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ABSTRACT: Molecular docking is a key in silico method used
routinely in modern drug discovery projects. Although docking
provides high-quality ligand binding predictions, it regularly fails to
separate the active compounds from the inactive ones. In negative
image-based rescoring (R-NiB), the shape/electrostatic potential
(ESP) of docking poses is compared to the negative image of the
protein’s ligand binding cavity. While R-NiB often improves the
docking yield considerably, the cavity-based models do not reach
their full potential without expert editing. Accordingly, a greedy
search-driven methodology, brute force negative image-based
optimization (BR-NiB), is presented for optimizing the models
via iterative editing and benchmarking. Thorough and unbiased
training, testing and stringent validation with a multitude of drug
targets, and alternative docking software show that BR-NiB ensures excellent docking efficacy. BR-NiB can be considered as a new
type of shape-focused pharmacophore modeling, where the optimized models contain only the most vital cavity information needed
for effectively filtering docked actives from the inactive or decoy compounds. Finally, the BR-NiB code for performing the automated
optimization is provided free-of-charge under MIT license via GitHub (https://github.com/jvlehtonen/brutenib) for boosting the
success rates of docking-based virtual screening campaigns.

■ INTRODUCTION
Despite the pivotal role of molecular docking in protein
structure-based drug discovery,1−4 the docking-based screen-
ing often falls short of expectations. The problem is not
necessarily the inadequacies of docking sampling; instead, the
default scoring cannot rank the bioactive binding poses at the
top and, thus, effectively identify the active ligands. Several
rescoring, consensus scoring, or force field-based post-
processing methodologies aim to fix the problem, but, so far,
their successes have been case specific or costly.5−9

A potential solution to this persistent problem is to score
accurately the shape complementarity between the docked
ligand and its target protein’s binding cavity.10−12 Negative
image-based rescoring (R-NiB; Figure 1) is a cavity-based
docking rescoring methodology that takes on this challenge by
focusing squarely on the shape/electrostatic potential (ESP)
complementarity.13 R-NiB has been shown to improve the
yields with several docking algorithms (e.g., DOCK,14

GLIDE,15,16 or PLANTS17) and multiple drug targets, such
as neuraminidase (NEU) and retinoid X receptor alpha
(RXRα; Figure 1A).18

R-NiB can be performed using free/academic software from
start to finish following a straightforward workflow. First, the
binding poses of ligands are sampled flexibly against the
target’s cavity using a docking algorithm (Figure 1C,D).
Second, a negative image-based (NIB) model (Figure 1B) is

generated in a mirror image of the cavity using PANTHER19

-cavity detection/filling software that was developed for cavity-
based rigid docking or NIB screening.20 Third, the shape/ESP
of the NIB model, containing partially negative, positive, and
neutral cavity atoms (Figure 1D), is compared against the
docking poses using the similarity comparison algorithm
SHAEP21 (Figure 1E). R-NiB typically elicits a decent or
excellent docking performance (Figure 1F),22 but the model
fitness can be improved massively by adjusting the settings or
via manual editing.13,18,22 Usually, the PANTHER-generated
NIB models contain at least a few “extra” cavity atoms that are
not providing optimal shape/ESP for the filtering of active
ligands from the “inactive” decoys and, thus, the models can be
improved by removing some of them. Regardless, it can be
perplexing why the removal of a few atoms makes or breaks the
rescoring. The aim of this study was to make the model
optimization both thorough and automatic following the initial
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Figure 1. Negative image-based rescoring. (A) Ligand binding cavity of RXRα (gray cartoon; PDB: 1MV923) with a co-crystallized agonist (yellow
stick model). (B) NIB model against the cavity cross-section (gray surface). The NIB model, depicting the key cavity shape/electrostatic potential
features, is composed of negative (O; red), positive (N; blue), and neutral (C; black) cavity atoms (spheres). (C) Overlay of docking poses are
shown for seven active ligands (magenta stick models), where (D) co-crystallized agonist is bound. (E) Best (green) and worst (red) shape/
electrostatic matches for two docked actives (stick models) are shown with the NIB model (cyan surface). (F) Receiver operating characteristic
(ROC) curves show that the R-NiB (red line) boosts the docking yield (blue line).

Figure 2. Brute force negative image-based optimization. (A) During the first generation (Gen #1) of the optimization, each cavity atom is
removed from the initial NIB model (Gen #0) one at the time to generate eight new seven-atom variants. If one of the variants improves
enrichment (node boxed green) more than the other variants or the input in docking rescoring, it is used as the input for another round of editing/
benchmarking. Here, the iteration goes through Gens #2−4 as the enrichment improves, and none of the last variants (Gen #5 = Gen #X)
improves on the best model (Gen #4; node with a green background). (B) Atom composition evolution is shown for retinoid X receptor alpha for
the input (Gen #0), mid-point (Gen #11), and fully optimized (Gen #23) NIB models. The rescoring with the final model (red line) is superior to
docking (blue line), as seen in the ROC curves (x axis logarithmic). (C) Optimization protocol includes testing and potentially even validation
prior to the virtual screening usage.
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docking and NIB model generation (Figure 2; Videos S1 and
S2).
Machine learning techniques are emerging for both

compound-centric and structure-based computer-aided drug
discovery.24−27 However, due to the ultra-fast speed of R-NiB
(∼2−4 ms/cmpd.),13 the optimization could be performed via
a greedy search-driven method labeled here as brute force
negative image-based optimization (BR-NiB; Figure 2).28 In
BR-NiB, the effect of each cavity atom on the NIB model
(Figure 1B) is evaluated systematically by iterative removal and
rescoring (Figure 2; Videos S1 and S2). In pruning, the atoms
are removed one at a time and the fitness of each new (-1
atom) model variant is tested with SHAEP21 using the docked
training set. In branching, the model producing the best
enrichment goes into the next round of iterative removal and
rescoring (Figure 2). Although not all permutations are tested
in this heuristic scheme, the greedy search is repeated for as
many generations as the yield improves (Figure 2).
BR-NiB (Figure 2) was tested thoroughly with seven

Database of Useful (Docking) Decoys-Enhanced (DUD-E)

database29 sets for finding the best optimization practices
(Table S1 in the Supporting Information). Likewise, seven
equivalent DUD30 sets were tested. To increase the target
diversity and vary database design, extra testing was done with
10 Maximum Unbiased Validation (MUV31) sets, 5 more
DUD-E sets, 5 DUDE-Z sets, and 5 Extrema sets.32 In docking
rescoring or testing, the optimized NIB models improved the
overall enrichment consistently and substantially; importantly,
the early enrichment was typically massively boosted. Although
BR-NiB is scalable to supercomputers, in most cases, it can be
performed with moderately sized training sets using a desktop
computer. Moreover, the effectiveness of BR-NiB is not
docking algorithm-specific, and the optimized models can even
be cross-used effectively. Finally, the optimized models for two
DUD-E targets were validated with newly crafted validation
sets, in which minute amounts of active ligands at varying
potency levels were mixed into an enormous drug-like small-
molecule library. The success in this validation step, having
extremely low odds of finding hits by chance, demonstrates

