compared to the 6 

histological approach of diagnosis - immunohistochemistry. Generally, small cohort sizes and 7 

class imbalances may have introduced biases to our predictions. Unlike most studies, we 8 

meticulously attempted to mitigate biases through site-aware data splitting [47], confounding 9 

factors cannot be entirely excluded. Future studies should aim to replicate and validate our 10 

findings in larger and more diverse patient cohorts to establish robustness.   11 

As sequencing technologies advance, end-to-end DL approaches could become integral to 12 

clinical genomics, particularly when WES/WGS data is unavailable and analysis relies on 13 

routinely used targeted sequencing panels. These models hold the potential to streamline 14 

workflows by bypassing lengthy preprocessing pipelines, possibly accelerating time to 15 

diagnosis and treatment, and with this might reduce costs. For this purpose, future 16 

advancements could focus on incorporating raw sequencing reads directly into DL models, 17 

making them fully end-to-end. Finally, the incorporation of multi-omics data - whole 18 

genome/exome, RNA and bisulfite sequencing - could enable DL to fully capture the 19 

complexity and heterogeneity inherent in cancer genomes [64].  20 
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Conclusion 1 

In summary, our study displays that DL models can predict clinically relevant biomarkers from 2 

genomic data and while capturing complex mutational patterns associated with MSI and HRD. 3 

By learning to identify and prioritize mutations influencing a given phenotype, DL models 4 

reduce the need for human intervention and complement human expertise in precision 5 

oncology. We provide an open-source toolkit to enable reproducibility and broader application 6 

of these methods across cancer types and other diseases. Future efforts should focus on 7 

expanding datasets, integrating raw multi-omics data, and refining model architectures to 8 

maximize the impact of DL in advancing personalized medicine. 9 
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Abbreviations 1 

AI – Artificial Intelligence 2 

AUC – Area under the curve 3 

AUROC – Area under the receiver operating characteristic 4 

BRCA – Breast invasive carcinoma 5 

COAD – Colon adenocarcinoma 6 

CRC – Colorectal carcinoma 7 

DL – Deep learning 8 

HRD – Homologous Recombination Deficiency 9 

HRP – Homologous Recombination Proficiency 10 

LUAD – Lung adenocarcinoma  11 

LUSC – Lung squamous cell carcinoma 12 

MLP – Multilayer perceptron 13 

MMEJ – Microhomology-mediated end joining 14 

(d)MMR – (Defective) mismatch repair 15 

MIL – Multiple instance learning 16 

MSI – Microsatellite instability 17 

MSS – Microsatellite stability 18 

MUT – Mutated 19 

NHEJ – Non-homologous end joining 20 

NGS – Next-generation sequencing 21 

PAAD – Pancreatic adenocarcinoma 22 

PRAD – Prostate adenocarcinoma 23 

OV – Ovarian serous cystadenocarcinoma 24 

TCGA – The Cancer Genome Atlas 25 

READ – Rectal adenocarcinoma 26 

ROC – Receiver operating characteristic 27 
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UCEC – Uterine corpus endometrial carcinoma 1 

WGS – Whole genome sequencing 2 

WT – Wildtype 3 

WXS – Whole exome sequencing 4 

XGB – Extreme gradient boosting 5 
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Figure Captions 1 

Fig. 1 | Overview of the study setup. a Datasets (TCGA and CPTAC) used in this study with 2 

cancer types and patient counts stratified by biomarkers. Cancer types from TCGA are 3 

accentuated in blue, red indicates CPTAC. b Preprocessing of .maf files and reference 4 

genome to mutation information. c Mutation counts by cohort and cancer type used in this 5 

study. The black line indicates the mean mutation count. d Encoder part of the attMIL model. 6 

Mutations from (c) are separated into four blocks: upstream, reference, alteration and 7 

downstream element. Each block contains 20 nucleotides or gaps. Reverse strand is modeled 8 

in the same manner by the reverse complement of the mutation. Both strand encodings are 9 

passed through a 2D-convolution and a dense layer producing a mutation feature vector. e 10 

Mutation vectors are gathered at the patient level and are aggregated by the attMIL 11 

mechanism to a patient feature vector. Patient features are used for the classification task. 12 

