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Abstract: Background and objectives: Enamel matrix derivative (EMD) is produced from developing
porcine tooth buds and represents a complex of low-molecular-weight hydrophobic enamel proteins.
EMD is widely applied in periodontal regeneration. Osteoclasts are multinuclear cells, which are
responsible for bone resorption. The precursors of osteoclasts, hematopoietic cells, undergo in vivo
the process of transendothelial migration before differentiation. EMD is known to affect the process of
osteoclastogenesis, but its effect on human osteoclasts precursors after the interaction with activated
endothelium was never studied. Materials and Methods: Human umbilical vein endothelial cells
(HUVECs)s were seeded in transwell inserts with a pore size of 8 µm and pre-activated by TNF-α and
IL-1β for 18 h. Peripheral blood mononuclear cells (PBMCs), freshly isolated from 16 periodontitis
patients and 16 healthy individuals, were added to pre-activated HUVECs. Adherent, non-adherent
and transmigrated cells were collected and differentiated to osteoclasts by the standard protocol in
the presence or absence of EMD. The number of osteoclasts was determined by tartrate-resistant acid
phosphatase staining. Results: PBMCs isolated from periodontitis patients have formed a significantly
higher osteoclast number compared to PBMCs isolated from healthy individuals (p < 0.05). EMD
induced concentration-dependent inhibition of osteoclast formation from PBMCs. This was true
for the different PBMC fractions isolated from both healthy individuals and periodontitis patients.
Conclusions: Our data show that EMD inhibits the formation and activity of osteoclasts differentiated
from the progenitor cells after the interaction with activated endothelium. This might be associated
with bone resorption inhibition and supporting bone regeneration in the frame of periodontal therapy.

Keywords: periodontitis; enamel matrix derivative; osteoclast

1. Introduction

Osteoclasts are multinuclear cells that originate from hematopoietic cells of the lineage
of monocytes and macrophages, which are responsible for bone resorption [1]. Human
osteoclast precursors are present in the peripheral blood mononuclear cells (PBMC) [2]. Dif-
ferentiation of osteoclasts precursor cells into mature osteoclasts is driven by macrophage
colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB (RANKL) [3].
Differentiation of PBMC into osteoclasts is a crucial process associated with bone loss in
periodontal disease [4,5]. Clinical studies show an increased number of osteoclasts in the
lesion sites in patients with advanced periodontitis. Several previous studies suggest that
PBMC isolated from patients with chronic periodontitis might spontaneously differentiate
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into active osteoclasts even without additional stimulation with M-CSF and RANKL [6–8].
Some studies report an increased osteoclast formation from PBMC isolated from periodon-
titis patients compared to healthy individuals [6,8]. In contrast, one study reports a lower
number of osteoclasts formed from PBMC of periodontitis patients upon stimulation with
M-CSF and RANKL compared to healthy controls [7].

Osteoclast precursor cells in blood need to migrate through the endothelial barrier to
the place of bone resorption. The migration of osteoclast precursors from circulating blood
into tissue is regulated by the endothelium underlying the inner surface of blood vessels.
Activation of endothelial cells by pro-inflammatory mediators, such as interleukin (IL)-1β
and tumor necrosis factor (TNF)-α results in an increased expression of adhesion molecules
by endothelial cells and promotes adhesion and transendothelial migration (TEM) of
osteoclast precursors [9]. PBMCs after TEM exhibit enhanced osteoclast formation and
bone-resorption activity upon stimulation with M-CSF and RANKL [10]. Both studies
show that PBMCs, which do not adhere to activated endothelium, cannot form osteoclasts.
The recruitment of osteoclast precursors by endothelial cells and subsequent osteoclasts
formation might reflect processes taking place during bone destruction due to inflammatory
diseases, such as periodontitis or periimplantitis.

