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Abstract

Background/Objectives

Understanding the factors underlying the spatio-temporal distribution of infectious diseases

provides useful information regarding their prevention and control. Dengue fever spatio-

temporal patterns result from complex interactions between the virus, the host, and the vec-

tor. These interactions can be influenced by environmental conditions. Our objectives were

to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to

identify some of the main underlying factors, and to predict the spatial evolution of dengue

fever under changing climatic conditions, at the 2100 horizon.

Methods

We used principal component analysis and support vector machines to analyse and model

the influence of climate and socio-economic variables on the mean spatial distribution of

24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledo-

nia. We then modelled and estimated the future evolution of dengue incidence rates using a

regional downscaling of future climate projections.

Results

The spatial distribution of dengue fever cases is highly heterogeneous. The variables most

associated with this observed heterogeneity are the mean temperature, the mean number

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004211 December 1, 2015 1 / 31

OPEN ACCESS

Citation: Teurlai M, Menkès CE, Cavarero V,
Degallier N, Descloux E, Grangeon J-P, et al. (2015)
Socio-economic and Climate Factors Associated with
Dengue Fever Spatial Heterogeneity: A Worked
Example in New Caledonia. PLoS Negl Trop Dis 9
(12): e0004211. doi:10.1371/journal.pntd.0004211

Editor: David Harley, Australian National University,
AUSTRALIA

Received: July 29, 2014

Accepted: October 13, 2015

Published: December 1, 2015

Copyright: © 2015 Teurlai et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: CMIP5 climate
projections are freely available at: http://www-pcmdi.
llnl.gov/. Socio-conomic data are freely available at:
http://www.isee.nc/population/population.html, or
upon request to: isee@isee.nc. Observed
meteorological data are available for researchers and
students upon request to Météo France Nouvelle-
Calédonie. The request must be performed through
their website at: http://www.meteo.nc/donnees-
publiques-enseignement. Epidemiological data are
available upon request to the Health Department of
the Direction of Sanitary and Social Affairs (DASS-

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0004211&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www-pcmdi.llnl.gov/
http://www-pcmdi.llnl.gov/
http://www.isee.nc/population/population.html
http://www.meteo.nc/donnees-publiques-enseignement
http://www.meteo.nc/donnees-publiques-enseignement


of people per premise, and the mean percentage of unemployed people, a variable highly

correlated with people's way of life. Rainfall does not seem to play an important role in the

spatial distribution of dengue cases during epidemics. By the end of the 21st century, if tem-

perature increases by approximately 3°C, mean incidence rates during epidemics could

double.

Conclusion

In New Caledonia, a subtropical insular environment, both temperature and socio-economic

conditions are influencing the spatial spread of dengue fever. Extension of this study to

other countries worldwide should improve the knowledge about climate influence on den-

gue burden and about the complex interplay between different factors. This study presents

a methodology that can be used as a step by step guide to model dengue spatial heteroge-

neity in other countries.

Author Summary

Dengue fever is the most important viral arthropod-borne disease worldwide and its geo-
graphical expansion during the past decades has been of growing concern for scientists
and public health authorities because of its heavy sanitary burden and economic impacts.
In the absence of an effective vaccine, control is currently limited to vector-control mea-
sures. In this context, understanding the sociologic, entomologic and environmental fac-
tors underlying dengue dynamics is essential and can provide public health authorities
with sound information about control measures to be implemented. In this study, we ana-
lyse socio-economic, climatic and epidemiological data to understand the impact of the
studied factors on the spatial distribution of dengue cases during epidemic years in New
Caledonia, a French island located in the South Pacific. We identify at risk areas, and find
that temperature and people’s way of life are key factors determining the level of viral cir-
culation in New Caledonia. Hence, communication campaigns fostering individual protec-
tion measures against mosquito bites could help reduce dengue burden in New Caledonia.
Using projections of temperature under different scenarios of climate change, we find that
dengue incidence rates during epidemics could double by the end of the century, with
areas at low risk of dengue fever being highly affected in the future.

