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Abstract: Adjuvants are crucial components of vaccines. They significantly improve 

vaccine efficacy by modulating, enhancing, or extending the immune response and at the 

same time reducing the amount of antigen needed. In contrast to previously licensed 

adjuvants, current successful adjuvant formulations often consist of several molecules, that 

when combined, act synergistically by activating a variety of immune mechanisms. These 

―combination adjuvants‖ are already registered with several vaccines, both in humans and 

animals, and novel combination adjuvants are in the pipeline. With improved knowledge of 

the type of immune responses needed to successfully induce disease protection by 

vaccination, combination adjuvants are particularly suited to not only enhance, but also direct 

the immune responses desired to be either Th1-, Th2- or Th17-biased. Indeed, in view of 

the variety of disease and population targets for vaccine development, a panel of adjuvants 

will be needed to address different disease targets and populations. Here, we will  

review well-known and new combination adjuvants already licensed or currently in 
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development—including ISCOMs, liposomes, Adjuvant Systems Montanides, and triple 

adjuvant combinations—and summarize their performance in preclinical and clinical trials. 

Several of these combination adjuvants are promising having promoted improved and 

balanced immune responses. 

Keywords: review; adjuvants; combinations; human clinical trials 

 

1. Introduction 

Adjuvants are crucial components of vaccines, both for human and animal applications. Adjuvants 

were initially developed empirically by co-formulating vaccine antigens with a variety of molecules 

including oils, salts, and carbons. Our growing understanding of the immune system, however, and in 

particular the innate immune system, has enabled us to develop adjuvants according to a more rational 

and focused approach rather than through ―trial and error.‖ Indeed, adjuvant research has become an 

integral part of vaccine development. It combines a variety of disciplines, including chemistry, 

biochemistry, molecular biology, and immunology. Many novel adjuvant technologies have been 

developed or are in the pipeline for future vaccine candidates. Such novel technologies include 

combination adjuvants, which consist of more than one adjuvant component and which often act 

synergistically by stimulating and activating a variety of cells and immune mechanisms. Here, we will 

review several of the best-known combination adjuvants, including liposomes, ISCOMs, montanides, 

nanoemulsions and Adjuvant Systems, and summarize their performance in preclinical and clinical trials. 

2. Liposomes 

Cationic Liposomes 

Cationic liposomes have been studied for many years as delivery vehicles/adjuvants. Liposomes 

protect antigens from degradation, deliver them to antigen presenting cells (APCs), and can be used for 

mucosal delivery. Many liposomes mediate retention of the vaccine at the site of delivery, and some 

have immunostimulatory properties, although frequently other compounds such as toll-like receptor 

(TLR) ligands need to be incorporated for optimal adjuvanticity. Cationic liposomes may contain the 

following lipids: dimethyldioctadecylammonium (DDA), 3-(N-[N',N'-dimethylaminoethane]-carbamoyl) 

cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), N-(1-[2,3-dioleyloxy] 

propyl)-N,N,N-trimethylammonium (DO
TM

A), octadecenoyloxy (ethyl-2-heptadecenyl-3-hydroxyethyl) 

imidazolinium (DOTIM), N-palmitoyl-D-erythrospingosyl-1-O-carbamoyl spermine (CCS), 1,2-dioleyl-

sn-glycero-3-ethylphosphocoline (DOEPC) and 3-tetradecylamino-tert-butyl-N-tetradecylpropion-amidine 

(diC14-amidine) (reviewed by [1]). The mechanism of action, while not completely understood yet, is 

dependent on the nature of the lipids in the formulation, and thus varies widely between different 

liposomes. One common characteristic related to the cationic charge is the enhanced uptake of DNA or 

protein by target cells [2]. One of the major drawbacks of liposomes as vaccine delivery vehicles has 

been their instability. While numerous animal trials have been reported, only recently have liposome-
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based vaccine formulations moved into human clinical trials. This has become possible by the 

incorporation of helper lipids stabilizing the liposome formulations [2].  

DDA has been used as adjuvant in animal trials since 1966 [3], either alone or in combination, and 

was tested in humans in 1970 and 1973 in combination with tetanus toxoid and alum [4,5]. However, 

although the vaccine was safe and induced antibody responses, these were not considered robust 

enough. Consequently, DDA has been combined with other compounds including Emulsigen
®

, 

monophosphoryl lipid A (MPL), trehalose dibehenate (TDB), monomycoloyl glycerol (MMG) and 

polyI:C. We combined DDA with Emulsigen and found robust immune responses in cattle [6]. One of 

the most promising combinations is DDA with TBD (cationic adjuvant formulation [CAF01]). TDB 

not only stabilized the liposomes, but also significantly enhanced T-cell responses to Mycobacterum 

bovis Ag85B-ESAT-6 in mice, in particular T cells producing IFN-γ and IL-17; this correlated with an 

increase in IgG2 levels, while IgG1 levels remained the same [7]. The immune responses induced by 

Ag85B-ESAT-6 formulated with CAF01were long-lived and protective [8]. In addition to mediating 

depot formation of the vaccine formulation, CAF01 appears to promote influx/activation of DCs into 

the injection site [9]. Interestingly, in a recent report, the antibody and CD8
+
 IFN-γ responses induced 

by small unilamellar DDA/TDB liposomes were higher than those elicited by multilamellar DDA/TDB 

liposomes; however, addition of TLR3 or TLR9 ligand enhanced the immune responses, in particular 

CD4
+
 and CD8

+
 T cells, induced by the multilamellar ones, though this was not found for smaller 

liposomes [10]. CAF01 has been or is being tested in several phase I clinical trials, one against 

tuberculosis in combination with Ag85B-ESAT-6 (ClinicalTrails.gov identifier NCT00922363) and 

two with the HIV peptide cocktail AFO-18 (ClinicalTrials.gov identifier NCT01141205) (Table 1).  