Enamel matrix derivative (EMD) includes several low-molecular-weight hydrophobic
enamel proteins (≤20 kDa) originating from developing porcine tooth buds. The EMD-
based commercial product Emdogain (Straumann, Basel, Switzerland) has been successfully
used in clinics for many years to promote periodontal regeneration [11,12]. The influence
of EMD on biological processes seems to be based on the presence of bioactive compounds,
particularly amelogenin and amelogenin peptides with a molecular weight of 5, 9 and
12 kDa [13]. These peptides are involved in the process of teeth development and, together
with EMD’s ability to activate the TGF-β pathway, they account for the biological effects
of EMD [14,15]. The effect of EMD on the formation of osteoclasts was investigated only
in different small animal models and the results of these studies are rather controversial.
Some studies show that EMD stimulates osteoclasts formation in mice in vitro [16,17]. The
stimulation of osteoclast formation by EMD in the murine model seems to be mediated
by the TGF-β pathway [18]. In contrast to these observations, another study shows that
amelogenin, which is the main component of EMD, inhibited osteoclasts formation from
murine bone marrow cells [19]. No effect of EMD on osteoclasts activity was found by
application in rat femur [20]. However, to the best of our knowledge, to date, there is
no study on the effect of EMD on osteoclast formation in humans. In the present study,
we investigated the effect of EMD on osteoclast formation from PBMC of periodontitis
patients and healthy individuals. Peripheral blood was isolated from periodontitis patients
and healthy individuals. Human umbilical vein endothelial cells were activated by IL-1β
and TNF-α and the osteoclast precursor cells were isolated through two different criteria:
adherence to activated HUVECs and transendothelial migration. Osteoclast formation from
osteoclast precursors was induced by incubation with MCF-S, RANKL and dexamethasone
in the presence or absence of different concentrations of EMD. Osteoclast formation was
quantified by tartrate-resistant acid phosphatase (TRAP) staining.

2. Materials and Methods
2.1. Patient Selection

The study protocol was approved by the Ethics Committee of the Medical University
of Vienna (Protocol No.: 273/2006, approved on 23 July 2006). This cross-sectional study
included 16 periodontitis patients (11 men and 5 women) and 16 periodontally healthy
volunteers (10 men and 6 women). Clinical history was recorded for all participants (per-
sonal data and medical history). All participants were thoroughly informed about the
aims and methods of the study and gave informed written consent. The patient group
consisted of periodontitis patients recruited at the Division for Conservative Dentistry
and Periodontology, University Clinic of Dentistry, Medical University of Vienna. The
following exclusion criteria were applied: the presence of any systemic disease (e.g., dia-
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betes mellitus, asthma and malignancies), acute infection, periodontal treatment within the
last three months, immune-suppressive medication or immunodeficiency, heavy smokers
(more than 10 cigarettes/day), xerostomia or any other disease of the salivary glands,
less than 20 teeth, pregnancy or lactation, history of radio- or chemotherapy, intake of
antibiotics, immunomodulatory and anti-inflammatory drugs during 3 months prior to
the study. Every participant underwent a panoramic radiographic examination. Bone loss
in the periodontitis groups was additionally evaluated with intra-oral radiographs. For
periodontal diagnostics, among others, probing pocket depth (PPD), clinical Attachment
Level (CAL) and bleeding on probing (BoP) were recorded at 6 sites per tooth by experi-
enced periodontists at the Department of Periodontology. The periodontitis patients group
included subjects with generalized (≥30% affected sites) periodontitis Stage III or IV (loss
of supporting bone extending to the middle or apical third of the root) Grade A, B or C [21].
The control group was recruited from colleagues, relatives and acquaintances as well as
periodontal healthy clinical patients. Periodontal health was confirmed according to the
2018 classification of periodontal health [22]. In the healthy group, periodontal screening
index was 0, 1 or 2 and the intact alveolar bone hight was verified in an panoramic x-ray.

2.2. HUVECs Culture and PBMCs Isolation

Human umbilical vein endothelial cells (HUVECs) were cultured in endothelial cell
medium (ECM) supplemented with 100 µg/mL streptomycin, 100 U/mL penicillin, 2 mM
L-glutamine, 0.25 µg/mL fungizone, 5 U/mL heparin, 30–50 µg/mL endothelial cell
growth supplement and 20% fetal calf serum (FCS) [13]. HUVECs were cultured in culture
flasks coated with 0.2% gelatin at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air.