Introduction
Dengue fever is the most important mosquito-borne viral disease, with an estimated 50 million
people being infected each year and 2.5 billion people living in areas at risk of dengue world-
wide [1]. The true burden of clinically apparent dengue could be twice as high, and the total
burden of dengue fever infections could reach 390 million people when including asymptom-
atic cases [2]. Whereas only nine countries were affected by dengue epidemics in the 1970's,
more than a hundred countries are now reporting dengue outbreaks on a regular basis, making
dengue fever the most rapidly spreading mosquito-borne viral disease in the world [1,2]. This
rapid global spatial spread over the past 40 years probably results from recent socio-economic
changes such as global population growth and uncontrolled urbanisation. Lack of effective
mosquito control in endemic areas, increased international air traffic or decay in public health
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infra-structure in developing countries are also important factors that could explain the rapid
regional spread of the disease [3–6]. However, in a given country where there are sufficient
numbers of susceptible hosts, these factors need to be associated with suitable climate condi-
tions before dengue fever can establish, since it is transmitted by mosquito species whose life
cycle is influenced by temperature, humidity and rainfall [7–9]. Indeed, several studies have
pointed out that the current geographic distribution of dengue fever or its vector worldwide
could be predicted accurately based on climate variables using either statistical models [10] or
deterministic models [11–13]. Other studies have pointed out that climate change could have
profound consequences on the epidemiology of dengue fever, because increased temperature
and rainfall could facilitate viral transmission and could lead to the geographic expansion of
the mosquito species responsible for its transmission [11,14–17].

The complex interplay and relative importance of each factor in the occurrence and spread
of dengue fever epidemics might differ from one country to another, depending on the specific
climate conditions, cultural and socio-economic environment the virus circulates in [18]. Iden-
tifying the factors limiting dengue fever spatial spread at a national level could help under-
standing the worldwide pattern of dengue disease, could help predicting its future spatial
distribution, and could provide national decisions-makers with useful information regarding
the appropriate control measures to be implemented.

Most studies trying to identify dengue risk factors spatially were performed at a city scale or
a local scale (< 80 km) [19–34]. Among these studies, some have identified risk factors for the
presence of Aedesmosquito species, such as socio-economic factors [29,30], proximity to spe-
cific plantations [28,32], proximity of potential breeding sites [22,28,29,32], or human behav-
iour [30,32]. Some studies highlighted the importance of human movement [23,26,31,33] or
population immunity [34] in shaping the spatial transmission of dengue fever at small spatial
scales. High dengue incidence rates have also been found in neighbourhoods with low social
income [20,26], difficult access to piped water [21,26], or no implementation of mosquito pro-
tection measures [21,27].

Spatial analyses at a country or territorial scale (> 200 km) are scarce. Some of these studies
focused on the spatio-temporal dynamics of the disease only [35–37] and proposed hypotheses
about the underlying processes, but did not include analyses of potential explicative factors. To
our knowledge, there are only five studies to date identifying and quantifying spatial risk fac-
tors for dengue at a “national” scale> ~200 km and< ~1000 km. Four studies identified tem-
perature as having a major influence on the spatial distribution of locally acquired dengue
cases [38–41], the last one did not assess the role of climate factors [42]. The role of other fac-
tors in the spatial distribution of dengue cases varied from one place to another. For example,
in Australia (Queensland) [38] and Taiwan [40], rainfall seemed to play a minor role whereas
in Brazil, rainfall played a major role [39]. In Taiwan [40] and Argentina [41], urbanization
level was a key factor in dengue fever spatial distribution, and in one province of Thailand [42],
the main factor identified was the proximity to major urban centres. No association was found
with socio-economic covariates in Argentina [41] or Australia [38].

New Caledonia, where the present study takes place, has a unique situation: it is a developed
insular territory located in the inter-tropical area of the South Pacific where the access to high
quality data and the lack of terrestrial borders with other countries make it a natural laboratory
to study dengue dynamics. A gross average of ten imported cases is detected each year by the
Public Health authorities. However, large dengue epidemics develop only every three to five
years, sometimes causing the circulation of the same serotype during two consecutive years
[43]. A recent study analysing the temporal relationship between dengue epidemic occurrence
and climate variables at an inter-annual scale showed that the development of an epidemic in
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New Caledonia needs precise climate conditions relying on both temperature and relative
humidity [43].