Table 1. Docking and Brute Force Negative Image-Based Rescoring with the Test Setsa

train/testb methodc yield COX2 RXRα MR NEU PDE5 ER PPARγ

100:100 docking AUC 0.66 ± 0.01 0.77 ± 0.02 0.55 ± 0.03 0.85 ± 0.02 0.78 ± 0.01 0.74 ± 0.01 0.85 ± 0.01

EFd 1% 5.7 11.5 3.2 4.1 11.3 21.7 24.2

EFd 5% 21.6 37.4 19.1 32.7 28.1 36.6 57.0

BR20 0.22 0.35 0.17 0.29 0.28 0.36 0.49

BR-NiB AUC 0.78 ± 0.01 0.97 ± 0.01 0.72 ± 0.03 0.97 ± 0.01 0.82 ± 0.01 0.81 ± 0.01 0.83 ± 0.01

EFd 1% 32.2 77.9 33.0 82.7 20.1 40.9 25.8

EFd 5% 52.2 91.6 48.9 91.8 41.0 54.6 52.7

BR20 0.50 0.87 0.49 0.89 0.39 0.55 0.47

BR-NiB + shape only AUC 0.83 ± 0.01 0.86 ± 0.02 0.73 ± 0.03 0.96 ± 0.01 0.87 ± 0.01 0.68 ± 0.02 0.85 ± 0.01

EFd 1% 38.5 48.1 30.9 77.6 27.6 33.4 38.4

EFd 5% 57.5 71.8 40.4 87.8 50.8 43.9 58.3

BR20 0.57 0.66 0.42 0.85 0.46 0.44 0.57

70:30 docking AUC 0.66 ± 0.02 0.77 ± 0.03 0.53 ± 0.04 0.85 ± 0.03 0.77 ± 0.02 0.77 ± 0.02 0.85 ± 0.01

EFd 1% 5.5 12.1 1.5 2.9 10.8 28.2 21.2

EFd 5% 19.5 37.4 15.4 32.4 27.0 34.8 61.0

BR20 0.20 0.35 0.14 0.29 0.27 0.42 0.50

BR-NiB AUC 0.79 ± 0.02 0.98 ± 0.02 0.77 ± 0.05 0.93 ± 0.03 0.82 ± 0.02 0.82 ± 0.02 0.81 ± 0.02

EFd 1% 35.9 82.5 31.0 56.7 15.0 38.2 28.8

EFd 5% 49.2 92.5 48.3 76.7 40.0 56.4 49.3

BR20 0.50 0.86 0.47 0.73 0.35 0.53 0.46

BR-NiB + shape only AUC 0.82 ± 0.02 0.86 ± 0.04 0.74 ± 0.05 0.93 ± 0.03 0.87 ± 0.02 0.69 ± 0.03 0.83 ± 0.02

EFd 1% 36.7 50.0 37.9 66.7 18.3 28.2 38.4

EFd 5% 56.3 72.5 44.8 83.3 41.7 47.3 54.1

BR20 0.54 0.69 0.49 0.79 0.41 0.46 0.54

10:90 docking AUC 0.67 ± 0.02 0.77 ± 0.03 0.56 ± 0.03 0.85 ± 0.03 0.77 ± 0.01 0.73 ± 0.02 0.85 ± 0.01

EFd 1% 5.6 13.6 3.5 3.4 10.9 22.6 23.9

EFd 5% 22.2 39.8 17.6 31.5 28.4 36.8 56.4

BR20 0.21 0.37 0.17 0.28 0.28 0.36 0.49

BR-NiB AUC 0.77 ± 0.01 0.95 ± 0.01 0.80 ± 0.03 0.93 ± 0.02 0.75 ± 0.01 0.66 ± 0.02 0.81 ± 0.01

EFd 1% 30.2 72.0 11.8 56.2 5.3 33.9 11.9

EFd 5% 50.5 84.7 38.8 75.3 20.1 44.6 42.4

BR20 0.48 0.80 0.34 0.71 0.20 0.45 0.37

BR-NiB + shape only AUC 0.82 ± 0.01 0.68 ± 0.03 0.73 ± 0.03 0.92 ± 0.02 0.79 ± 0.01 0.75 ± 0.02 0.81 ± 0.01

EFd 1% 39.6 22.0 16.5 49.4 14.8 30.7 24.1

EFd 5% 57.5 34.7 35.3 69.7 37.0 45.2 42.0

BR20 0.55 0.36 0.34 0.66 0.33 0.46 0.42
aThe best values are underlined. The rescoring values are shown in bold and italics, if improved in comparison to the docking of each set (70, 30,
10, or 90%). Only those AUC values that are outside the error margin are highlighted. The Wilcoxon statistic34 was used for the AUC error
estimation. bTraining/test set ratios (100:100, 70:30, and 10:90): the percentage of ligands used in the training (100, 70, and 10%) in relation to
the percentage used in the testing (100, 30, and 90%). cMethods: flexible docking (PLANTS) and BR-NiB either with the equal shape/ESP (0.5/
0.5) weight or the shape only (1.0/0.0).
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that BR-NiB has real potential in helping actual drug discovery
projects.
In summary, if a reliable training set and a high-quality target

protein 3D structure are available, the BR-NiB-optimized
models present a tangible way for improving the effectiveness
of docking-based virtual screening campaigns via ultra-fast
rescoring.

■ RESULTS

Using Greedy Search to Boost Negative Image-Based
Rescoring. Negative image-based rescoring (Figure 1)
produces excellent or at least moderate enrichment for docking
(Gen #0 in Tables S2−S3).13,18 Although the NIB models can
be tested prior to their docking screening use, as it stands, the
R-NiB protocol does not include optimization steps assuring
consistently excellent yields.18,22 The goal was to develop fast
and easy-to-use method for optimizing the models by utilizing
the categorical active/inactive ligand sets in a systematic and
yet cost-effective manner. In BR-NiB (Figure 2; Videos S1 and
S2), the effect of each cavity atom is estimated by removing
them systematically from the model and then benchmarking
each new (-1 cavity atom) model variant. By automating the
optimization, BR-NiB takes full advantage of the ultra-fast
SHAEP rescoring and the existing compound activity data.
Selecting the Target Metric for the Optimization. BR-

NiB promotes the removal of those cavity atoms that improve
the selected target enrichment metric at any given iteration
until the improvement halts (Gen #X in Figure 2; Video S1).
Three target metrics, including area under the curve (AUC),
early enrichment factor 1% (EFd 1%), and Boltzmann-
enhanced discrimination of the receiver operating character-
istic (BEDROC)33 with alpha value 20 (BR20) were tested
using four test sets (Tables S1 and S4), including compounds
that are in either active or “inactive” decoy category. Each
metric worked better or worse on certain targets than with
others. The EFd 1% is the most ill-suited metric for guiding
BR-NiB because it is sensitive to changes at the very top of the
ranking list and to the size of the training set. As target metrics,
AUC or BR20 produce a better overall enrichment than EFd
1% because they allow the models to undergo larger
transformations during the greedy search without getting
hung up on losing a few actives from the top. Because BR20
produced the best overall results on early enrichment (Table
S4), it was chosen as the default target metric for the testing.
When plotted against the BR-NiB generations, BR20 acquired

smooth gradual improvement; meanwhile, the upward curves
of the non-target metrics are more jagged (Figures S2−S3).

