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Asymmetric benzylic C(sp3)—H acylation via dual
nickel and photoredox catalysis

Leitao Huan"2, Xiaomin Shu® 2, Weisai Zu', De Zhong' & Haohua Huo® ™

Asymmetric C(sp3)—H functionalization is a persistent challenge in organic synthesis. Here,
we report an asymmetric benzylic C—H acylation of alkylarenes employing carboxylic acids
as acyl surrogates for the synthesis of a-aryl ketones via nickel and photoredox dual catalysis.
This mild yet straightforward protocol transforms a diverse array of feedstock carboxylic
acids and simple alkyl benzenes into highly valuable a-aryl ketones with high enantioselec-
tivities. The utility of this method is showcased in the gram-scale synthesis and late-stage
modification of medicinally relevant molecules. Mechanistic studies suggest a photo-
catalytically generated bromine radical can perform benzylic C—H cleavage to activate
alkylarenes as nucleophilic coupling partners which can then engage in a nickel-catalyzed
asymmetric acyl cross-coupling reaction. This bromine-radical-mediated C—H activation
strategy can be also applied to the enantioselective coupling of alkylarenes with chlor-
oformate for the synthesis of chiral a-aryl esters.
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hiral a-aryl ketones are versatile building blocks and

represent important pharmacophores existing in many

drug molecules such as ibuprofen and naproxen!:.
Although numerous enantioselective approaches for preparing
quaternary a-aryl ketones have been reported3—>, asymmetric
methods to access more commonly encountered tertiary variants
remain limited presumably owing to the lability of tertiary
stereocenters®. Nevertheless, transition-metal catalyzed asym-
metric couplings of aryl organometallic reagents with a-bromo
ketones”~%, benzylic zinc reagents with thioesters'?, benzylic
chlorides with acid chlorides under reductive conditons!!, and
aryl alkenes with activated carboxylic acids in the presence of a
hydrosilane!>13 have been disclosed in seminal studies by Fu,
Maulide, Reisman, and Buchwald, respectively (Fig. 1a). Despite
this impressive progress, it remains highly desirable to develop
complementary methods that use feedstock functional groups to
avoid sensitive organometallic reagents, preformed organohalides,
and stoichiometric reductants.

In recent years, nickel and photoredox dual catalysis have
emerged as a powerful tool for the direct C(sp?)—H functiona-
lization of feedstock hydrocarbons by leveraging photoredox-
mediated C—H activation and nickel’s unique ability in alkyl
cross-couplings!4-33 (Fig. 1b). This strategy allows the use of mild
and robust conditions to perform C—H cleavage via a hydrogen
atom transfer (HAT) or single-electron transfer (SET) pathway.
These routes provide attractive strategic alternatives to challen-
ging metal-catalyzed C(sp?)—H functionalization without the
need for high reaction temperature and coordinating directing
groups that are often encountered in traditional C—H activation
reactions>*. Pioneering works by MacMillan, Molander, and
Doyle have led to numerous nonasymmetric methods for dual
nickel/photoredox catalyzed C(sp3)—H coupling reactions!7-33.
In contrast, enantioselective approaches remain largely
undeveloped3>. Few successful examples in nickel and photo-
redox catalyzed asymmetric C(sp3)—H functionalization are only
limited to the arylation of C(sp®)—H bonds with aryl
bromides36-37.

Recently, our laboratory reported a direct enantioselective C
(sp>)—H acylation of N-alkyl benzamides for the synthesis of a-
amino ketones; wherein, a chiral nickel catalyst could engage
photocatalytically generated o-amino radicals and in situ-
activated carboxylic acids in acyl cross-couplings3s. We rea-
soned that this strategy could be applied to the asymmetric
benzylic C—H acylation of alkylarenes to address the challenges
described above for the synthesis of a-aryl ketones via radical C
(sp®)—H functionalization36-38, Despite that initial progress3$, no
examples of enantioselective benzylic C—H acylation have been
reported. In addition, there is an increasing demand for the
development of benzylic C—H functionalization reactions for the
synthesis of high value-added molecules from simple
alkylarenes®®—>0. In this work, we report an enantioselective
benzylic C—H acylation of alkylarenes with in situ-activated
carboxylic acids enabled by nickel and photoredox dual catalysis
(Fig. 1c, top).