(COAD - colon adenocarcinoma, READ - rectal adenocarcinoma, STAD - stomach 13 

adenocarcinoma, UCEC - uterine corpus endometrial carcinoma, OV - Ovarian serous 14 

cystadenocarcinoma, BRCA - Breast invasive carcinoma, PRAD - Prostate adenocarcinoma, 15 

PAAD - Pancreatic adenocarcinoma, MLP - multilayer perceptron) 16 

Fig. 2 | DL predicts MSI with high accuracy in panel sequencing. a Mutation mechanism 17 

and COSMIC Indel signature of MSI. b Bar chart of performance metrics to compare attMIL 18 

and XGB models in the internal test dataset of TCGA, the external full CPTAC dataset and 19 

CPTAC data filtered by targeted sequencing panels of FoundationOne and Trusight Oncology. 20 

Significance is indicated by * (p-value < 0.05), ** (p-value < 0.005) and *** (p-value < 0.0005). 21 

c Explainability of the attMIL model. UMAP of mutation and patient level features. Heatmap of 22 

5,000 random mutation features clustered by k-means (k=7) and ranked by mean attention 23 

score. Indel/SBS mutation catalogues of three mutation clusters. d Patient features sorted by 24 

increasing prediction score of the attMIL model and separated by cancer type. (COAD - colon 25 

adenocarcinoma, READ - rectal adenocarcinoma, STAD - stomach adenocarcinoma, UCEC 26 
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- uterine corpus endometrial carcinoma, MSI - Microsatellite instability, MSS - microsatellite 1 

stability, WT - wildtype, MUT - mutated, METH - methylated) 2 

Fig. 3 | DL predicts HRD. a Mutation mechanism of MMEJ and COSMIC Indel signature of 3 

HRD. b ROC AUC and PR AUC plots for attMIL HRD predictions. c Explainability of the attMIL 4 

model. UMAP of mutation and patient level features. Heatmap of 5,000 random mutation 5 

features clustered by k-means (k=7) and ranked by mean attention score. Indel/SBS mutation 6 

catalogues of three mutation clusters. d Patient features sorted by increasing prediction score 7 

of the attMIL model and separated by cancer type. (OV - Ovarian serous cystadenocarcinoma, 8 

BRCA - Breast invasive carcinoma, PRAD - Prostate adenocarcinoma, PAAD - Pancreatic 9 

adenocarcinoma, HRD - Homologous Recombination Deficiency, HRP - Homologous 10 

Recombination Proficiency, WT - wildtype, MUT - mutated) 11 
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Supplementary Material 1 

Supplementary Figures 2 

Supplementary Fig. 1 | MSI data preparation. a Bar chart of site-specific data split for MSI. 3 

Dark blue indicates training data, light blue validation data and red the test set. The test set 4 

stays the same over all folds. b Doughnut plot of the data splits regarding class distribution of 5 

MSI vs MSS and number of patients.  c Bar chart of number of patients per cancer type. 6 

Supplementary Fig. 2 | HRD data preparation. a Bar chart of site-specific data split for HRD. 7 

Dark blue indicates training data, light blue validation data and red the test set. The test set 8 

stays the same over all folds. b Doughnut plot of the data splits regarding class distribution of 9 

HRD vs HRP and number of patients.  c Bar chart of number of patients per cancer type. 10 

Supplementary Fig. 3 | MSI features. a COSMIC SBS mutation signatures 6 and 15 11 

associated with MSI.  b SBS mutation catalogues of mutation feature clusters not displayed in 12 

Fig. 2c. Only mutation catalogues of the majority mutation class are displayed. 13 

Supplementary Fig. 4 | XGB features used in MSI predictions. 20 most important features 14 

of XGB to classify MSI.  Features are sorted by contribution to prediction (high to low SHAP 15 

values). SBS mutations are displayed as, for example, a C>T mutation with an upstream G 16 

and a downstream C (GC>TC). Indel mutations can be read as first the indel pattern length 17 

and then the number of repetitions. For example, an insertion pattern of at least five 18 

nucleotides without a repetition (5InsRep0) or a mononucleotide deletion of a C with the length 19 

one (1DelC1). 20 

Supplementary Fig. 5 | HRD features. a COSMIC SBS mutation signature three and indel 21 

signature eight associated with HRD and NHEJ.  b SBS and indel mutation catalogues of 22 

mutation feature clusters not displayed in Fig. 3c. Only mutation catalogues of the majority 23 

mutation class are displayed. 24 
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Supplementary Fig. 6 | XGB features used in HRD predictions. a ROC AUC and PR AUC 1 

of XGB predicting HRD in a five-fold cross validation. b 20 most important features of XGB to 2 

classify HRD. Features are sorted by contribution to prediction (high to low SHAP values). 3 