Model Optimization Ensures Consistent Docking
Performance Improvement. The proof-of-concept testing
of BR-NiB was performed using seven established DUD-E test
sets including cyclooxygenase-2 (COX2), retinoid X receptor
alpha (RXRα), mineralocorticoid receptor (MR), NEU,
phosphodiesterase 5 (PDE5), estrogen receptor (ER), and
peroxisome proliferator-activated receptor gamma (PPARγ)
(Table S1). First, the input NIB models were trained using the
complete compound sets using BR20 as the target metric. This
naiv̈e approach (100:100 training/test set), lacking random
training/test set division, served as a trial run for BR-NiB.
Likewise, the naiv̈e testing was repeated for the equivalent but
considerably smaller DUD database sets (Table S5).30 Second,
to avoid bias, the active and “inactive” decoy ligands were
divided randomly into training and test sets (Table S1, Figure
2). Two ratios were applied: (1) the 70:30 ratio of training/
test sets represents a situation in which there exists a wealth of
data for the model training and (2) the 10:90 ratio represents a
situation in which the available set is considerably smaller (e.g.,
nine actives with MR).
BR-NiB treatment improved on docking or R-NiB rescoring

yields consistently with both training (Table S6) and test sets
(Table 1; Figures S3−S9). More importantly, the improve-
ment of AUC and EFd values indicate that the model fitness
could be enhanced both regarding the overall and early
enrichment. At its best, the EFd 1% improvement with
100:100 and 70:30 training/test set division surpassed the
original docking over 20-fold (e.g., 100:100 NEU set with the
50/50 shape/ESP weight; 70:30 MR set with the only shape
score). The EFd 1% improvement of BR-NiB over docking
varied between 1.3- and 25.3-fold (excluding PPARγ), while
the BR20 values acquired only 1.2- to 3.1-fold increase. The
optimization worked best when relying only on the shape
similarity for COX2, PDE5, and PPARγ (black lines in Figures
S8−S9; Table 1).
BR-NiB improved on the docking yield also for the 10:90

sets regarding both training (Table S6) and testing (Table 1).
The EFd 1% improvement varied between 1.4- and 16.5-fold
and BR20 between 1.1- and 3.5-fold (Table 1; Figures S8−S9).
In comparison to straight-up R-NiB (Gen #0 in Tables S2−
S3), BR-NiB provided 1.2-fold to 7.6-fold (10:90 MR and
100:100 NEU sets with the only shape, respectively) and 1.1-
to 2.0-fold (e.g., 70:30 RXRα and 100:100 MR sets with the
50/50 shape/ESP weight) improvement in EFd 1%. On

Table 2. Extra Test Set Results on Five DUD-E Targets and the Alternative PPARγ Structurea

train/testb methodc yield AKT1 DRD3 ACES COMT FAK1 PPARγd

70:30 docking AUC 0.70 ± 0.03 0.60 ± 0.03 0.39 ± 0.02 0.68 ± 0.08 0.80 ± 0.05 0.83 ± 0.02
EFd 1% 5.7 0.7 0.0 7.7 20.0 18.4
EFd 5% 22.7 6.3 2.9 23.1 36.7 46.9
BR20 0.25 0.06 0.03 0.22 0.38 0.42

BR-NiB AUC 0.81 ± 0.03 0.79 ± 0.02 0.69 ± 0.03 0.67 ± 0.08 0.95 ± 0.03 0.86 ± 0.02 (0.85 ± 0.02)
EFd 1% 20.5 25.7 18.4 15.4 73.3 43.8 (38.4)
EFd 5% 53.4 47.9 33.1 30.8 83.3 61.0 (58.9)
BR20 0.46 0.45 0.32 0.30 0.83 0.59 (0.57)

aThe best values are shown in bold and italics for the test sets (30%). Only those AUC values that are outside the error margin are highlighted. The
Wilcoxon statistic32 was used for the AUC error estimation. An alternative protein 3D structure (PDB: 2GTK) was used for PPARγ docking and
BR-NiB optimization. bTraining/test set ratio (70:30): the percentage of ligands used in the training (70%) in relation to the percentage used in
the testing (30%). cMethods: flexible docking (PLANTS) and BR-NiB with the equal shape/ESP (0.5/0.5) weight. dThe shape only (1.0/0.0 of
shape/ESP) weight of scoring results is shown in parentheses for PPARγ.
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average, BR-NiB improved the AUC values of docking from
0.74 to 0.83 (100:100 and 70:30 sets) and 0.74 to 0.81 (10:90
sets). With PPARγ, the docking results were not improved
using the 50/50 weight of shape/ESP scoring; however, the
EFd 1% value was improved 1.5-fold with both 100:100 and
70:30 ratios using the only shape similarity scoring. In
addition, with PDE5, the results for the 10:90 ratio was
improved only, when excluding ESP similarity from the
optimization. Interestingly, the docking did even worse with
an alternative PPARγ structure with 70:30 sets, whereas the
opposite was true for BR-NiB regardless of the applied shape/
ESP weight (Table 2).
Limited compound sets can be a problem for validating the

BR-NiB performance. For example, the yield improvements
with the DUD sets were excellent but due to relatively low
compound numbers training/test set divisions were omitted
(Table S5). Moreover, when the training set is tiny, the
optimized model is likely to become too specialized or even
overfitted to match closely only those ligands that are present.
Nevertheless, the BR-NiB execution is clearly worthwhile even
with limited training sets. In fact, a large training set does not
automatically guarantee the best results. As good or even better
enrichment can sometimes be achieved with the smaller sets
(70:100 and 10:100 in Table S8) in comparison to the
complete training sets (100:100 in Table 1).
Merging Models for the Optimization. With targets

such as PDE5 that have spacious cavities, it is difficult to
generate in one go, a single NIB model that recognizes all
active ligand sub-groups. If the PDE5 model is limited to
sildenafil- (Model I in Figure 3) or tadalafil-bound (Model II
in Figure 3) cavity volume, the docking performance was not
typically improved (Table S3). The BR-NiB processing that
relied solely on the shape similarity provided a limited boost to
the EFd values on these individual PDE5 models. While the
fusion of two models did not improve the R-NiB results, the
optimization of this combined model worked on every level

(Table 1 and Table S3; Figure 3). For example, with a 70:30
ratio, the EFd 1% improved 1.4- and 1.7-fold with the 50/50
weight of shape/ESP and shape only similarity score,
respectively, over docking. Similarly, BR-NiB improved the
AUC values of PDE5 docking from 0.77 ± 0.02 to 0.82 ± 0.02
(50/50 shape/ESP) and 0.87 ± 0.02 (only shape). In other
words, docking performance can be improved even in difficult
cases by fusing multiple models together for the optimization.