MPL (a TLR4 ligand) and MMG, two of the other compounds combined with DDA, are both found 

in bacterial cell walls and promote Th1-biased immune responses. MPL is derived from LPS, a TLR4 

ligand, and when included in an Ag85B-ESAT-6—DDA liposome formulation, it enhanced protection 

against tuberculosis both in mice and in cynomolgus monkeys [11,12]. Prominent inflammatory 

responses to DDA/MPL were observed in subcutaneously immunized mice, including high local  

levels of pro-inflammatory cytokines, chemokines and a pronounced influx of neutrophils, 

monocytes/macrophages and activated natural killer cells [13]. The antigen-specific T-cell responses 

induced by CAF01 (DDA/TDB), DDA/MPL and DDA/MMG in mice were all comparable. However, 

whereas all three compounds are immunostimulatory, TDB and MMG have the advantage over MPL 

of stabilizing the liposomes and are thus more promising.  

DOTIM was originally used for in vitro and in vivo gene delivery into cells [14]. However, in view 

of its ability to mediate uptake of DNA into endosomes [15], it was more recently combined with 

DNA, TLR3 or TLR9 ligand. When co-administered with antigen, the combination of DOTIM and 

CpG ODN promoted significantly enhanced antigen-specific T-cell responses when compared to 

delivery of protein with CpG ODN alone [16]. The DOTIM-based liposome in combination with 

cholesterol and plasmid DNA, designated JVRS-100 adjuvant, promotes pro-inflammatory responses 

followed by the development of Th1-type responses. Formulations with JVRS-100 have been shown  

to be efficacious in rodent models against several viruses including hepatitis B virus [17], influenza 

virus [18], herpes simplex virus-2 (HSV-2) [19], and Rift Valley fever virus [20]. This liposome 

formulation is also suitable for mucosal delivery as demonstrated in mice where protection from 

pneumonic tularemia [21] and plague [22] was induced. Currently, JVRS-100 adjuvant is being tested 
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in phase I and phase II clinical trials with an influenza split vaccine (ClinicalTrials.gov identifier 

NCT00936468; ClinicalTrials.gov identifier NCT00662272) (Table 1).  

Table 1. Liposomes and TLR agonists: Clinical studies. 

Adjuvant Phase Vaccine antigen Outcomes References. 

CAF01 I 

Mycobacterium 

tuberculosis 

Ag85B-ESAT-6 

No study results posted 
ClinicalTrails.gov identifier 

NCT00922363 

CAF01 I 
HIV peptide 

cocktail AFO-18 

Induction of T-cell responses 

in some of the vaccinees; no 

significant changes in viral 

load or CD4+ T cell counts 

ClinicalTrials.gov identifier 

NCT01141205 [23] 

JVRS-100 

adjuvant 
I Fluzone® No study results posted 

ClinicalTrials.gov identifier 

NCT00662272 

JVRS-100 

adjuvant 
II Fluzone® No study results posted 

ClinicalTrials.gov identifier 

NCT00936468 

3. Immune Stimulating Complexes (ISCOMs)  

Immune stimulating complexes (ISCOM) are ring-like structures containing cholesterol, 

phosphatidylcholine and saponins, mostly QuilA. ISCOMs have been tested in a variety of species, 

including small and large animals. The actual ISCOM matrix can directly associate with antigens or be 

formed first and then added to the formulation at a later time. An important advantage of ISCOMs is 

their excellent stability for over one year at 4 °C. While the exact mechanism of action is still unclear, 

ISCOMs have proven to be highly effective when delivered via mucosal surfaces.  

ISCOMs interact with dendritic cells (DCs) and can enhance cross-presentation of the incorporated 

antigen [24], followed by an efficient induction of both CD4
+
 and CD8

+
 antigen-specific T-cell 

responses [25]. ISCOM vaccines are known to induce long-lasting antibody responses, a balanced 

Th1/Th2 response, and induction of cytotoxic T lymphocytes [26]. ISCOMs have been used in 

combination with a parenterally administered H5N1 influenza vaccine in healthy adults (PANFLUVAC). 

In this study, 50 μg of a 3rd Generation ISCOMs was combined with various concentrations of 

recombinant hemagglutinin (HA). The trial is currently underway (ClinicalTrials.gov identifier 

NCT00868218) (Table 2). In another clinical trial, ISCOMs have been used with the melanoma vaccine 

NY-ESO-1 ISCOMATRIX in patients with measurable stage III or IV melanoma. Four doses of the 

vaccine containing 120 μg ISCOMATRIX combined with 100 μg of NY-ESO-1 protein were given to 

patients with advanced melanoma. The trial is currently ongoing. To improve their efficacy, ISCOMs 

are often used in combination with immune stimulators such as Cholera Toxin A (CTA) subunit or 

TLR ligands. For example, fusion proteins have been tested including the CTA1-DD, which combines 

the enzymatically active CTA1-subunit with a B-cell targeting moiety (DD), derived from 

Staphylococcus aureus protein A [27,28]. Intranasal immunization of mice with hemagglutinin and 

neuraminidase from influenza strain PR8 resulted in enhanced IgA and CD4
+
 T cells [29]. Mucosal 

IgA and CD4
+
 T-cell response were enhanced after intranasal administration and consequently 

provided 100% protection against challenge infection. The mechanism was CTA1 enzyme-dependent 
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and designed to target B cells. Another example includes co-formulation of ISCOM and a TLR9 

ligand (CpG ODN). In particular, when used in cancer vaccines, this combination resulted in 

regression of tumors in a pancreatic cancer mice model using tumor induction by injection of PANC02 

tumor cell line transfected by OVA gene [30]. The vaccine, ISCOM+TLR9+OVA antigen, was able to 

induce strong immunity against the tumor and induce effective memory responses, including a high 

percentage of CD8
+
IFNγ

+
 T cells after re-induction of the tumor. Noteworthy, antigen and ISCOM 

alone or CpG ODN alone were not efficient to induce anti-tumoral immune response and protection in 

mice. Another example to improve ISCOMS includes tubular immunomodulatory complexes [31,32] 

or the association with another adjuvant such as Montanide [33]. For example, when used in 

combination with a recombinant protein of food and mouth disease virus (FMD) in guinea pigs, higher 

immune responses were found when ISCOMs and Montanide ISA 206 were used in combination.  