Microhomology mutations can be read as first the deletion length and then the length of the 4 

microhomology. For example, a deletion of at least five nucleotides containing a 5 

microhomology of two nucleotides to at least one of the flanking sites (5+DelMH2). 6 
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Supplementary Tables 1 

Supplementary Table. 1 | MSI patient counts.  MSI and MSS cases in the TCGA data split 2 

by cancer type and in total 3 

 COAD READ STAD UCEC total 

MSI cases 59 3 82 136 280 

MSS cases 279 107 350 314 1050 

 4 

Supplementary Table. 2 | HRD patient counts.  HRD and HRP cases in the TCGA data split 5 

by cancer type and in total 6 

 BRCA OV PAAD PRAD total 

HRD cases 149 74 6 79 308 

HRP cases 818 108 133 383 1442 

 7 

Supplementary Table. 3 | MSI performance metrics.  Performance values on the full 8 

CPTAC external test dataset of attMIL and XGB predicting MSI. The p-values for 9 

corresponding model comparison are stated below the performances. (accuracy - acc, sens - 10 

sensitivity, spec - specificity) 11 

 acc F1 
score 

ROC 
AUC 

PR 
AUC 

sens spec TP FP TN FN 

attMIL 0.98± 
0.01 

0.97± 
0.01 

1.00± 
0.00 

1.00± 
0.00 

0.95± 
0.02 

1.00± 
0.00 

22.80
± 0.45 

0.00± 
0.00 

82.00
± 0.00 

1.20± 
0.45 

XGB 0.89± 
0.07 

0.76± 
0.15 

0.99± 
0.01 

0.95± 
0.06 

0.99± 
0.02 

0.80± 
0.16 

22.80
±0.45 

16.40
± 
12.93 

64.60 
± 
12.93 

0.20± 
0.45 

p-value 5.11x
10-18 

0.04 0.32 - 0.04 0.047 1.00 0.06 0.06 0.06 

 12 

Supplementary Table. 4 | MSI performance metrics on TruSight Oncology 500 CPTAC 13 

variants.  Performance values on the TruSight Oncology 500 filtered CPTAC external test 14 
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dataset of attMIL and XGB predicting MSI. The p-values for corresponding model comparison 1 

are stated below the performances. (accuracy - acc, sens - sensitivity, spec - specificity) 2 

 acc F1 
score 

ROC 
AUC 

PR 
AUC 

sens spec TP FP TN FN 

attMIL 0.96± 
0.04 

0.96± 
0.04 

1.00± 
0.00 

1.00± 
0.00 

0.92± 
0.07 

1.00±   
0.00 

22.00
±   
1.73 

0.00±   
0.00 

82.00
±   
0.00 

2.00±   
1.73  

XGB 0.61± 
0.05 

0.50± 
0.02 

0.71± 
0.03 

0.56± 
0.05 

0.68± 
0.19 

0.54± 
0.28  

15.60 
±4.28 

24.60 
± 
15.26 

29.40 
± 
15.26 

7.40± 
4.28 

p-value 1.67x
10-38 

7.56x
10-5 

4.66x
10-16 

- 0.04 0.02 0.06 0.06 0.06 0.59 

 3 

Supplementary Table. 5 | MSI performance metrics on FoundationOne Dx CPTAC 4 

variants.  Performance values on the FoundationOne Dx filtered CPTAC external test dataset 5 

of attMIL and XGB predicting MSI. The p-values for corresponding model comparison are 6 

stated below the performances. (accuracy - acc, sens - sensitivity, spec - specificity) 7 

 acc F1 
score 

ROC 
AUC 

PR 
AUC 

sens spec TP FP TN FN 

attMIL 0.83±
0.10 

0.78±   
0.17  

1.00±   
0.00 

1.00± 
0.00 

0.67± 
0.20 

1.00±   
0.00 

16.00
±   
4.95 

0.00±   
0.00  

82.00
±   
0.00 

8.00±   
4.95  

XGB 0.59± 
0.06 

0.47± 
0.11 

0.72± 
0.04 

0.58± 
0.06 

0.63± 
0.26 

0.55± 
0.28 

14.60 
±6.02 

22.40 
± 
14.21  

27.60 
± 
14.21 

8.40± 
6.02 

p-value 7.94x
10-21 

0.06 2.88x
10-17 

- 0.85 0.02 0.6 0.06 0.06 0.06 

 8 

Supplementary Table. 6 | HRD performance metrics.  Performance values on the TCGA 9 