Changes to the Model Composition and Fitness
during Optimization. BR-NiB improves the fitness gradually
atom-by-atom until the best model is found (Figures S2 and
S3). With RXRα, the input model composed of 79 cavity
atoms and the best enrichment was acquired at Gen #23 with a
model composed of 45 atoms (Figure 2). The model at the
Gen #0 produced already substantial improvement over
docking (e.g., AUC: 0.77 ± 0.02 vs 0.95 ± 0.01; Tables S2
vs 1); however, the optimization pushed the yield gains much
higher (Table 1; Figure 2). Whereas R-NiB could improve the
EFd 1% of docking from 11.5 to 56.5, the BR-NiB-optimized
model generated EFd 1% value of 77.9. The impressive 6.7-
fold EFd 1% improvement by BR-NiB over docking is clearly
visible, when comparing the ROC curve of docking to the Gen
#23 of BR-NiB (Figure 2). Notably, a close-to-optimal NIB
model is generated already at the midpoint of the optimization
(Gen #11 in Figure 2).
A closer look into the BR-NiB-optimized models, which

perform far better in rescoring than the extracted co-crystal
ligands (Figure S11), shows that they contain information-
related wide spectrum of molecules. The optimization lowers
the nonpolar atom content 2−5%-points even when relying
solely on the shape similarity, in other words, the mix of
dissimilar atomic radii of polar (N/O) and nonpolar atoms
(C) assist in depicting the volume optimally (Table S10).
While there are target-specific differences, the polar atoms of
the optimized models continue to overlap with those chemical
groups of ligands that form key bonding interactions (Figure

Figure 3. Fusing negative image-based models to boost BR-NiB for PDE5. If R-NiB (Figure 1) was done using an NIB model focusing on
sildenafil- (Model I; orange line; PDB: 1UDT35) or tadalafil-specific (Model II; cyan line; PDB: 1XOZ36) binding volume, the PLANTS scoring
(black line) worked better in comparison. In fact, ROC curves indicate that the R-NiB treatment worsened the yield. The fusion of these models
lowered the enrichment even further (green line; Gen #0); however, the BR-NiB (magenta line; Gen #72) of the hybrid model boosted the
docking performance substantially. See Figure 1 for interpretation.
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S10B,C).19 The surface atoms that do not overlap with the
docked active ligands are typically removed first, thus, making
the models slimmer (Gen #0 vs Gen #11 in Figure 2C).
Likewise, atoms with minimal adverse effects are removed last,
which decreases the perceived “ligand-likeness” of the
optimized models (Gen #11 vs Gen #23 in Figure 2C; Table
S11). Notably, focusing the removals on those atoms that
improve the model’s average similarity match with only the
actives does not generate higher yields than the BR20-guided
BR-NiB (Table S12).
Effect of Docking Sampling on the Optimization.

While there are software- and target-specific variations, BR-
NiB generated invariably higher yields than the default docking
scoring. BR-NiB was tested with three alternative software on
four targets. Every enrichment metric was improved with
training and test sets for COX2, RXRα, NEU, and MR using
the docking software DOCK and GOLD37 (Tables S13−S15).
With GLIDE SP,15,16 the AUC values of COX2 and RXRα
could not be boosted. Notably, BR-NiB produced an even
higher enrichment for NEU with GLIDE and for NEU and
COX2 with GOLD in comparison to PLANTS. Overall, the
ability of BR-NiB to work on an equal footing with multiple
docking software was expected based on prior R-NiB results.18

The BR-NiB-optimized models are not merely mirroring the
sampling/scoring choices of the docking algorithms, but they
focus on core recognition aspects for the active ligands.
Different docking software samples and output different
binding predictions and, moreover, they can skip compounds
(e.g., GLIDE with MR; Table S13). This variation, however
small it might be, affects the optimized model composition
(Figure 4). Therefore, the cross-use of NIB models, optimized
using docking poses from different software, was probed. The
limited testing indicates that the optimized models could
indeed be cross-used (Table S15). When the PLANTS poses
were rescored using the models optimized with the poses of
GLIDE, DOCK, or GOLD, all enrichment metrics were
improved. This universal applicability of the optimized models
is remarkable, when taking a note that the AUC values are at a
statistical tie despite the cross-use (Tables 1 vs S15).

Computing Demands of the Optimization. Individual
R-NiB runs are ultra-fast (∼2 to 4 ms/cmpd.),13 but the greedy
search of BR-NiB can still take long time and plenty of parallel
computing (Table S16). The exact demands depend on both
the training set size and the input NIB model size. In theory,
the optimization can be almost instantaneous, if enough
parallel computing resources are committed; but in practice
the number of CPUs (or cores) and RAM are the bottlenecks.
BR-NiB was tested using 15 CPUs, when the training sets

were divided into 10,000 compound subsets for the parallel
execution. In total, the duration of optimization ranged from 2
h, 4 h 43 min to 5 h 47 min for MR, NEU, and COX2,
respectively (70:30 ratio in Table S14). The optimization
becomes gradually faster when moving closer to the conclusion
(e.g., Gen #0: 8 min vs Gen #X: 6 min with MR). PPARγ is a
prime example of a demanding target regarding both the cavity
size (N = 144; Figure S1) and training/test set size (N =
25,750; Table S1). The scalability of BR-NiB was probed by
repeating the initial steps of PPARγ model optimization using a
supercomputer: the doubling of the CPU count from 20 to 40
increased the pace from ∼1.5 to ∼1 h/gen.
If necessary, the BR-NiB iteration can be stopped at an

earlier point because, typically, decent enrichment is acquired
at the midpoint (Figures S2−S3). Alternatively, the branching
could be circumvented by pruning all those atoms whose
individual deletion improves the enrichment at one go (Figure
S10) and performing the normal BR-NiB after these removals.
Although this cut-and-go approach is undeniably fast and it
typically improves the enrichment over docking or standard R-
NiB (Table S17), it is not on par with the full-scale BR-NiB
(Table 1). The cavity atoms and, for better or worse, their
removals are interconnected, and hence it pays off to balance
their effects and improve the model fitness via successive
iterations.
When examining the Gen #1 model variants of RXRα (N =

57) in detail, nine cavity atoms, whose individual removals
improved the BR20 value the most, were removed also from
the fully optimized model (Figure S10). In contrast, nine cavity
atoms, whose removal decreased the BR20 value the most in