Whole blood (40 mL) was collected from patients with severe, generalized periodontal
disease and healthy volunteers as controls. The vacutainers contained lithium heparin.
Patients with systemic diseases and smokers were excluded. PBMCs were isolated by
density gradient centrifugation and washed twice with HBSS and resuspended in α-MEM
supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, penicillin 100 U/mL
and streptomycin 100 µg/mL (PBMC medium).

2.3. Isolation of Adherent and Non-Adherent Fractions

The experimental model of PBMC differentiation into osteoclasts after co-culture
with activated endothelial cells was established in our laboratory. In these experiments,
HUVECs were seeded at a density of 5 × 105 cells per well in 10 mL of ECM in Petri dishes
coated with 0.2% gelatin. 24 h after the seeding, HUVECs were pre-activated by 25 ng/mL
human recombinant tumor necrosis factor (TNF)-α (PeproTech, Rocky Hill, NJ, USA) and
10 U/mL human recombinant interleukin (IL)-1β (PeproTech, Rocky Hill, NJ, USA) for 18 h.
Afterward, HUVECs were rinsed twice with PBS and then 50 × 106 freshly isolated PBMCs
were added to each Petri dish. After 90 min incubation, non-adherent PBMC fractions were
collected from the Petri dish. Adherent PBMC fraction was separated from endothelial
cells by magnetic-activated cell sorting (MACS) by negative selection using human CD31
magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) to separate endothelial
cells. Both non-adherent and adherent fractions of PBMCs were used for the generation
of osteoclasts.

2.4. Trans-Endothelial Migration of PBMCs

The experiments on trans-endothelial migration of PBMCs were designed according
to the previously described report [10]. Transwell inserts (8 µm, Sarstedt, Nürnbrecht,
Germany) were pre-coated with 0.2% gelatin and 1 × 105 HUVECs were seeded on them in
3ml of ECM medium. After 24 h, the media were changed into ECM media supplemented
with 25 ng/mL TNF-α and 10 U/mL IL-1β (PeproTech, Rocky Hill, NJ, USA) and the cells
were stimulated for 18 h. After stimulation, the inserts were washed twice with PBS, placed
into 6 well plates and 5 × 106 freshly isolated PBMCs were added. The migration was
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allowed to proceed for 3 h at 37 ◦C. Trans-migrated PBMCs were collected, pulled, counted
and used for the osteoclasts differentiation assay.

2.5. Generation of Osteoclast-Like Cells from Different PBMCs Fraction

PBMC were plated out at 5 × 105 cells/well in 96 well plates. Cells were cultured at
37 ◦C for 21 days in Osteoclast medium (PBMC medium supplemented with 30 ng/mL of
RANKL, 25 ng/mL of macrophage-colony stimulating factor and 10 nM dexamethasone).

Lyophilised EMD powder (Straumann, Basel, Switzerland) was dissolved in 0.1%
acetic acid to obtain the solution with a stock concentration of 10 mg/mL. A concentration
series of EMD was prepared by diluting the stock solution to concentrations of 100 µg/mL,
10 µg/mL, 1 µg/mL, 100 ng/mL and 10 ng/mL with osteoclasts medium. Half of the
medium was changed three times per week. Additionally, three controls were performed
(A: PBMC-Medium, B: Osteoclast medium, C: Vehicle control with 0.01% acetic acid in
osteoclast medium).

On day 21, osteoclast cell formation was determined. Adherent cells were fixed with
a fixative solution for 10 min. After washing two times with a distilled water, cells were
stained for tartrate-resistant acid phosphatase (TRAP) using a commercially available
histochemical kit. TRAP+ multinuclear cells containing three or more nuclei were counted
as osteoclasts.