Table 2. ISCOMs and IC31
®

: Preclinical and clinical studies. 

Adjuvants Phase Subjects Comments References 

NY-ESO-1-

ISCOMATRIX 
II 

Individuals with 

advanced melanoma 
Study ongoing 

ClinicalTrails.gov 

identifier NCT 00518206 

ISCOM and 

PANFLUVAC 
I Healthy Adults Study ongoing 

ClinicalTrails.gov 

identifier NCT00868218 

IC31®/Ag85B-ESAT-6 

(TB vaccine) 
Preclinical 

Neonatal murine 

model 

↓ Bacterial growth, 

differentiation of CD4+  

T cells into multifunctional 

Th1 and Th17 cells secreting 

IL-2, TNF-α and IFN-γ, 

antigen-specific DCs 

expressing co-stimulatory 

molecules CD80, CD86 and 

CD40 in the DLNs 

[34,35] 

IC31®/Ag85B-ESAT-6 

(TB vaccine) 
Preclinical 

Cynomolgus 

macaques 

↓ Clinical infections and 

prevents reactivation of 

latent infections 

[36] 

IC31®/Ag85B-ESAT-6 

(TB vaccine) 
Preclinical 

Cynomolgus 

macaques 

↓ Clinical infections and 

prevents reactivation of 

latent infections 

[36] 

IC31®/Ag85B-ESAT-6 

(TB vaccine) 
I 

Healthy 

mycobacterially 

naïve individuals 

Potent and persistent  

antigen-specific IFN-γ+  

T-cell responses, sustained 

for 2.5 years  

[37] 

IC31®/Ag85B-ESAT-6 

(TB vaccine) 
I 

Prior TB-infected 

individuals 

Strong antigen-specific  

T-cell responses, sustained 

for 32 weeks  

[38] 

IC31®/H1N1 (Influenza 

vaccine) 
Preclinical Young and aged mice 

↑ HI titers, IgG2a Abs and 

IFN-γ producing CD4+  

T-cell responses, sustained 

for 200 days after a single 

dose vaccination 

[39] 

IC31®/HSV-2 (Genital 

herpes vaccine) 
Preclinical Mice 

High neutralizing  

HSV-specific Ab responses 

and splenic IFN-γ responses 

[40] 
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4. Montanide 

Montanide-based adjuvants have been used in both veterinary and human vaccines. These oil-based 

formulations have been successfully commercialized and are now available for animals in a vaccine 

against FMD. For human application, Montanide-based therapeutic vaccines have been developed  

for cancer [41]. The mechanism of action for this oil-based adjuvant includes the formation of a depot 

at the injection site, which enables the slow release of the antigen. Formulated antigens are 

concentrated and protected against degradation while phagocytosis is stimulated.  

Montanides can be improved by combining them with other adjuvants or immune modulators. An 

example of a Montanide-based adjuvant is the Incomplete Seppic Adjuvant (ISA™, SEPPIC Inc. 

Fairfield, NJ, USA), which acts as oil-emulsion adjuvant, and which has been tested in combination 

with a number of experimental vaccines including a malaria vaccine [42,43]. Also, Montanides and 

ISCOMs were tested with a recombinant protein vaccine for FMD virus using guinea pigs [33]. 

Interestingly, this combination showed the greatest promise in inducing early and long-term 

protection. Since activation of the innate immune system is one of the best ways to stimulate a 

systemic immune response, Montanides have been tested in combination with TLR ligands including 

LPS for TLR4, Poly (I:C) for TLR3, Imiquimod for TLR7 and CpG ODN for TLR9.  

Montanides have been evaluated in several clinical trials. For example, the Montanide ISA 51 was 

tested in combination with cancer antigens and cytokines including an evaluation of the effects of  

local Granulocyte-Macrophage Colony Stimulating Factors (GM-CSF) on skin DCs in melanoma 

patients [44,45]. Interestingly, low doses of GM-CSF did not enhance its immunogenicity [46]. 

Montanides and Poly (I:C) have been used for a phase I trial on 28 advanced ovarian cancer patients [47]. 

Using overlapping long peptides (OLP) from the human cancer-testis antigen NY-ESO-1, patients 

were treated with OLP alone, OLP+Montanide or OLP+Montanide+polyIC LC. No NY-ESO-1-

specific antibodies or CD8
+
 T cells were detected after vaccination with OLP alone, though they were 

found in 46% (Ab) and 62% (TCD8
+
) patients respectively after vaccination with OLP+Montanide, and 

in 91% (both) patients respectively after vaccination with OLP+Montanide+Poly-ICLC. These results 

strongly indicate the importance of the adjuvants, especially when combined in a single formulation. 

In another study in melanoma patients, imiquimod was added to a combination of viral nanoparticles 

coated with CpG ODN and Montanide. The combination resulted in greater memory and effector 

CD8
+
 T cells responses [48]. Finally, CpG ODN was assessed to be efficient in cancer vaccine therapy 

with the same antigen NY-ESO-1 [49]. Treated patients were able to produce specific CD8
+
 T cells. 