Figure 4. Effect of docking software on the BR-NiB with NEU. The NIB model of NEU binding cavity (NEU; PDB: 1B9V38) was optimized using
the docking poses of PLANTS, GOLD, GLIDE SP, or DOCK with BR-NiB (Figure 2; Videos S1 and S2). The optimized models are alike;
however, the composition differences due to alternative docking sampling affect the ROC curves.
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Gen #1, were similarly kept throughout the optimization.
Therefore, in this case, the greedy search could have been sped
up ∼30% by removing or locking in place these atoms before
embarking on a full-scale optimization. This practice would
require the careful use of balanced thresholding during the
optimization, which is not considered further here.
Testing on Additional Targets and Different Data-

bases Suggests Wider Applicability. Because the opti-
mization with the random 70:30 training/test set division
generated high enrichment (Table 1), five extra DUD-E sets
were selected for performing BR-NiB with only this computa-
tionally light set up (Tables 2, S1 and S7). The targets, which
were selected with additional diversity in mind, included
serine/threonine-protein kinase AKT (AKT1), dopamine
receptor D3 (DRD3), acetylcholinesterase (ACES), catechol-
o-methyltransferase (COMT), and focal adhesion kinase 1
(FAK1). The AUC values of docking were improved
substantially for all targets except COMT in the testing
(Table 2). BR-NiB provided the biggest boost for ACES, as its
AUC value improved from 0.39 to 0.69. Likewise, the AUC
value of FAK1 improved from 0.80 to 0.95, indicating
exceptional ability of the optimized model to increase the
docking yield. Importantly, the BR-NiB was able to improve
EFd 1% values of docking 3.6-, 36,7-, 2.0-, and 3.7-fold for
AKT1, DRD3, COMT, and FAK1, respectively. The results
were impressive also for ACES as its EFd 1% value jumped
from 0 to 18 in the testing. To sum up, the DUD-E
benchmarking (Tables 1 and 2) suggests that BR-NiB works
exceptionally well with diverse drug targets.
Testing was also carried out with five DUDE-Z and Extrema

benchmarking sets recently introduced by Stein et al.32 The
sets included NEU, adenosine A2A receptor (A2AAR), ACES,
heat shock protein 90 (HSP90), and androgen receptor (AR).
The random 70:30 training/test set division results indicate

that the BR-NiB method clearly provides an excellent boost for
docking performance especially regarding early enrichment
with both of the benchmarking databases (Table 3). The
success with the Extrema set, which is designed to avoid over-
optimization of the electrostatics, is explained by the fact that
both R-NiB13 and BR-NiB approaches focus heavily on shape
similarity and thus, the decoys with extreme charges should not
challenge either of them. With DUDE-Z, the most difficult case
was the HSP90 set, which has been described to be one of the
most demanding targets for the structure-based drug discovery
methods.29 Here, the AUC was not significantly improved with
the BR-NiB method over docking (from 0.52 to 0.56);
however, the early enrichment was improved (e.g., EFd 1%
from 0.0 to 6.5).
The BR-NiB performance was also tested with 10 sets from

the MUV31 database, which has been specifically designed to
avoid analogue bias (Table S18). Like the DUD database,
MUV also contains too few active ligands for building robust
training/test set divisions. Both the default docking and BR-
NiB generated low AUC values, which reflects the fact that the
sets contain only a few active compounds that represent
different chemotypes. As mainly intended for ligand-based
approaches, the MUV sets are not optimal for docking
benchmarking, that is, no reference protein structures are
given, and the included compounds may have alternative
binding sites. Regardless, BR-NiB was able to generate decent
or even excellent early enrichment values, if compared to
docking (Table S18). With Rho kinase 2, both the AUC and
EFd 1% values were improved from 0.44 ± 0.05 and 3.3,
respectively, to 0.71 ± 0.05 and 33.3. Likewise, with human
immunodeficiency virus or HIV set, the corresponding values
improved from 0.45 ± 0.05 and 3.3, respectively, to 0.69 ±
0.05 and 23.3.

Table 3. Test Set Results of Five DUDE-Z and Extrema Setsa

set software/method yield NEU AA2AR ACES HSP90 AR

DUDE-Zb docking 70:30 AUC 0.90 ± 0.03 0.75 ± 0.02 0.33 ± 0.02 0.52 ± 0.05 0.60 ± 0.03
EFd 1% 29.0 27.4 1.4 0.0 1.2
EFd 5% 58.1 41.5 4.3 3.2 13.3
BR20 0.53 0.41 0.07 0.05 0.13

BR-NiB 70:30 AUC 0.95 ± 0.02 0.84 ± 0.02 0.67 ± 0.03 0.56 ± 0.05 0.85 ± 0.03
EFd 1% 77.4 23.8 9.3 6.5 21.7
EFd 5% 83.9 45.1 19.3 25.8 50.6
BR20 0.84 0.43 0.24 0.19 0.44

training set ligs/decs 66/4270 352/20,402 300/6690 67/3990 188/9625
test set ligs/decs 31/1830 164/8742 140/2868 31/1710 83/4123
docking70:30 AUC 0.80 ± 0.05 0.93 ± 0.01 0.55 ± 0.03 0.47 ± 0.05 0.56 ± 0.03

Extremac EFd 1% 10.0 46.9 3.7 0.0 0.0
EFd 5% 13.3 66.2 10.3 3.7 0.0
BR20 0.13 0.63 0.10 0.03 0.02

BR-NiB 70:30 AUC 0.94 ± 0.03 0.90 ± 0.02 0.66 ± 0.03 0.99 ± 0.01 0.94 ± 0.02
EFd 1% 63.3 62.8 14.7 92.6 48.1
EFd 5% 76.7 70.3 19.9 100.0 75.3
BR20 0.72 0.67 0.19 0.92 0.66

training set ligs/decs 68/48,588 337/94,790 317/65,995 61/76,469 188/98,175
test set ligs/decs 30/20,823 145/40,769 136/28,281 27/32,775 81/42,072

aThe values are shown in bold and italics, if improved in comparison to the docking. Only those AUC values that are over the error margin are
highlighted. The testing was performed with the 70:30 training/test set division using equal shape/ESP (0.5/0.5) weight. The Wilcoxon statistic34

was used for the AUC error estimation. The PDB codes for the target structures used are the following: 1B9V (NEU), 3EML (AA2AR), 6LTK
(HSP90), 2AM9 (AR), and 1 × 1066 (ACES). bThe DUDE-Z is the optimized version of the DUD-E set. cThe active compounds from the DUD-E
set were used (training/test) in addition to the Extrema decoys.
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Validation: Very Early Enrichment Improvement
Using the Preoptimized Models. BR-NiB is not aiming
to recognize correct binding poses but only to separate actives
from inactives.13,18 Irrespective, the limited root-mean-square
deviation (RMSD) analysis with co-crystals (1−3 Å ranges in
Table S18) indicates that neither BR-NiB nor R-NiB steer the
selection toward “wrong” poses, if compared to the default
docking scoring. A better measure of success is the hit-rate in
demanding benchmarking tests involving multiple targets.
Thus, as a further validation, the BR-NiB-optimized models
were tested using new benchmarking sets for MR and NEU,
which had accumulated enough additional data since the
generation of their DUD-E sets. The aim was to emulate the
extreme difficulty of virtual screening campaigning, in which
only minute amounts of active ligands are buried in a vast and
diverse library composed of drug-like compounds. The
problems in building unbiased test sets are well-docu-
mented;39−41 thus, this validation step is intended to act
only as an extra check for the new method’s effectiveness. The
included decoy compounds are not property matched with the
known actives nor experimentally verified (not typical with
other benchmarking sets either), but the massive difference in
the compound numbers should lean heavily in favor of finding
decoys rather than active ligands by chance. Here, the
rescoring results are directly comparable only against the
original docking algorithm.
Because high potency levels are typically reached only via