Results

Reaction design. The proposed catalytic cycle for this benzylic
acylation is shown in the bottom of Fig. 1c. It has been reported
that single-electron oxidation of bromide anion by photoexcited
photocatalyst can generate bromine radical (E,;,[Ir(II[*/II)] =
+1.21 V vs SCE in CH;CN; E;,°% [Br—/Br-] = 40.80 V vs SCE in
DME)°1->4, According to the literature precedent and our pre-
vious mechanistic experiments38°1->4, we hypothesize that the
catalytic reaction is initiated by oxidative addition of Ni(0) cat-
alyst T to an in situ-activated carboxylic acid to afford Ni(II)
species ILI. Subsequent trapping of prochiral benzylic radicals
generated from the bromine-radical-mediated HAT process
provides Ni(IIT) complex III, which undergoes reductive elim-
ination to yield the desired product and Ni(I) species IV. A recent
computational study of nickel-catalyzed cross-coupling of
photoredox-generated benzylic radicals suggested that reductive
elimination is the stereochemistry-determining step®. Finally,
SET between Ni(I) species IV and reduced photocatalyst regen-
erates the Ni(0) catalyst I and ground-state photocatalyst to close
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Fig. 1 Enantioselective metal-catalyzed approaches for the synthesis of a-aryl ketones. a Previous approaches. b Dual nickel/photoredox catalyzed C(sp3)
—H functionalization. € This work and its mechanistic hypothesis. O. A. oxidative addition, R. E. reductive elimination. Ir(lll) = Ir[dF(CF3)ppyl,(dtbbpy)PFe.
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Table 1 Effect of reaction parameters.

o] 10% NiBry-glyme )
/\)l\ 13% (S)-L
Ph OH 1% PC, 1.5 equiv DMDC . Me

H >
1.0 equiv NH,CI
Me 1.5 equiv Na,HPO,
40 W 427 nm Kessil lamp
Ph i-PrOAc, 10 °C, 25 h 1

3.0 equiv "standard conditions” Ph
Entry Variation from standard conditions Yield (%) ee (%)
1 None 85 94
2 25°C, instead of 10°C 83 90
3 Ni(acac),, instead of NiBr,-glyme 6 -
4 as entry 3, but plus 1.5 equiv NaBr 62 88
5 Boc,0, instead of DMDC 14 93
6 DMBP, instead of PC 0 -
7 No NH,CI 54 93
8 No Ni, or no PC, or no light 0 -
9 C1-C4, instead of (acid+DMDC + NH4CI) as shown below
10 L1-L5, |nstead of (S) L as shown below

c1 c2 C30
30% yield, 74% ee 76% yield, 95% ee 16% yield, 92% ee

B oy

Ar=3, 5 MeO
69% yleld 93% ee 73% yleld 94% ee 89% yleld 42% ee

mﬂ yQJ

tBu <
45% yleld -29% ee PR P

4% yleld ee nd

/>—<\

87% yleld 62% ee

Reactions were conducted on a 0.1 mmol scale. The yields were determined through GC analysis
using n-dodecane as an internal standard. DMDC dimethyl dicarbonate. PC Ir[dF(CF3)
ppylo(dtbbpy)PFe, DMBP 4,4'-dimethoxybenzophenone.

both catalytic cycles (Eypred [Ir(I/IID)] = —1.37V vs SCE in
CH;CN).

Reaction optimization. Our investigation began with an
exploration of reaction conditions for the coupling of 4-
ethylbiphenyl and 3-phenylpropanoic acid (Table 1). Based on
previously reported elegant strategies and our recent conditions
for carboxylic acid activation in ketone synthesis38>6-60, dimethyl
dicarbonate (DMDC) was chosen as the activating agent to
generate mixed anhydride in situ from carboxylic acids. After an
extensive study of reaction parameters (also see Supplementary
Table 1), we were delighted to find that a simple chiral nickel/bis
(oxazoline) catalyst and a known Ir-photocatalyst could provide
the acylation product in 85% yield and 94% ee (entry 1). An
attractive feature of this transformation is that only commodity
chemicals are involved in this reaction. From the standpoint of
commercial availability, carboxylic acids are perhaps the most
ubiquitous functional group. The reaction could be also per-
formed at room temperature with similar efficiency (entry 2). The
use of a nickel source free of bromide led to almost no product
formation (entry 3). Interestingly, the addition of NaBr was found
to restore the reaction with comparable outcome, showcasing the
crucial role of bromide anion in the catalytic cycle (entry 4). The
use of Boc,O instead of DMDC provided the desired product in
93% ee, but with poor yield (entry 5). Replacing the Ir-
photocatalyst with a ketone triplet sensitizer, which has been
employed in nickel/photoredox catalyzed C(sp?)—H functionali-
zation reactions!823:36 resulted in no product formation (entry 6).
Running the reaction in the absence of NH,Cl, which has been

previously employed to facilitate the formation of a mixed
anhydride®%0, led to a significantly lower yield (entry 7). Control
experiments revealed nickel, photocatalyst, and light are indis-
pensable for product formation (entry 8). The use of other acyl
surrogates in place of the in situ combination of carboxylic acid,
DMDC, and NH,CI did not provide improvements (entry 9).
Other chiral ligands such as L1 and L2 delivered acylation pro-
ducts with similar enantioselectivities, albeit in diminished yields
(entry 10).