Interestingly, for three different leukemia-associated antigens, no positive results were found using the 

CpG–Montanide combination [50]. Although only tested in very few subjects, it underlines the 

importance of the choice of adjuvants and antigen. Furthermore, Montanides have been tested in 

combination with very small size proteoliposomes (VSSP) in the treatment of prostate cancer [51]. 

VSSP is already included in a combination of adjuvants. However, the authors showed that association 

of a Gonadotropin Releasing Hormone (GnRH)-peptide with VSSP and Montanide ISA-51 was able to 

reduce size and weight of both testicles and prostate in a male rat model. 
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5. IC31
®
 

Polycationic peptides enhance cellular uptake of proteins or bacterial DNA by cells [52]. IC30, 

which consists of poly-L-arginine, has been shown to efficiently transport tumor antigens to APCs [53]. 

IC30 adjuvant activity involves recruitment of MHC class II (+) cells at the injection site and 

migrating antigen-specific cells to the draining lymph nodes. Subcutaneous injection of IC30 with 

tumor antigen-derived peptide antigens led to antigen-specific T-cell responses, which were detectable 

for more than four months after injection suggesting a depot effect [54]. 

Based on the ability of cationic compounds to enhance uptake, IC30 was combined with CpG 

ODN, a TLR9 agonist. The combination of IC30 and CpG ODN induced stronger antigen-specific  

T cells responses, which were detectable even one year after injection [55]. Apart from IC30, various 

other cationic antimicrobial peptides have been developed to treat infections. The potential of an 

antibacterial cationic peptide KLKL5KLK (KLK) to induce humoral and Th2-type immune responses 

against co-administered antigens after prime-boost immunizations have been reported [56]. This led to 

development of the novel adjuvant IC31
®

, where the potential of KLK to induce Th2 responses and 

that of TLR9 agonist to induce Th1 responses was exploited. The novel bi-component vaccine 

adjuvant, IC31
®

 (Intercell AG, Vienna, Austria) consists of a vehicle based on KLK and the TLR9 

agonist ODN1a. ODN1a, a single-stranded DNA-phosphodiesther, consists of repeats of the dinucleotides 

deoxyinosine and deoxycytosine [oligo-d(IC)13] [57]. CpG ODN was replaced by ODN1a due to 

potential side effects induced by CpG ODN such as production of systemic pro-inflammatory 

cytokines [58]. The preclinical studies with IC31
®

 in various disease models in animals have shown 

potent immunogenicity and protection efficacy including antigen-specific humoral and cellular 

responses. These encouraging results pave the way for the novel combination adjuvant IC31
®

 into 

clinical trials against various viral and bacterial infections (Table 2).  

The two components of IC31
®

, KLK and ODN1a, act via different mechanisms. Subcutaneous 

injection of fluorescent-labeled OVA, KLK, and ODN1a in mice led to depot formation at the site of 

injection, which was detectable up to 58 days after injection. However, co-administration of 

fluorescent-labeled OVA and ODN1a resulted in rapid clearance from the injection site, indicating the 

potential of KLK to induce a depot at the injection site [59]. IC31
®

 formed a stable complex that 

protected both adjuvants and antigens from degradation leading to continuous stimulation of the 

immune system and induction of specific immune responses. In addition, co-administration of OVA 

with IC31
®
 in TLR9 and MyD88 double knock-out mice completely abolished antigen-specific 

immune responses suggesting that the immune-stimulatory effects of IC31
®

 depends on TLR9/MyD88 

signaling pathways [59]. Since cationic peptides have the potential to enhance uptake of bacterial 

DNA, KLK may serve as a delivery vehicle to transport ODN1a inside the murine and human DCs to 

interact with intracellular TLR9 receptors [60]. Further engagement of TLR9 leads to NF-κB 

activation via the adaptor molecule MyD88, thereby triggering the immune responses.  

Being the only professional APCs, DCs are specialized in processing and presenting antigens to 

naïve T cells and induce activation of antigen-specific immune responses [61]. Presentation of 

antigens on MHC molecules, expression of co-stimulatory molecules, and secretion of cytokines are 

essential for optimal activation of naïve T cells. IC31
®

 has been shown to upregulate the surface 

expression of MHC class I and co-stimulatory molecules CD80, CD86, CD40 and CD54 on murine 
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bone-marrow dendritic cells (BMDCs). Further, in in vitro studies using OVA-pulsed BMDC, IC31
®

 

induced antigen-specific CD4
+
 Th cells proliferation and differentiation of OVA-specific CD4

+
  

T cells into antigen-specific Th1 cell (IFN-γ producing) and Th2 cell (IL-4 producing) types [59].  

In vivo studies suggests involvement of plasmacytoid DCs (pDCs) in the adjuvant activity of IC31
®

, as 

highly activated pDCs with enhanced expression of co-stimulatory molecules were found in the 

draining lymph nodes of mice injected with IC31
®

. In addition, IC31
®

 induced potent cytotoxic 

effector T lymphocytes that killed target cells in an antigen-specific manner [59].  

6. Triple Combination Adjuvant 

Various combination adjuvants consisting of a variety of molecules have been developed in recent 

years and are currently being tested in preclinical trials. This includes both dual and triple combinations 

and includes polymers such as poly(lactic-co-glycolic) acid, chitosan and polyphosphazenes [62,63].  