the optimization of low potency hits, three sets were generated
for both targets with varying potency levels. The validation sets
included 0.014% of “high potency” (IC50 < 1 μM), “mid-to-low
potency” (IC50 = 1−50 μM), or “high-to-low potency” (IC50 =
< 50 μM) active ligands buried into a large library. Overall, the
validation results (Table 4) were similar to the test set results
(Table 1), suggesting that the BR-NiB offers far better
enrichment than the docking scoring. A direct comparison
between the testing and validation results is skewed because
the latter sets contain undoubtedly considerably more inactive
compounds in the decoy set (MR: 1.8% vs 0.014%; NEU: 1.6%
vs 0.014%). Regardless, the AUC values showed that the BR-
NiB-optimized models worked at a comparable level with both
sets. Even when focusing at the EFd 1% values, BR-NiB fared
only slightly better in the testing than during the validation
(Tables 1 vs 4).

Importantly, by testing just 0.1% (∼140 cmpd.) or 0.5%
(∼700 cmpd.) of top-ranked compounds, the screening hit-
rates would have been at least 5−15% for MR and 10−55% for
NEU (Table 4). The enrichment improvement was highest for
the “high potency set”, but the upward trend was also clear for
the less potent sets that exemplify better the non-optimized
screening hits. When this is translated to hit numbers, the
excellence of BR-NiB becomes apparent. With MR, BR-NiB-
guided screening would have found 1−3 hits, whereas the
default docking scoring would have found hardly any. With
NEU, the BR-NiB-guided selection would have performed
even better, by recognizing 2−7 or 6−11 hits as opposed to 1−
3 found by the default scoring.

■ DISCUSSION
Target-tailored rescoring methods are frequently needed for
improved molecular docking yields in virtual screening.42

Herein, we report a BR-NiB (Figure 2; Videos S1 and S2)
method that augments the composition of protein cavity or
NIB models (Figure S1; Table S10) for improved docking
rescoring performance. The NIB models, which are used in a
shape/ESP similarity comparison with the flexible docking
poses, are subjected to iterative atom removals and
benchmarking (Figure 2). In the negative image-based
rescoring (Figure 1), the BR-NiB-optimized models boost
docking massively, that is, the active ligands are effectively
separated from the decoys. The effectiveness of BR-NiB was
verified by rigorous testing with multiple targets/sets (Tables
1−3, S5 and S18) and with demanding validation sets for two
targets (MR and NEU in Table 4).
BR-NiB (Figure 2; Video S2) is a hybrid method that builds

on the strengths of both ligand- and structure-based drug
discovery methods. Therefore, the biggest hurdle of BR-NiB is
the need for both the protein 3D structure and compound
training set with validated activity information (Table S1).
Regardless, the training set requirements of BR-NiB are
moderate and, thus, the method should be well-suited for
early-stage drug discovery projects, where there is a limited
amount of compound data available. While the optimization
can take a lot of time depending on a target, the process can
easily be sped up by extra parallelization or, in theory, via the
careful use of thresholding (Table S16). Finally, despite the
automation, the input NIB models must be generated
beforehand, and, likewise, the training set used in the

Table 4. Docking and Brute Force Negative Image-Based Rescoring with Validation Setsa

docking BR-NiB-guided rescoring

target yield IC50 < 1 μM IC50 < 50 μM IC50 1−50 μM IC50 < 1 μM IC50 < 50 μM IC50 1−50 μM

MR AUC 0.37 ± 0.07 0.44 ± 0.06 0.63 ± 0.07 0.84 ± 0.06 0.88 ± 0.05 0.87 ± 0.05
EFd 0.1% 0 0 0 5 15 5
EFd 0.5% 0 5 0 15 15 5
EFd 1% 0 10 5 30 20 5
EFd 5% 5 10 5 35 35 45

NEU AUC 0.96 ± 0.03 0.95 ± 0.03 0.95 ± 0.03 0.97 ± 0.03 0.95 ± 0.03 0.94 ± 0.04
EFd 0.1% 0 5 5 35 15 10
EFd 0.5% 15 10 5 55 40 35
EFd 1% 20 15 15 65 55 50
EFd 5% 65 70 70 85 75 75

aDocking with default scoring (PLANTS) and BR-NiB-guided rescoring (SHAEP) were tested with three validation sets: “high potency” (IC50 ≤ 1
μM), “low-to-mid potency” (IC50 = 1−50 μM), or “high-to-low potency” (IC50 = ≤ 50 μM) for MR and NEU. The active ligands (N = 20) were mixed
into the SPECS library (N = 140,626), making the active compound concentration 0.014% for the validation sets. The best results for each potency
level are shown in bold and italics. The Wilcoxon statistic34 was used for the AUC error estimation.
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optimization must be docked separately. However, because the
atomic composition is optimized, the input model obviously
does not have to be perfect to begin with and, moreover, the
method is not docking software-specific (Tables S13−S15;
Figure 4) nor big data-driven (Table S1).
BR-NiB reminds regular pharmacophore (PHA) modeling,

which can work excellently in virtual screening by focusing on
a few key ligand descriptors with or without the added protein
“exclusion zone” information.43 Similar to BR-NiB, it is also
possible to use docking poses as the pre-aligned conformation
database to perform the PHA screen. Because both the active
ligands and “inactive” decoys influence the final NIB model
composition, BR-NiB could conceptually be perceived even as
shape/ESP-based or shape-focused PHA modeling. Addition-
ally, BR-NiB bears resemblance to field-based quantitative
structure-activity relationship (F-QSAR) and even machine
learning techniques, but there are major differences. In
practice, the most predictive F-QSAR models require focusing
on highly specific compound series, prefiltered before the
model building, and, furthermore, the model’s connection to
the protein structure can be elusive. Machine learning
techniques24−27 can have limited usability due to the massive
data requirements and, frankly, their “black box” logic can also
be a cause of unease. A direct comparison to these established
methods is moot because BR-NiB is exclusively a rescoring
method and, thus, tied to the limitations of docking sampling.
Regardless, in BR-NiB, both the cavity model and the
underlying docking poses are always tightly connected to the
protein (Figure 1), data requirements are moderate (Table
S1), and the optimization steps can be easily backtracked
(Figure 2).
There is plenty of room for improvements in the

implementation of BR-NiB. Establishing the best practices
for the optimization require yet more testing and experimental
validationan iterative process that is outside the scope of this
singular study. However, the fact that BR-NiB ignores the
possible target protein flexibility or ligand binding induced-fit
effects is likely to be a very persistent problem. This is seen for
example with PPARγ, when the BR-NiB results improved
noticeably, when using an alternative protein structure for the
docking and input NIB model generation (Table 2). A
potential workaround is to generate multiple NIB models for
different protein structures or even combine and optimize
multiple models simultaneously (e.g., PDE5; Figure 3; Tables
1 and S3); however, this sort of approach is computationally
costly and requires extra effort from the user. To be fair, this
protein conformation problem is inherent to using molecular
docking as a high-throughput virtual screening method in the
first place.44,45