The objectives of the present study were i) to characterise the spatial distribution of dengue
cases in New Caledonia once an epidemic spreads over the territory; ii) to determine which of
possible covariates are shaping the observed distribution; iii) to explore the potential spatial
distribution of dengue cases under future climate projections.

We present a complete methodology, from data collection, data transformation, variable
selection, and application to future climate projections. We address a number of methodologi-
cal issues such as spatial autocorrelation, correlation between explanatory variables, or poten-
tial non-linearity between epidemiological data and explanatory covariates.

Material and Methods
All analyses and figures were performed using R software version 3.2.0 [44], except S3 Fig.

Study area
New Caledonia is a French territory, located in the Pacific Ocean 1,500 km East of Australia. It
is divided into 33 communes covering 18,576 km2. Out of the 245,344 inhabitants (2009),
around 58% (147,365 people) live in Noumea, the main city, and its surroundings. The rest of
the population is scattered in small towns of about 2,000 people, or live in rural areas, including
traditional Melanesian settlements locally called “tribes” (Fig 1). Although the average popula-
tion density outside Noumea is very low (5.3 inhabitants per km2), local densities can be high
as people gather in small settlements.

New Caledonia is located at the limit of the tropical zone between latitudes 19° and 23°
South. The East coast and the West coast are separated by a mountain range culminating at
1629 m. Climate is heterogeneous: the East coast and the southern tip of the main island get
more rain than the West coast, as mountains provide a vertical lift to the warm and humid air
brought by trade winds. Average rainfall range from 800 mm/year in some western weather
stations to 3200 mm/year in the East. Temperature can drop below 10°C during the cool season
on clear nights and sometimes rise above 35°C due to the influence of tropical air masses [45].

From an oversimplified point of view, there are three population groups, having different
cultural and social habits: Melanesian people, people of French descent who migrated two hun-
dred years ago, and people from various origins who migrated recently. Although the three
groups are spatially partially mixed, Melanesian people live mostly on the East coast, whereas
the second group live mostly on the West coast and the third group live mainly in Noumea.

In New Caledonia, dengue represents a major public health problem with large epidemics
affecting the territory every three to five years and involving a succession of all four serotypes
[43,46–48]. Co-circulation of different dengue virus serotypes (DENV1-4) during major epi-
demics is rare, and has been observed only once (2009). Before 2003, vector control measures
consisted in systematic chemical control of adult mosquitoes covering large areas during the
warm season, independently from the occurrence of dengue cases. Since 2003, systematic
spreading of adulticide has been stopped, and vector control measures include continuous
large communication and prevention campaigns fostering source reduction aimed at all citi-
zens, as well as focal chemical control of adult mosquitoes 100 m around declared cases within
24 h of notification. Public Health infrastructure is reliable, and the surveillance system for
dengue fever has been efficient for many years. All people have access to medical care, even
though people living in remote areas might have more difficulties to reach local health centres.

Multi-factorial Modelling of Dengue Epidemics
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Data
Epidemiological data. We studied 24,272 cases of dengue fever reported to the Direction

of Sanitary and Social Affairs (DASS-NC) from 1st January 1995 to 30th September 2012, a
period over which the spatial location of cases was recorded at the commune level. For each
reported case, the date retained to calculate incidence rates was the date of consultation, which
can differ from the date of infection by one to two weeks. Cases were recorded on a clinical
basis, but more than 71% of declared cases have also been laboratory confirmed either by virus
isolation, viral RNA detection (RT-PCR) or NS1 antigen detection (ELISA), or by detection of
IgM (ELISA). During the study period, changes in the surveillance system have been homoge-
neous over the country, making spatial analysis of mean incidence rates possible.