test dataset of attMIL and XGB predicting HRD. The p-values for corresponding model 10 

comparison are stated below the performances. (accuracy - acc, sens - sensitivity, spec - 11 

specificity) 12 

 acc F1 
score 

ROC 
AUC 

PR 
AUC 

sens spec TP FP TN FN 
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attMIL 0.80± 
0.01 

0.65± 
0.02 

0.88± 
0.01 

0.67± 
0.01 

0.74± 
0.06 

0.86± 
0.05 

33.40
± 2.88 

25.00
± 9.38 

159.0
± 9.38 

11.60
± 2.88 

XGB 0.75± 
0.02 

0.66± 
0.03 

0.86± 
0.01 

0.75± 
0.02 

0.52± 
0.03 

0.98± 
0.00 

25.40
± 1.52 

2.80± 
0.84 

183.2
0± 
0.84 

23.60
± 1.52 

p-value 1.07x
10-10 

0.51 0.72 - 0.003 0.049 0.06 0.06 0.06 0.06 
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Supplementary Methods 1 

Feature Catalogues for ML model 2 

To generate the SBS mutation catalogues, patient mutations were grouped by 96 SBS 3 

features, encompassing six mutation classes: C>A, C>G, C>T, T>A, T>C, T>G (including the 4 

reverse complement). Each class was further stratified by the adjacent 3’ and 5’ nucleotides. 5 

Since there are four possible options for the 3’ and 5’ positions, this results in 6 * 4 * 4 = 96 6 

features.  7 

For indel feature generation, mutations were grouped according to insertion or deletion length, 8 

repetition pattern, and a possible homology to flanking sites. For mononucleotide deletions of 9 

C or T (including complementary base), two classes were created, along with two classes for 10 

corresponding mononucleotide insertions. Additionally, four classes were defined based on 11 

repetition patterns for deletions and insertions. Each of these twelve initial subclasses was 12 

then subdivided into six subclasses based on the number of repeats deleted or inserted, 13 

resulting in 72 subclasses. Finally, four microhomology classes were assigned, describing 14 

mutations in which either the 3’ or 5’ flanking site has partial homology to the deletion 15 

sequence. These classes were further subdivided based on homology length, adding 11 16 

additional classes to the 72 remaining classes, resulting in a total of 83 indel classes. 17 

Multiple Instance Learning 18 

Multiple Instance Learning (MIL) is a deep learning framework designed to handle scenarios 19 

where labels are associated with sets of instances, referred to as "bags," rather than individual 20 

instances. In MIL, only a subset of instances within a bag contribute to the overall class 21 

prediction, while others may be irrelevant or unrelated. This makes MIL particularly suitable 22 

for contexts where identifying which instances are informative is inherently challenging or 23 

unknown [48] 24 
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Here, we applied MIL to model patient-level predictions, where each patient is represented as 1 

a "bag" containing multiple somatic mutations ("instances") [35,36]. Not all mutations 2 

contribute to the phenotype of interest (e.g., MSI or HRD), as some mutations may not be 3 

associated with the underlying mutational mechanisms driving these biomarkers. MIL allows 4 

the model to autonomously learn which mutations are most relevant by assigning attention 5 

weights to individual instances, rather than relying on predefined rules or human-curated 6 

knowledge. 7 
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Additional Files 1 

Additional file 1 | MSI status. Excel file in which the patient identifiers of TCGA and CPTAC 2 

patients with corresponding tissue type and MSI status is stored. 3 

Additional file 2 | HRD status. Excel file in which the patient identifiers of TCGA patients with 4 

corresponding information is stored. Information includes: tissue type, scar HRD scores with 5 

subscores (LST, LOH, TAI) and HRD status with cutoffs at 42 and tissue specific cutoffs. 6 

Additional file 3 | Tissue source sites. Excel file in which the tissue source site codes within 7 

the TCGA patient identifiers and their mapping to the actual source site is stored. 8 
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