Because the training and testing are both showing similar
enrichment boost to docking (Tables 1 vs S6 or Tables 2 vs
S7), there is no serious concern that the BR-NiB method is
overfitting. Regardless, it is likely that the NIB models become
more focused on certain active ligand chemotypes present in
the training set than others during the optimization. While this
specialization should at least in theory lower the diversity or
perceived novelty of the eventual virtual screening hits, BR-
NiB did slightly better than the default docking in the
similarity analysis with the top-ranked validation set com-
pounds (data not shown). One could argue that this
phenomenon is commonplace irrespective of the applied
method when working with limited training sets. However,
even without considering the induced-fit effects, it is not

possible that a singular NIB model could be a match for all
active ligands present in a truly diverse training set. The
optimization is a give-and-take process that makes greedy
choices based on the target enrichment metric improvement
(Figure 2C). Paradoxically, a potential workaround could be to
train multiple NIB models with purposefully different sets and
apply the alternatively trained models to the virtual screening.
Regardless, the BR-NiB testing should continue with
alternative benchmarking sets and different databases in the
future. Testing with the MUV database31 (Table S18), DUDE-
Z, Extrema (Table 3) and the newly made validation sets
(Table 4) shows that BR-NiB works also with other
benchmarking databases than DUD or DUD-E (Tables S5, 1
and 2). Ultimately, the method’s practical usability must be
confirmed in actual screening usage that includes in vitro
validation.
Access to effective drugs and healthcare is a major obstacle

for the equal prospects of wellbeing in the world, and the
unsustainably high drug prices is a big contributor to this
severe problem even in the developed Western countries.46

Inarguably, it is a multilayered problem involving prohibitive
costs related to regulation and safety, but the risk-aversion and
profit-driven tactics are also to blame.47 Computer-aided drug
discovery, especially virtual screening methods, provide the
means to lower the development costs and, importantly, open
the door also for academic and open-access efforts by non-
profit institutions.48 Thus, it is noteworthy that BR-NiB can be
performed with free software, the BR-NiB code itself is freely
downloadable under MIT license via GitHub (https://github.
com/jvlehtonen/brutenib) and, in most cases, the optimiza-
tion can be done using a regular desktop or even a laptop
computer within a reasonable amount of time (Table S16).
In summary, a new rescoring methodology, BR-NiB, is

presented for improving docking enrichment to a level that
facilitates effective drug discovery in virtual screening
campaigning.

■ EXPERIMENTAL SECTION
Protein and Ligand Structure Preparation for

Benchmarking. The protein X-ray crystal structures were
acquired from the Protein Data Bank (PDB; Table S1)49 for
the molecular docking and cavity detection or filling. The 3D
structure editing and PDB-to-MOL2 conversion was done
using BODIL.50 The structures were protonated to match pH
7.4 using REDUCE3.24.51 No crystal waters were considered
during the docking or cavity detection.
The ligand sets (Table S1) for 12 drug targets, including

cyclooxygenase-2 (COX2), retinoid X receptor alpha (RXRα),
MR, NEU, PDE5, ER, and peroxisome proliferator-activated
receptor gamma (PPARγ), serine/threonine-protein kinase
AKT (AKT1), dopamine receptor D3 (DRD3), catechol-o-
methyltransferase (COMT), acetylcholinesterase (ACES), and
focal adhesion kinase (FAK1), were acquired from the DUD-E
database.29 Likewise, seven equivalent sets were also acquired
from the DUD30 database, if available, for limited testing
(Table S5).
Five DUDE-Z and five Extrema benchmarking sets were also

acquired for testing32 (Table 3). DUDE-Z is described to be an
optimized version of the DUD-E database. In the DUDE-Z
design, special attention has been given to the charge matching
between the active and decoy compounds. The Extrema design
consist of decoys with extreme charges to prevent over-
optimization based on the electrostatic interactions. With the
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Extrema, the active compounds in the corresponding DUD-E
sets were used as the active molecules.
Altogether, 10 test sets were acquired from the MUV

database31 for the BR-NiB testing (Table S18). Because the
database is designed mainly for ligand-based virtual screening,
MUV aims to minimize the analogue bias by paying special
attention to the spatial randomness, and it contains only 1.16
compounds per scaffold class. Each one of the 17 sets contain
only 30 active ligands and 15,000 decoy molecules. If a suitable
target protein 3D structure with a valid co-crystal ligand was
available in the PDB, the MUV set in question was also tested.
Although no inhibitor-bound X-ray crystal structure was
available for the ephrin type-A receptor 4 set, the same
binding cavity was used for docking as in a prior study by Gu
et al.52 The dopamine receptor D1 set was excluded because it
included allosteric modulators that could bind to multiple
different allosteric sites.53

Prior to the flexible docking, the ligands were translated
from the simplified molecular-input line-entry system
(SMILES) strings to the 3D SYBYL MOL2 format, protonated
at pH 7.4, alternative tautomeric states were generated and,
finally, OPLS3 partial charges were incorporated using
LIGPREP and MOL2CONVERT in MAESTRO 2017-1
(Schrödinger, LLC, New York, NY, USA, 2017). The active/
decoy compounds of the DUD-E sets were also divided
randomly into training (70 or 10%) and test (30 or 90%) sets
(Table S1) for unbiased testing (Figure 2). The random
shuffling was done using standard C++ library Mersenne
Twister 19937 pseudo-random number generator.54

Flexible Molecular Docking. PLANTS and its default
scoring function ChemPLP was used as the primary docking
algorithm due to its proven effectiveness with R-NiB;18

however, limited testing was additionally done using GLIDE
2018-115,16 (MAESTRO 2018-1, Schrödinger, LLC, New
York, NY, USA, 2018) at standard precision (SP), DOCK
6.8,14 and GOLD 5.6.3.37 If available, the co-crystallized
ligands (Figure 1B; Table S1) were used as the docking
centroids with a search radius of 10 Å. Particularly, some MUV
targets lacked the co-crystallized ligand data, so the centroid
was set inside the putative ligand binding-cavity. The relevant
docking settings are detailed in prior studies.13,18