For each of the 33 communes composing New Caledonia, we calculated mean yearly age-
standardised incidence rates over epidemic years during the study period, i.e. 1995, 1996, 1998,

Fig 1. General map of New Caledonia. The map shows the location of towns (white dots), tribes (black dots), and weather stations registering temperature
(red crosses) and rainfall (blue crosses) in New Caledonia. The background colour represents the digital elevation model (altitude).

doi:10.1371/journal.pntd.0004211.g001
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2003, 2004, 2008 and 2009. Epidemic years were defined according to the tercile method
described in Descloux et al. [43]: a year is considered epidemic if the annual incidence rate of
this year over the entire territory is in the upper tercile of annual incidence rates calculated
between 1971 and 2012 (i.e. annual incidence rate over the territory> = 18 cases per 10,000
people per year). As the majority of outbreaks display a similar seasonal evolution (beginning
in January, epidemic peak between March and May, and end in July) and according to the cli-
mate seasonality in New Caledonia, to calculate annual incidence rates, in each commune, we
aggregated data annually from 1st September of epidemic year n-1 to 31st August of epidemic
year n. We then calculated, in each commune, the average annual incidence rate across epi-
demic years. Average incidence rates over epidemic years of the study period are a robust indi-
cator of how easily the virus circulates in a given commune during epidemics (i.e. from 1st

September of year n-1 to 31st August of year n of the selected years), independently from the
inter-annual variability of spatial patterns from one epidemic year to another.

Age-standardisation was necessary as the age structure of the population varies from one
commune to another, and age groups are affected differently by dengue epidemics (see S1 Fig).
We performed age-standardisation using a direct method [49], which consists in calculating
the expected incidence rate in each commune if all communes had the same (arbitrary) age-
structure. We chose the World Health Organisation standardised population as the reference
population for the arbitrary age-structure [49]. Population numbers and age-structure of each
commune used to calculate age-specific incidence rates were interpolated linearly from the
1989, 1996, 2004 and 2009 territorial censuses [50–53].

Annual incidence rates averaged over epidemic years of the study period were artificially
low in 4 of the islands surrounding New Caledonia (Mare, Lifou, Ouvéa, Isle of Pines) as the
only vector of dengue in New Caledonia, Aedes aegypti, was not present over the entire study
period [54–56]. We thus decided to limit the analysis to New Caledonia's mainland, compris-
ing 28 communes.

Socio-economic covariates. From the 2009 territorial census [53], recorded at the com-
mune level, we selected a total of 51 variables that could potentially influence dengue transmis-
sion. These variables can broadly be categorised in sociologic variables reflecting people's
activity and financial means, variables linked to human movement within or between com-
munes, variables linked to people's housing, and variables linked to human local density (see
Table 1 for a complete list of these variables). Because human density per commune is very low
and does not reflect local densities, we decided not to include it in the analysis. Fig 2 shows
maps of two of these social variables. In New-Caledonia, the percentage of unemployed people
(Fig 2D) varies from 3 to 27% of the population depending on the commune. Unemployment
is higher on the East coast than on the West coast, with the fraction of unemployed people
being over 10% in most of the eastern communes. The average number of people per house-
hold represents local densities (Fig 2E). It varies from 2.9 to 5.3 people per household over the
territory, and is highest in the communes in the North-East.

Climate covariates: observed data and upscaling to the communal scale. Observed rain-
fall, maximal temperature (Max temp) and minimal temperature (Min temp) were provided by
Meteo France on a daily basis from 1995 to 2012 in 118 weather stations scattered all over New
Caledonia. We first selected data from the same time periods as the epidemiological data (Sep-
tember of epidemic year n-1 to August of epidemic year n). To handle missing data, only time
series covering at least a full continuous year were kept resulting in 67 locations for tempera-
ture, and 113 locations for rainfall (see Fig 1). For each variable, at each weather station, we
then calculated a typical year time-series, 365 days long, by averaging data recorded on the
same day and month across the years of the study period (i.e. we averaged data recorded every
January 1st, every January 2nd, etc.). We then calculated the average of these 365 day-long time
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Table 1. Correlation between dengue incidence rates and socio-economic or climate variables

Type Variable Rho* p value Category Description

Climate Mean temp 0.619 0.0004 temperature Average mean temperature

Coldest quarter 0.617 0.0005 temperature Average minimum temperature during the coldest quarter

Coldest month 0.608 0.0006 temperature Average minimum temperature during the coldest month

Min temp 0.586 0.0010 temperature Average minimum temperature

Wettest quarter 0.563 0.0018 rainfall Average daily rainfall during the wettest quarter