2.6. Statistical Analysis

The Kolmogorov–Smirnov test was used to confirm a normal distribution. The differ-
ences in the number of osteoclasts between healthy individuals and periodontitis patients
were analyzed using a t-test. In the experiments with the different EMD concentrations,
the differences between groups were analyzed by ANOVA for repeated measures fol-
lowed by the LSD-post-hoc test. The software SPSS 22.0 (IBM, Armonk, NY, USA) was
used for the statistical analysis. p values < 0.05 were considered to be statistically signifi-
cant. Data are presented as means ± SD. In the experiments with adherent cells, PBMCs
were isolated from 8 healthy individuals and 9 periodontitis patients. In the experiments
with transendothelial migration, PBMCs were isolated from 8 healthy individuals and
7 periodontitis patients.

3. Results
3.1. Study Participants’ Demographical Characteristics and Clinical Parameters

Clinical parameters of periodontitis patients and demographic characteristics of all
study participants are summarized in Table 1.

Table 1. Demographic characteristics and clinical parameters of study groups. Data are presented as
mean ± SD. TEM, trans-endothelial migration; PPD, probing pocket depth; BoP, bleeding on probing.
PPD and BoP were calculated based on the data measured at 6 sites of each present tooth.

Adhesion Experiments TEM Experiments

Healthy, n = 8 Periodontitis, n = 9 Healthy, n = 8 Periodontitis, n = 7

Age, years 37.5 ± 10.5 43.8 ± 7.0 45.1 ± 9.7 48.7 ± 6.0

Gender, m/f 5/3 7/2 5/3 4/3

PPD, mean, mm 3.66 ± 0.49 3.60 ± 1.10

PPD, range, mm 0–3 0–10 0–3 0–12

BoP, % 35.8 ± 27.2 45.0 ± 32.9

3.2. Osteoclasts-Like Cells in Different PBMCs Fraction Isolated from Healthy Individuals and
Periodontitis Patients

The exemplary TRAP staining and the number of TRAP+ multinucleated cells differen-
tiated from the different fractions of PBMCs isolated from periodontitis patients and healthy
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individuals are shown in Figures 1 and 2, respectively. Adherent and trans-migrated cells
isolated from periodontitis patients exhibited a significantly higher number of osteoclast-like
cells compared to healthy individuals. No difference in the number of osteoclast-like cells
between periodontitis and control groups was observed for non-adherent PBMC fraction.
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Figure 1. Exemplary tartrate-resistant acid phosphatase(TRAP) staining. Osteoclasts were differenti-
ated from adherent PBMCs of periodontitis patient in the presence of RANKL, macrophage-colony
stimulating factor and dexamethasone for 21 days and stained with TRAP. Positively stained cells
with ≥3 nuclei were considered as osteoclasts. The photo has been taken under a microscope (Eclipse
TS100, Nikon, Germany) using Optocam-II camera (Optoteam, Germany) at 20× magnification. Scale
bar corresponds to 200 µm.
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Figure 2. The number of TRAP+ multinucleated cells differentiated from the different fractions
of peripheral blood mononuclear cells (PBMCs) isolated from periodontitis patients and healthy
individuals. Y-axis represents the number of TRAP+ multinucleated cells. Data are presented as
mean ± SD of 9 periodontitis patients and 8 healthy individuals (adherent, non-adherent fractions)
or 7 periodontitis patients and 8 healthy individuals (migrated fractions). #-significantly different
between periodontitis patients and healthy individuals.