Evaluation of substrate scope. We next investigated the scope for
cross-coupling of alkylarenes with carboxylic acids employing the
optimized reaction conditions (Fig. 2). This transformation was
compatible with many functional groups, such as chloride (7, 44),
bromide (8, 43, 32, and 33), fluoride (9, 19, 24, and 31), ether
(10, 14, and 42), nitrile (11), carbamate (12), ester (13, 40, and
41), olefin (15, 16), boronate ester (34), pyrazole (35), and het-
eroaromatic moieties (17, 36, and 46). Remarkably, the alkyl
halide, aryl halide, aryl boronate ester, and terminal olefin can
serve as versatile synthetic handles for further structural ela-
borations. Pyrazole- and thiophene-based heterocycles are com-
monly found in pharmaceutically relevant compounds. The
coupling of 4-ethylbiphenyl with carboxylic acids bearing differ-
ent steric properties furnished the corresponding a-aryl ketones
in high yields and ee’s (2—5). Aromatic carboxylic acids were also
suitable coupling partners to generate desired products, albeit
with modest yields and enantioselectivities (18, 19). The corre-
sponding methyl carboxylate was a significant side product for
the cross-coupling of aromatic carboxylic acids. For the alkylar-
ene component, acylation of para-substituted alkylarene bearing
diverse electronic properties resulted in good yields and enan-
tioselectivities (20—27). When the alkylarene featuring more than
one benzylic C—H site was used, monoacylation products could
be obtained in good yields and ee’s (28—30). The homobenzylic
bulky substrate was a competent coupling partner (39). Acylation
of indane provided 45 in good yield and slightly reduced enan-
tioselectivity. Under the current reaction conditions, the sterically
hindered coupling partners such as the a-branched carboxylic
acids and ortho-substituted alkylarene (33) led to low efficiency
or no product formation (also see Supplementary Table 1).

Late-stage functionalization. Given the particularly broad
functional group tolerance of our method, we sought to
demonstrate the utility of this operationally convenient method in
the late-stage functionalization of medicinally relevant molecules
(Fig. 3)°L. Specifically, acylation of benzylic C—H bonds of drugs
such as ibuprofen, fenoprofen, ketoprofen, and naproxen, pro-
vided corresponding drug analogs in good yields and enantios-
electivities (47—51). Employing menthol and amino acid
derivatives as alkylbenzene coupling partners led to good dia-
stereoselectivities (52—55). With oxaprozin, stearic acid, oleic
acid, 2,4-D, and lithocholic acid derivatives as acyl donors, the
acylation proceeded with good stereoselectivity (56—61).

Gram-scale synthesis and parallel synthesis. To demonstrate the
scalability of the present method, two 20.0 mmol scale reactions
were performed in a common flask to produce 5.35g of chiral
ketone product 8, and 9.13 g of lithocholic acid derivative 60 with
excellent stereoselectivity and good yield (Fig. 4a). To further
demonstrate the synthetic utility, two types of drug analogs
derived from (S)-flurbiprofen and artesunate were prepared in
parallel with high yields and excellent stereoselectivities (Fig. 4b).
More than 100 mg of product was obtained in all cases. It is
noteworthy that the labile peroxide subunit in artesunate was
tolerated particularly well under mild conditions. This powerful
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R'=Me 2,88% yield, 95% ee
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- i Ph Y
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Me ) Ve Me Me
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E
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Fig. 2 Substrate scope of enantioselective acylation of benzylic C(sp3)—H bonds with carboxylic acids. All data represent the average of two
experiments. Unless otherwise stated, reactions were conducted on a 0.5 mmol scale under standard conditions. 2In place of the standard conditions, chiral
ligand L3, 3.0 equiv DMDC, and 3.0 equiv K,;HPO,4 were used.
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[61, (R, R)-L: 85% yield, 96:4 d
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Fig. 3 Late-stage functionalization. All data represent the average of two experiments. Unless otherwise stated, reactions were conducted on a 0.5 mmol
scale under standard conditions. 2In place of the standard conditions, the reaction was conducted at 25 °C in dioxane. PIn place of the standard conditions,
the reaction was conducted at 25 °C. In place of the standard conditions, 5.0 equiv of 4-ethylbiphenyl was used.

a. Gram-scale synthesis (20.0 mmol scale)
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Fig. 4 Gram-scale synthesis and parallel synthesis. a Gram-scale

synthesis. b Parallel synthesis of drug analogs.

method enables the streamlined synthesis of drug analogs, pro-
viding attractive opportunities for the rapid exploration of
structure-activity relationships in drug discovery®?, as well as
complementing the existing methods for the synthesis chiral a-
aryl ketones’ 13