A novel combination adjuvant was developed consisting of innate defense regulator peptide (IDR), 

polyphosphazene (PP) and TLR ligand, either CpG ODN or PolyI:C. Innate defense regulator peptides 

are short peptides that stimulate both innate and adaptive immunity and by activating antigen-presenting 

cells link innate and adaptive immunity. Innate defense regulator peptides are involved in a variety of 

immune functions including innate immune activation, wound healing, cell recruitment and to some 

extent, direct antimicrobial control [64–66]. Polyphosphazenes are synthetic polymers that are used as 

carriers for adjuvants and vaccine antigens and that on their own have modest adjuvant activity [67,68]. 

However, when combined with immune stimulators such as CpG ODN or PolyIC these molecules can 

form complexes that become highly immunogenic. The combination adjuvant was developed through 

screening of hundreds of molecules and testing in human, murine and porcine cells. The most 

promising candidates were assessed in vivo in a variety of animal species including cattle, pigs, sheep, 

mice and cotton rats in combination with a variety of vaccine antigens. Interestingly, when co-formulated, 

the adjuvants induced strong expression of cytokines and chemokines—such as Gro1a, TNF-α, IL-6—in 

stimulated cells and displayed a strong synergistic effect when used in combination [69]. Furthermore, the 

adjuvant platform can be formulated into microspheres that range in size from 100 nm to 2 μm and that 

enhanced the mucosal immune response following intranasal immunization. Interestingly, the proper 

selection of innate defense regulator peptide was found to be critical as some of these peptides could 

actually decrease the immune response [70]. These microparticles could be lyophilized and stored at 

room temperature for more than a year without any loss of specific activity [71]. A synergistic effect 

of the TLR agonist, IDR and PP on the magnitude of the humoral, and specifically cell-mediated, 

immune responses was demonstrated in murine and bovine models [72–74]. The adjuvant platform was 

highly effective against a variety of infectious diseases. For example, when combined with the 

Bordetella pertussis antigens pertussis toxoid, filamentous hemagglutinin, and/or pertactin, the vaccine 

induced protective immune responses in both mice and pigs against lethal infection with B. pertussis [75]. 

The vaccine induced an earlier onset and longer duration than existing commercial vaccines and was 

effective already after a single immunization even in the presence of maternal antibodies. Furthermore, 

the vaccine shifted the immune response to a more balanced or Th1-type response [76,77], Similarly, 

when the same adjuvant combination was used with a recombinant fusion protein of respiratory 

syncytial virus, strong immune responses were found that provided protection against infection in mice, 
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cotton rats and lambs [78,79], When used in combination with chlamydia antigens or influenza virus 

antigens, strong immune responses were detected in vaccinated animals [69,80].  

7. Adjuvant Systems 

Adjuvant systems
™

 (GlaxoSmithKline (GSK)) are various combinations of classical adjuvants and 

immunostimulators specifically designed to tailor the adaptive immune responses against specific 

pathogens in a target population including children, elderly and immunocompromised individuals. 

Various adjuvant systems have been developed and a few are in clinical trials. AS03 and AS04 have 

already been licensed for use in humans. AS03 was approved for H5N1 prepandemic and H1N1 

pandemic influenza vaccines and AS04 for human papilloma virus (HPV) (Cervarix™) and hepatitis B 

virus (HBV) (Fendrix
®

). AS04 was also licensed for herpes simplex virus (HSV) but was recently 

terminated due to low efficacy in clinical trials [81]. 

7.1. AS04 

The TLR4 agonist lipopolysaccharide (LPS) is a potent adjuvant but it is very toxic and causes 

septic shock. MPL is a ―detoxified‖ derivative of LPS isolated from the Gram-negative bacterium 

Salmonella Minnesota R595 strain. While less toxic, MPL retains the immunostimulatory properties of 

LPS. AS04 (Adjuvant System 04), is a combination adjuvant containing MPL and aluminum 

hydroxide. AS04 is licensed for use in HPV and HBV vaccines. Another promising HSV vaccine, 

gD2/AS04, showed better immune protection and significantly reduced the viral load and viral 

shedding when compared to the gD2 vaccine adjuvanted with aluminum salts alone in guinea pigs [82]. In 

clinical trials, gD2/AS04 tested in HSV-1 and HSV-2 seronegative women showed 73% and 74% 

efficacy respectively against genital herpes infections [83]. However, in a randomized, double-blind 

phase III clinical trial conducted in 8323, 18–30 year-old, women seronegative for HSV-1 and HSV-2, 

the HSV-2/AS04 vaccine efficacy was only 20% and it failed to protect the women from  

genital disease [84]. 

When combined with alum, MPL still retains its ability to interact with TLR4 and activate innate 

immune responses. This leads to activation of NF-κB and transient production of pro-inflammatory 

cytokines (IL-6, TNF-α, and IFN-γ) and chemokines, such as CCL2 and CCL3 at the injection site [85]. 

CCL2 and CCL3 can promote recruitment of other immune cells, especially monocytes and 

macrophages, and activation and maturation of APCs, especially DCs at the site of injection. 

Increasing numbers of mature DCs migrate to the draining lymph nodes and interact with T cells to 

trigger the induction of antigen-specific adaptive immune responses [86]. MPL induces Th1-type 

immune responses by promoting IFN-γ production by antigen-specific CD4
+
 T cells, hence 

overcoming the shortcoming of alum, which induces only Th2-type immune responses. When 

combined with alum, MPL-induced stimulation of pro-inflammatory cytokines was neither improved 

nor inhibited by alum. However, alum did prolong the local cytokine responses induced by MPL at the 

injection site [85].  
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7.2. AS03 

Since water-in-oil emulsions were too reactogenic for use in humans, GSK developed AS03, an  

oil-in-water emulsion. AS03 consists of DL-α-tocopherol, squalene, and polysorbate 80. Oil-in-water 

emulsions are less reactogenic and have better safety profiles. One such oil-in-water emulsion is 

MF59, which has been approved for human use in European countries. MF59 consist of squalene, 

polysorbate 80 and Span 85 and the only difference between MF59 and AS03 is the presence of  

α-tocopherol, a biodegradable and immunostimulatory oil. α-tocopherol is a form of vitamin E that is 

easily absorbed in human body [87]. Squalene, another component of AS03, is normally synthesized in 

the liver and found in various organs with highest secretion by human skin. Squalene is an essential 

intermediate molecule in the biosynthesis pathways of steroid hormone, cholesterol and vitamin D [88]. 