3.3. Effect of EMD on the Number of Osteoclast-Like Cells in Different PBMCs’ Fractions

The effect of different concentrations of EMD on the number of osteoclast-like cells
differentiated from adherent, non-adherent and migrated fractions of PBMCs is shown
in Figures 3–5, respectively. In all fractions, EMD induced a dose-dependent decrease in
the number of TRAP+ multinucleated cells. In HUVECs-adherent PBMCs, statistically
significant differences compared to controls (control and vehicle control) were observed for
100 µg/mL of EMD in both periodontitis patients and healthy individuals. Additionally, in
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periodontitis patients, 1 µg/mL of EMD induced a significantly lower number of osteoclasts
compared to the control. EMD at the concentration of 100 µg/mL induced a significant
decrease in the number of osteoclast-like cells compared to both control and vehicle control
in non-adherent PBMCs. In transmigrated PBMC, a significant decrease in the number
of osteoclast-like cells was observed after treatment with 10–100 µg/mL of EMD in both
periodontitis patients and healthy individuals.
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Figure 3. The effect of enamel matrix derivative (EMD) on the formation of osteoclast-like cells
from human umbilical vein endothelial cells (HUVECs)-adherent PBMCs. HUVECs were pre-
activated with 25 nM TNF-α and 10 U/mL IL-1β and co-cultured with freshly isolated PBMCs. A
HUVECs-adherent fraction of PBMCs was isolated by magnetic separation and used for osteoclast-
formation assay in the presence of different EMD concentrations. Cells treated with 0.01% of acetic
acid were used as vehicle control (V-Co). Cells without EMD treatment were used as control (Co).
Y-axis represents the number of TRAP+ multinucleated cells. Data are presented as mean ± SD of
9 periodontitis patients (A) and 8 healthy individuals (B). *-significantly different compared to V-Co;
†-significantly different compared to Co.
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Figure 4. The effect of EMD on the formation of osteoclast-like cells from PBMCs non-adherent
to pre-activated HUVECs. HUVECs were pre-activated with 25 nM TNF-α and 10 U/mL IL-1β
and co-cultured with freshly isolated PBMCs. Non-adherent PBMCs were collected and used for
osteoclast-formation assay in the presence of different EMD concentrations. Cells treated with 0.01%
of acetic acid were used as vehicle control (V-Co). Cells without EMD treatment were used as control
(Co). Y-axis represents the number of TRAP+ multinucleated cells. Data are presented as mean ± SD
of 9 periodontitis patients (A) and 8 healthy individuals (B). *-significantly different compared to
V-Co; †-significantly different compared to Co.
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Figure 5. The effect of EMD on the formation of osteoclast-like cells from PBMCs after trans-
endothelial migration. HUVECs were seeded on Transwell inserts with 8 µM pore size and pre-
activated with 25 nM TNF-α and 10 U/mL IL-1β. Freshly isolated PBMCs were applied into Transwell
inserts, transmigrated PBMCs were collected for 3 h and used for osteoclast-formation assay in the
presence of different EMD concentrations. Cells treated with 0.01% of acetic acid were used as vehicle
control (V-Co). Cells without EMD treatment were used as control (Co). Y-axis represents the number
of TRAP+ multinucleated cells. Data are presented as mean ± SD of 7 periodontitis patients (A)
and 8 healthy individuals (B). *-significantly different compared to V-Co; †-significantly different
compared to Co.

4. Discussion

Osteoclasts play a crucial role in the bone loss observed in periodontitis, periimplantitis
and other inflammatory diseases [23,24] and derive from cells of the monocyte lineage
present in the bone marrow and peripheral blood [25]. Previous studies have shown that
PBMCs isolated from the peripheral blood of periodontitis patients might differentiate in
osteoclasts even in the absence of MCS-F and RANKL. Still, in the presence of these factors,
no differences were observed between healthy and periodontitis groups [6,7]. Furthermore,
osteoclasts derived from PBMCs of periodontitis patients exhibit higher bone resorption
activity [6–8]. In our study, the differentiation of PBMCs into osteoclasts was induced in the
presence of MCS-F and RANKL. However, in contrast to previous studies, the formation
of osteoclasts in PBMCs of periodontitis patients was higher for the adherent and trans-
migrated fractions of PBMCs. Only for the non-adherent PBMCs fractions, no differences
between periodontitis patients and healthy individuals were observed. It should be noted
that previous studies did not observe the osteoclast formation from non-adherent PBMCs’
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fraction [9,10], which is in contrast to our data. This discrepancy can be explained by
different types of endothelial cells as well as various activation protocols.

The difference in osteoclast formation in different PBMCs’ fractions can be explained
by the fact that the interaction of PMBCs with activated endothelium changes their com-
position. Activation of endothelial cells with pro-inflammatory cytokines upregulates the
expression of adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1),
vascular adhesion molecule 1 (VCAM-1) and E-selectin [26]. These molecules regulate
the adhesion of different PBMCs’ subsets to endothelial cells. Particularly, activated en-
dothelial cells promote the adhesion of CD14+ monocytes, CD16+ natural killer cells,
CD4+ CD45RA- memory T cells, but not naïve CD4+CD45+ T cells [27,28]. PBMCs after
trans-endothelial migration also exhibit a higher proportion of CD14+ monocytic cells [10].
Different proportions of CD14+ cells might explain our observation that the absolute num-
ber of osteoclast-like cells was higher for adherent and trans-migrated PBMCs than for
non-adherent PBMCs.