Mechanistic observations. We next performed preliminary
mechanistic studies for this newly developed method (Fig. 5). The
primary kinetic isotope effect was observed in intermolecular
parallel and competition experiments, which suggested that C—H
cleavage significantly contributed to the rate-determining step
(Fig. 5a). When the reaction was performed in the presence of an
electron-deficient alkene, the benzylic acylation was completely
inhibited, and a racemic adduct 71 was obtained in 58% yield
(Fig. 5b, top). This observation supported the benzylic radical
might be involved in the catalytic cycle. Moreover, in the absence
of nickel catalyst and in situ-generated acyl electrophile (Fig. 5b,
bottom), the addition of 1.5 equiv of NaBr to the coupling of 4-
ethylbiphenyl with electron-deficient alkene led to the adduct 71
in 16% yield, which suggested photochemical oxidatively gener-
ated bromine radical was likely involved in the acylation reaction.

Rational expansion. Finally, we questioned whether this
bromine-radical-mediated C—H cleavage strategy could be
applied to the synthesis of a-aryl esters rather than a-aryl
ketones®3-9>. Indeed, replacing the in situ-generated mixed
anhydride with commercially available phenyl chloroformate led
to a number of a-aryl esters in good yields and selectivities under
similar conditions (Fig. 6). Chiral ligand L2 proved to be optimal
for this transformation.

Discussion

In summary, a direct enantioselective benzylic C(sp®)—H acyla-
tion for the synthesis of a-aryl ketones has been developed.
Several attractive features are noteworthy. First, both coupling
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Fig. 5 Mechanistic observations. a Kinetic isotope effect experiments. b
Benzylic alkyl radical trapping experiments.

H 10% NiBry-glyme, 13% L2 -
BN ipr 1% PC, 1.5 equiv KHCO3
I > PhO z
& j\ 40 W 427 nm Kessil lamp Pr
EtOAc, -30 °
PhO” Ci OAc, =30 °C 72, 82% yield, 98% ee
Ph
PhO Y PhO - PhO Y
Et i-Bu Me
73 74 75

89% yield, 91% ee 73% yield, 82% ee  59% yield, 83% ee @

Fig. 6 Rational expansion for the synthesis of a-aryl esters. All data
represent the average of two experiments. Unless otherwise noted,
reactions were conducted on a 0.5 mmol scale under stated conditions. @ln
place of the stated conditions, the reaction was conducted at —40°C with
5.0 equiv ethylbenzene.

partners, carboxylic acids and alkylbenzenes, have broad com-
mercial availability. Second, this operationally simple and scalable
method has a broad substrate scope and excellent functional
group tolerance. Third, this mild protocol can be applied to the
late-stage modification of pharmaceutically relevant molecules.
Finally, the asymmetric synthesis of a-aryl esters is also accessible
based on a simply rational expansion. The development of
enantioselective C(sp?)—H alkylation for the construction of C
(sp?)—C(sp3) bonds is underway in our laboratory.

Methods

Representative procedure for the synthesis of a-aryl ketone 1. In a nitrogen-
filled glovebox, Ir[dF(CF;)ppyl.(dtbbpy)PFs (5.5 mg, 0.005 mmol), NiBr,-glyme
(15.5 mg, 0.050 mmol), (S)-L (23.5 mg, 0.065 mmol), NH,CI (26.5 mg, 0.50 mmol),
Na,HPO, (106.5 mg, 0.75 mmol), a Teflon stir bar, and anhydrous i-PrOAc (5.0
mL) were added sequentially to a 15 mL vial. The reaction mixture was stirred at

room temperature for 30 min, after which it turned to a purple suspension. Next,
3-phenylpropanoic acid (75.0 mg, 0.50 mmol) was added as a solid, followed by
addition of 4-ethylbiphenyl (0.75 mL, 2.0 M in i-PrOAc, 1.50 mmol) via a 1.0 mL
syringe. The vial was then capped with a polytetrafluoroethylene septum cap, and
DMDC (80.0 pL, 0.75 mmol) was added via a 100 pL syringe. The vial was next
transferred out of the glovebox, and vacuum grease was applied to cover the entire
top of the septum cap. Then, the reaction mixture was stirred at 10 °C in an EtOH
bath for 5 min, followed by irradiation with a 40 W blue LED lamp (Kessil PR160L,
427 nm). The reaction was stirred at 10 °C under irradiation for 25 h. The reaction
mixture was then passed through a short pad of silica gel, with Et,O as the eluent
(~35mL). The resulting mixture was concentrated, and the residue was purified by
flash chromatography on silica gel, which provided the desired acylation product 1
in 82% yield and 94% ee as a white solid. All new compounds were fully char-
acterized (See the Supplementary Methods).

Data availability

The data that support the findings of this study are available within the article and

its Supplementary Information files. The X-ray crystallographic coordinates for
structures reported in this article have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition number CCDC 2058381 (59). The data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via http://
www.ccde.cam.ac.uk/data_request/cif.
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