Negative Image-Based Model Generation. The cavity-
based NIB models (Figure S1) were generated using default
PANTHER 0.18.15,19 but parameters such as the packing
method, ligand distance limit, and/or box radius were adjusted, if
necessary. If possible, the cavity centroids were taken from the
co-crystallized ligands (Table S1; Figure S1). With PDE5, the
NIB models could also be combined to generate a hybrid
model (Figure 3). It was verified visually that the NIB models
roughly covered the cavity volume involved in the known
ligand binding. The input NIB models are given in the
Supporting Information, and the PANTHER settings for DUD
and DUD-E are explained in prior studies.13,18,22

Negative Image-Based Rescoring. In negative image-
based rescoring (R-NiB; Figure 1),13 the shape/electrostatics
of flexible docking poses is compared against the cavity-based
NIB model using the similarity comparison algorithm
SHAEP.21 The implementation of the --noOptimization option
ensures that the poses are not realigned during the rescoring.
The similarity comparison was performed with either the
default 50/50 ratio of the shape/ESP or only the shape score.
The performance was not tested with only the ESP score
because typically the shape is in a dominant role in the SHAEP

scoring. The R-NiB protocol is explained thoroughly at the
practical level in a prior study.22 Likewise, ligand-based
rescoring was performed by comparing the co-crystallized
ligands (Figure S1; Table S1) against the docking poses
without realignment.

Brute Force Negative Image-Based Optimization. In
the BR-NiB (Figure 2; Videos S1 and S2), the effect of each
cavity atom in the NIB model is evaluated iteratively and
automatically. Although a true exhaustive search would be
guaranteed to generate a global optimum model, whereas a
greedy search is more likely to stop at a local optimum, the
calculations would be too time-consuming with a brute force
search. If the input model contains 50 cavity atoms (an) and its
optimal size would be 40 atoms (a1), a true exhaustive search
would run all possible 1.3e10 test cases before concluding (eq
1), while the greedy search would need only 495 (eq 2).
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BR-NiB is performed using a template of the NIB model
from which cavity atoms are removed one at a time before the
individual R-NiB runs. The iterative editing, rescoring, and
enrichment evaluation processes are performed using a specific
target enrichment metric such as the EFd, AUC, and
BEDROC33 with alpha value 20 (BR20) using ROCKER
0.1.4.55 Note that the optimal BR value is dependent on the
size of the training set; but it was not altered here to keep the
results comparable. The model producing the best perform-
ance for each generation is put forth into the next cycle of
editing and rescoring. The greedy search is deterministic and,
thus, all things being equal, it should always lead to the same
model composition. For this same reason, it is also unlikely to
produce global optimum similarly as a true exhaustive search
would; however, BR-NiB boosts docking with a sensible
amount of computing. The iteration ends when the atom
removals stop improving the target metric (Figure 2; Video
S1). The final BR-NiB-optimized NIB models are given in the
Supporting Information. The BR-NiB code, needed for
performing the optimization automatically, is provided online
for free academic or commercial use under MIT license via
GitHub (https://github.com/jvlehtonen/brutenib).

Validation: Benchmarking against a Massive Drug-
like Compound Library. New validation sets were generated
for MR and NEU with varying activity ranges. In the “high
potency set” were included active ligands with an IC50 value of
<1 μM, whereas in the “mid-to-low potency set” or “high-to-
low potency set” were included ligands with the IC50 range of
1−50 μM or <50 μM, respectively. The active ligands were
taken randomly from the ChEMBL database. Duplicates with
the original DUD-E sets were avoided and, furthermore, it was
checked that the active ligands could fit into the binding
pockets. Molecules with a MW of over 550 g/mol were
excluded from the data sets to ensure that the molecules were
not too complicated for the docking software. In practice, 20
randomly selected active ligands of each potency category (<1
μM, < 50 μM and 1−50 μM) were mixed with the drug-like
small-molecule compounds of the SPECS database (acquired
08/2020; N = 140,626; MW of over 550 g/mol and rotatable
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bond number of >8 excluded to include only the most ligand-
like molecules), making the verified active ligand concentration
0.014% for each validation set (at least 1.5% for the DUD-E
sets; Table S1). Finally, all compounds were prepared with
LIGPREP, docked with PLANTS, and rescored with SHAEP
using the BR-NiB-optimized NIB models similarly as described
for the DUD-E sets.
Data Analysis and Figure Preparation. Figures were

prepared using BODIL50 and VMD 1.9.2.56 ROCKER55 was
used to plot the ROC curves. The AUC, BR20, and EFd values
were calculated using ROCKER. The Wilcoxon statistic34

estimates the standard deviation in the AUC calculations. The
EFd 0.1, 0.5, 1, and 5% values correspond to the percentage of
true positive ligands found when 0.1, 0.5, 1, or 5% of “inactive”
decoy compounds have been discovered. The compounds that
were skipped during docking were added to the bottom of the
results in the order that corresponds random picking to make
the early enrichment results comparable. The RMSD values
were calculated for those DUD-E compounds with both
docking poses and co-crystallized ligand conformers using
rmsd.py (MAESTRO 2018-1). The conformers were aligned
in the 3D space using the protein backbone Cα atoms using
VERTAA in BODIL.50 The co-crystallized ligands (Table S1),
which were prepared similarly as the DUD-E compounds but
without allowing a heavy atom realignment, were taken from
the PDB entries with the highest available resolution.

■ DATA AND SOFTWARE AVAILABILITY

BR-NiB code is available under MIT license via GitHub
(https://github.com/jvlehtonen/brutenib). All the data
needed for repeating the experiments, including input NIB
models, BR-NiB-optimized models, benchmarking sets, ran-
dom training/test set divisions, and specific validation sets of
NEU and MR, are available in the Supporting Information (zip
file). The original DUD-E (http://dude.docking.org) sets,
DUD sets (http://dud.docking.org/), MUV sets (https://
www.tu-braunschweig.de/en/pharmchem/forschung/
baumann/translate-to-english-muv), DUDE-Z and Extrema
sets (https://dudez.docking.org/), PDB (https://www.rcsb.
org/) entries, SPECS (www.specs.net) library, and ChEMBL
(http://dude.docking.org) library are available online. BODIL
(http://users.abo.fi/bodil/about.php), REDUCE (http://
kinemage.biochem.duke.edu/software/reduce.php), PAN-
THER (http://www.medchem.fi/panther/), ROCKER
(http://www.medchem.fi/rocker/), SHAEP (http://users.
abo.fi/mivainio/shaep/download.php), PLANTS (http://
www.tcd.uni-konstanz.de/plants_download/), DOCK
(http://dock.compbio.ucsf.edu/Online_Licensing/index.
htm), GOLD (https://www.ccdc.cam.ac.uk/solutions/csd-
discovery/Components/Gold/), and LIGPREP, MOL2CON-
VERT, and GLIDE in MAESTRO (https://www.schrodinger.
com) are available online for downloading. MAESTRO is a
commercial modeling package, but it can be acquired free for
academic usage. GOLD is not freely available for academic
usage, but academic institutions are applicable to substantial
discount.
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