We have found that EMD inhibits the formation of osteoclast-like cells in a concentration-
dependent manner. This finding contradicts the existing literature: previous studies show
the stimulatory effect of EMD on osteoclasts formation [16,17]. The essential difference be-
tween our and previous studies is different cell sources. In our study, osteoclasts were gen-
erated from human PMBCs, whereas other studies used mouse bone marrow macrophages.
The generation of osteoclasts from humans and mice requires different protocols [29],
which might account for the different results.

The major component of EMD is amelogenin [30]. In addition, EMD contains TGF-
β like activity [31,32]. Amelogenin is shown to inhibit the osteoclasts formation from
murine bone marrow cells [19] and suppress root resorption, RANKL production and
osteoclast formation in vivo in a rat model [33]. TGF-β is known to stimulate the formation
of osteoclasts in mice [34], but a recent study has shown that TGF-β suppresses RANKL-
induced human osteoclasts development from PBMCs [35]. Therefore, the suppressive
effect of EMD on the formation of osteoclast-like cells observed in our study could be due
to both amelogenin and TGF- β activity.

Interestingly, some quantitative differences in the effect of EMD were observed be-
tween the different PBMCs fractions. Particularly trans-migrated PBMCs were more sensi-
tive to EMD compared to adherent and non-adherent fractions. In trans-migrated PBMCs,
the inhibitory effect of EMD was observed starting from 1 µg/mL of EMD, whereas, in
adherent and non-adherent fractions, the inhibitory effect was observed only at 100 µg/mL
of EMD. This difference could be explained by the differences in the composition of differ-
ent PBMCs fractions. In addition, trans-endothelial migration might alter the properties of
PBMCs and their susceptibility to the different biologically active compounds. However,
these assumptions need to be further confirmed experimentally.

Periodontitis is an inflammatory disease characterized by alveolar bone resorption
and subsequent pocket formation. Osteoclasts are essential for periodontal bone resorption
and their development and activity are regulated by numerous inflammation-associated
factors, particularly RANKL and M-CSF. The goals of periodontal therapy are to eliminate
inflammation, stop bone loss and achieve periodontal regeneration. EMD demonstrated its
regenerative capacity for periodontal tissues and bone in many clinical and experimental
studies [36], but its effects on osteoclasts and the RANKL- and OPG- pathways have not
yet been investigated [16,37]. Our data show that EMD might inhibit bone resorption by
inhibiting osteoclast formation, but the clinical relevance of this EMD effect should be
further confirmed.

The major limitation of this study is its in vitro character and using a relatively low
participant number. Osteoclasts were identified only based on the presence of at least
three nuclei and positive TRAP staining, but we did not determine the bone-resorbing
activity of osteoclasts. Such activity was not determined because of a rather limited number
of PBMCs obtained after interaction with activated endothelium. The fusion of several
macrophages can lead to the formation of multinucleated giant cells [38] and the bone-
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resorbing activity is a major factor to distinguish the osteoclasts from them [39]. However,
since we used a common protocol for osteoclasts generation in the presence of RANKL and
M-CSF, the presence of multinucleated giant cells or fused macrophages in our samples is
not very likely.

5. Conclusions

In our study, we found that PBMCs isolated from periodontitis patients have formed
a significantly higher number of osteoclast-like cells compared to PBMCs isolated from
healthy individuals. Furthermore, our data show that EMD inhibits the formation of
osteoclast-like cells differentiated from PBMCs cells after the interaction with activated
endothelium in a dose-dependent manner. This additional osteoclast-inhibiting effect of
EMD might be beneficial in the inhibition of bone resorption in the frame of periodontal
therapy. However, the clinical relevance of this EMD effect should be confirmed in further
in vivo studies.
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