The last component of AS03, polysorbate 80 (polyoxy-ethylene sorbitan-20 monooleate) is added to 

stabilize the emulsion. It is a semi-synthetic molecule derived from naturally occurring fatty acid that 

is largely used as aqueous formulation stabilizer in the food and pharmaceutical industries [89].  

Injecting antigen and AS03 72 h apart or in different limbs resulted in reduced influenza-specific 

antibody titers suggesting that AS03 adjuvant activity depended on the spatial and temporal  

co-localization with the antigen [90]. AS03 induced production of NF-ĸB, and subsequently cytokines 

and chemokines, including CCL2, CCL3, IL-6, CSF3 and CXCL1 in muscle and the draining lymph 

nodes of mice after injection [90]. Similar to alum and MF59, DCs were not directly activated by 

AS03. Antigen-loaded DCs, monocytes and granulocytes were found to migrate to the draining lymph 

nodes after injection of AS03. H5N1 split-virion A/Vietnam/1194/2004 influenza vaccine with 

AS03(A) resulted in increased production of polyfunctional H5N1-specific CD4
+
 T cells in volunteers 

aged 18–60 years [91]. An increase in antigen-specific CD4
+
 T cells might be responsible for 

persistence of increased antibody responses and induction of memory B cell responses by AS03.  

7.3. AS02  

AS02 is a combination of oil-in-water emulsion with MPL and QS21 (MPLA+QS21+o/w emulsion) 

and was initially developed for malaria vaccines. QS21 has been shown to induce antigen-specific 

antibody, cell-mediated and CTL responses, including development of immunological memory in 

nonhuman primates [92–94]. AS02 was used for development of the RTS,S candidate malaria vaccine, 

which includes the circumsporozoite protein (CSP) as a vaccine antigen. RTS,S consists of a hybrid 

protein that includes a portion of the CSP fused to the hepatitis B virus surface antigen (HBsAg), 

which is expressed together with unfused HBsAg in genetically engineered yeast cells [95]. In phase 

I/IIa clinical trials, AS02-based malarial vaccines provided better protection (protecting six out of 

seven individuals) compared to AS03 and AS04-based formulations in malaria-naïve individuals 

challenged with P. falciparum through bites from mosquitoes [96]. Recombinant AS02-based malaria 

vaccine has been tested for safety, immunogenicity and efficacy in various phase I clinical trials. Apart 

from malaria vaccines, AS02 has been tested with tuberculosis, hepatitis B, HIV vaccines and cancer 

immunotherapy (Table 3).  
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Table 3. Adjuvant system (AS): Clinical studies. 

Adjuvants Phase Subjects Summary References 

AS04/HPV-16/18 (CervarixTM) III Girls and women (10–75 years) Ab responses in serum and cervicovaginal secretions up to 36 months [97] 

 III >8,000 women (15–25 years) 

Vaccine efficacy 92.9% against cervical intraepithelial neoplasia grade 2 and above 

(CIN2+) 34.9 months post vaccination and high vaccine efficacy against CIN2+ 

associated with 12 non-vaccine oncogenic strains (cross-protection) 

[98] 

 IIIb 
HIV-seronegative young African girls 

(10–25 years) 

100% seroprotection, which sustained up to 12-month post-vaccination, high 

neutralizing Abs and total IgG titers sustained for 8.4 years post-vaccination 
[99,100] 

 IIIb Young girls (9–15 years) 
Co-administered HPV-16/18/AS04 with inactivated hepatitis A and B (HAB) or  

dTpa-IPV: immunogenicity was no inferior than any of the vaccine alone 
[101] 

AS04/HBV (Fendrix®)  
Elderly, immunocompromised and renal 

insufficiency patients 

Rapid and high seroprotection at 3 month (74% vs. 52%) and 3 year (73% vs. 52%) 

compared to HB-alum vaccinated individuals 
[102] 

AS03 + Influenza A (H1N1 vaccine) II and III 

Volunteers (18–60 years), high-risk 

elderly (61–88 years) and children (3–9 

years) 

Higher seroconversion levels and 4-fold Ag-sparing effect compared to nonadjuvanted 

vaccine, ↑ H1N1 specific CD4+ T cells 
[103–105] 

AS03 + Influenza A (H1N1 vaccine) II Children (6 months–12 years) Higher immunogenicity compared to nonadjuvanated vaccines [106] 

AS03 + H1N1 influenza pandemic 

vaccine 2009 
 Multiple populations Vaccine efficacy: 72%–97% [107] 

AS02+RTS,S (Malaria vaccine) IIb 131 semi-immune adults Vaccine efficacy: 71% in 9 wks, strong Ab and T-cell responses to CSP  [108] 

 IIb 2,022 children (1–4 years)  
Vaccine efficacy: 29.9% for first clinical episodes and 57.7% for severe malaria. 

Vaccine efficacy: 48.6% at 18 months for several malaria cases 
[109] 

AS02 + Mtb72F (TB vaccine) I 
Purified Protein Derivative  

(PPD)-negative adults (18–40 years) 

↑ Humoral and polyfunctional CD4+ T-cell responses expressing CD40L, IL-2,  

TNF-α and IFN-γ, sustained for 9 months and 1 year after primary and booster 

immunization, respectively 

[110] 

AS02 + HBV III 

450 healthy individuals Renal 

insufficiency patients; inprior HB 

vaccinated individuals 

High seroprotection rates after first (75.9%) and second vaccine doses (99.7%) 

Seroprotection rate (76.9%) Seroprotection rates were 89.0% one month  

post-booster vaccination 

[111,112] 

AS02 + MAGE-A3   
Advanced tumor patients, Lung cancer 

patients 

Anti-MAGE-A3-specific Ab responses in 96% of the advanced tumor patients and 

30% patients showed ↑ IFN-γ responses 
[113,114] 

AS01/RTS,S (malaria vaccine) Preclinical Rhesus monkeys ↑ Ag-specific Ab and IFN-γ producing Th1-type responses  [115,116] 

AS01/MSP-1 (malaria vaccine) IIa 102 healthy human volunteers 
Vaccine efficacy was higher (50%) compared to RTS,S/AS02A vaccine; ↑ CSP-specific 

IgG titers and polyfunctional CD4+ T cells expressing IL-2, IFN-γ, TNF-α, or CD40L 
[117] 

AS01/M72 (TB vaccine) I/II 110 PPD-negative human volunteers Vaccine specific Th1 CD4+ T-cell responses compared to M72/AS02 vaccine [118] 

AS01/M72 (TB vaccine) II 540 children, aged 5–17 months RTS,S/AS01E induced higher CD4+ T-cell responses as compared to RTS,S/AS02D [119] 

AS01/F4 (HIV-1 vaccine) I/II 180 healthy volunteers (18–40 years) 
High frequencies of polyfunctional CD4+ T-cell responses characterized by CD40L, IL-2 in 

combination with TNF-α and/or IFN-γ, which persisted for 44 days post-vaccination.  
[120] 
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7.4. AS01 

Malaria vaccine adjuvanted with AS02 has shown great promise. However, to further increase the 

efficacy and to eliminate the infected hepatocytes, the AS01B adjuvant system has been evaluated by 

GSK. The AS01 adjuvant system is a liposomal formulation comprised of immune-stimulants MPL 

and QS21 (MPLA+QS21+a liposomal suspension). When tested in rhesus monkeys, RTS,S/AS01 

elicited higher antigen-specific antibody and IFN-γ producing Th1-type responses compared to any 

other adjuvant formulations [116]. Even when tested with MSP-1 antigen, AS01B adjuvanted vaccine 

elicited the highest anti-MSP1 antibodies and strong Th1 responses characterized by high numbers of 

IFN-γ secreting cells that were sustained for 24 weeks after final vaccination [121]. A RTS,S/AS01 

malaria vaccine was more efficacious than a RTS,S/AS02A vaccine, inducing increased IgG titers and 

polyfunctional CD4
+
 T cells expressing IL-2, IFN-γ, TNF-α, or CD40L [117] (Table 3). In a more 

recent clinical trial in children, RTS,S/AS01E also induced higher CD4
+
 T-cell responses as compared 

to RTS,S/AS02D [119].  

In view of the strong induction of cell-mediated immunity, AS01B was also evaluated in a human 

clinical trial with a TB vaccine in comparison to AS02. In this study, M72 antigen was formulated 

with either AS02 or AS01. While both M72/AS01 and M72/AS02 had an acceptable safety profile and 

elicited robust polyfunctional M72-specific CD4
+
 T-cell and antibody responses, the highest CD4

+
  

T-cell responses were induced by M72/AS01 [118]. Thus, the M72/AS01 was chosen for further 

vaccine development.  

8. Nanoemulsions 

Nanoemulsions have a mean droplet diameter of 50–1,000 nm and are particularly suited to 

mucosal delivery. Although not as extensively studied as liposomes, one nanoemulsion is licensed and 

several have progressed to human clinical trials. One of the best characterized nanoemulsions is MF59, 

an oil-in-water emulsion of ~250 nm consisting of the metabolizable oil squalene, Tween-80 and Span 

85 (reviewed in [122]). MF59 has an acceptable safety profile and was licensed in 1997 in Europe for 

an influenza vaccine, thereby becoming the first adjuvant licensed for human applications since alum. 

MF59 creates a depot effect and directly activates immune cells [123].  

Two other oil-in-water nanoemulsions, when formulated with smallpox, HIV-1, influenza, or 

hepatitis B antigens and delivered intranasally, mediated the production of not only robust virus 

neutralizing antibodies, but also IFN-γ and TNF-α, as well as elevated IgG2a and mucosal IgA levels. 

These oil-in-water emulsions, designated W205EC and W805EC, consist of 1% cetyl pyridum chloride 

(CPC), 5% Tween 20 or Tween 80, 8% ethanol in 64% soybean oil and 22% water (NanoBio 

Corporation, Ann Arbor, MI, USA). When formulated with smallpox, HIV-1, influenza, or hepatitis B 

antigens and delivered intranasally, these adjuvants mediated the production of not only robust virus 

neutralizing antibodies, but also IFN-γ and TNF-α, as well as elevated IgG2a and mucosal IgA levels. 

W805EC was evaluated in a human clinical trial with Fluzone
®

, which demonstrated that this adjuvant 

is well tolerated. Volunteers received a single intranasal dose with increasing antigen and adjuvant 

amounts. The highest dose (10 µg) of antigen in combination with 20% W805EC, induced increased 
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serum hemagglutination inhibition antibodies reactive with three influenza strains, as well as antigen-

specific IgA in the nasal wash [124]. 

MF59 has been combined with either a CpG ODN or a TLR4 agonist, E6020, in an influenza 

soluble trivalent egg-derived antigen formulation. While addition of CpG ODN or E6020 to MF59 did 

not increase influenza-specific antibody titers, a shift towards a more Th1-biased response was 

observed which suggests that co-formulation of MF59 with a TLR ligand may tailor the immune 

response to be more Th1 biased [125]. In contrast, co-delivery of E6020 within MF59 enhanced the 

magnitude of the antibody levels, as well as increased the breadth of the response, when formulated 

with Men B antigens or Men ACWY-CRM conjugate vaccine [126]; furthermore, addition of either 

E6020 or CpG ODN to the Men B vaccine in MF59 increased the percentage of antigen-specific cells 

secreting IL-2, TNF-α and IFN-γ, again demonstrating a shift towards a Th1 bias. Recently, CpG ODN 

was shown to both enhance the hemagglutination and virus neutralization titers, and specifically 

increase the IgG2a levels, when added to a trivalent influenza vaccine (FCC) formulated in MF59. In 

addition, a much more pronounced Th1 profile, characterized by a potent IFN-γ response, was induced 

when CpG ODN was added [127]. This effect of addition of the TLR agonists is of particular 

significance not only for these two vaccines, but also in general when a particular Th bias is needed  

for protection. 

9. Conclusions 

Many of the vaccines that have been recently developed, or will be in the future, consist of highly 

pure pathogen-derived antigens. This approach is necessary for vaccine development against  

live-threatening infectious diseases and cancers. For these antigens to induce robust immune 

responses, formulation with adjuvants is critical. Adjuvants can enhance the speed and magnitude of 

the development of immune responses, reduce the amount of antigen and/or vaccinations needed, 

increase cross-protection and reduce non-responsiveness, in particular of specific populations such as 

the very young or elderly. In view of these multiple roles, the current trend in vaccine formulation 

against both cancer and infectious diseases is to include at least one and often multiple components to 

engage PRRs, and thus activate the innate immune response, as well as at least one compound that 

stabilizes or targets antigens to the appropriate immune cells. Engagement of PRRs by their ligands is 

critical for induction of the innate immune response which then directs the adaptive immune response 

to be either Th1-, Th2- or Th17-biased. This ability to tailor the immune response is particularly 

important for vaccine development against difficult targets such as chronic bacterial or viral infections 

and cancer. Several classes of PRRs have been identified, including TLRs, NOD-like receptors (NLR), 

RIG-I-like receptors (RLRs) and C-type lectin receptors (RLRs). As described in this review, TLR 

agonists have been most extensively studied as adjuvants ands shown to be very promising. The TLR 

agonists often act synergistically with other classes of adjuvants used in the formulation or even with 

other TLR or NLR agonists. In fact, it is now known that one of the most effective vaccines, the  

live-attenuated yellow fever vaccine, activates multiple DC subsets through TLR2, TLR7/8 and TLR9, 

which leads to a robust balanced immune response. Aluminum salts and muramyl-dipeptides are two 

examples of NLR agonists used in licensed vaccines and clinical trials, respectively, and as more 

agonists of these additional classes of PRRs are identified, we can expect more to be tested as adjuvants. 



Vaccines 2014, 2 310 

 

 

Currently there are four licensed vaccines that contain multiple TLR agonists, BCG that contains 

TLR2 and TLR4 agonists, Cervarix and Fendrix that contain alum and MPL, and Cadi-05 (Immuvac) 

(Mycobacterium indicus pranii) against leprosy. This demonstrates that it is possible to overcome any 

real or perceived disadvantages of multi-adjuvanting. One problem is the increased expense and 

complexity of manufacturing and formulating a vaccine antigen with multiple adjuvants. Another 

major issue is the potential for more adverse effects in the recipients; however, the individual 

components of a combination adjuvant often can be used at a lower concentration than when 

administered as a stand-alone adjuvant. This may actually reduce side-effects and production costs. A 

third hurdle is the concern of regulatory agents with novel adjuvants and combinations in particular, 

which hopefully will become more easily alleviated once more information about the mechanisms of 

action of adjuvants—and vaccines in general—is gained. For instance, the mechanisms of action have 

been elucidated for several adjuvants, including MF59, alum, MPL (reviewed in [128]); however, 

efforts in this area, specifically for combination adjuvants, need to be expanded. Systems biology can 

now be applied to elucidate molecular signatures to new vaccine candidates in comparison to very 

effective current vaccines such as the yellow fever vaccine and thus predict efficacy and safety [129]; 

this is another new area of research that will assist in licensing new vaccine formulations. 

In this review we summarized recent and relevant information about many known and new adjuvant 

combinations including ISCOMs, liposomes, Adjuvant Systems, Montanides and triple combination 

adjuvants is clear that combinations of adjuvants have multiple advantages, and are critical to achieve 

the desired degree of vaccine efficacy against many new, challenging disease targets. Furthermore, 

there is strong evidence supporting inclusion of at least one PRR agonist. As these pathogens target 

different organs and tissues and cause different types of pathogenesis, there likely will be a need for a 

panel of combination adjuvants for specific disease targets, routes of delivery and/or populations. As 

recently described [128], depending on whether mainly humoral or cell-mediated immunity is required 

to induce protection against a pathogen, a TLR4 or TLR3 agonist might be selected to tailor the 

response. In addition, the choice of delivery vehicle should depend on the route of immunization, 

mucosal or parenteral. When targeting specific populations such as neonates or the elderly, adjuvant 

selection should take the expression levels of PRRs in these populations into consideration. As more 

information becomes available on the efficacy, safety and mechanism of action, we can expect an 

increase in the number of licensed vaccines containing various combination adjuvants.  
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