Wettest month 0.559 0.0020 rainfall Average daily rainfall during the wettest month

Isothermality -0.515 0.0051 temperature
range

Average of the difference between mean and minimum temperature,
divided by mean temperature

Warmest quarter 0.508 0.0058 temperature Average minimum temperature during the warmest quarter

Nb of days max temp
32°C JFM

-0.508 0.0058 temperature
range

Average number of days with maximal temperature exceeding 32°C in
January, February and March

Temp range -0.491 0.0080 temperature
range

Average temperature range (difference between maximum and minimum
temperature)

Warmest month 0.483 0.0093 temperature Average minimum temperature during the warmest month

Rainfall 0.473 0.0109 rainfall Average daily rainfall

Nb of days rainfall 1
mm Jan

0.419 0.0264 rainfall Average number of days with daily rainfall exceeding 1mm during
January

Nb of days rainfall 2
mm Jan

0.408 0.0313 rainfall Average number of days with daily rainfall exceeding 2mm during
January

Driest month 0.296 0.1262 rainfall Average daily rainfall during the driest month

Nb of days max temp
30°C JFM

-0.202 0.3015 temperature
range

Average number of days with maximal temperature exceeding 30°C in
January, February and March

Driest quarter 0.125 0.5265 rainfall Average daily rainfall during the driest quarters

Max temp -0.062 0.7548 temperature Average maximum temperature

Nb of days max temp
28°C JFM

-0.007 0.9700 temperature
range

Average number of days with maximal temperature exceeding 28°C in
January, February and March

Altitude dem -0.186 0.3440 Digital elevation model (altitude)

Socio-economic Activity unemployed 0.759 < 0.0001 Activity Percentage of unemployed people

Transport engine -0.744 < 0.0001 Human
movement

Percentage of people using a motorised vehicle to get around

Nb people per
household

0.739 < 0.0001 Human
density

Average number of people per premise

Transport walk 0.722 < 0.0001 Human
movement

Percentage of people getting around by foot

Activity employed -0.708 < 0.0001 Activity Percentage of people working (any occupational activity)

No car 0.704 < 0.0001 Human
movement

Percentage of premises with no car

Activity other non
working

0.648 0.0002 Activity Percentage of people that are unoccupied but are neither students nor
retired

Proportion tribal
population

0.632 0.0003 Activity Percentage of people living in a tribe

Spc** agri 0.597 0.0008 Activity Percentage of people working as farmers

WC inside -0.568 0.0016 Housing Percentage of premises with toilets inside

Surf < 40 m2 0.568 0.0016 Human
density

Percentage of premises under 40 m2

House -0.540 0.0030 Housing Percentage of premises that are houses

Live in same
commune 04

0.532 0.0036 Human
movement

Percentage of people living in the commune before 2004

Air conditioning -0.528 0.0039 Housing Percentage of premises with at least one room with air conditioning

Live in another
commune 04

-0.525 0.0042 Human
movement

Percentage of people living in another commune before 2004

(Continued)
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Table 1. (Continued)

Type Variable Rho* p value Category Description

Activity retired -0.490 0.0081 Activity Percentage of retired people

Electricity -0.488 0.0084 Housing Percentage of premises with access to public electricity

Spc** arti -0.480 0.0097 Activity Percentage of people working as artisans

Work other commune -0.477 0.0103 Human
movement

Percentage of people employed in another commune

Born NC 0.475 0.0106 Activity Percentage of people born in New Caledonia

Born France mainland -0.470 0.0115 Activity Percentage of people born in France, mainland

Born FP -0.466 0.0125 Activity Percentage of people born in French Polynesia

Concrete slab -0.460 0.0139 Housing Percentage of premises built on a concrete slab

Surf > 40 & < 120_m2 -0.453 0.0154 Human
density

Percentage of premises between 40 m2 and 120 m2

Surf >120_m2 -0.448 0.0169 Human
density

Percentage of premises over 120 m2

Born abroad -0.433 0.0215 Activity Percentage of people born abroad

Nb of rooms -0.428 0.0230 Human
density

Average number of bedrooms per premise

Hut 0.387 0.0421 Housing Percentage of premises that are huts

No bikes 0.360 0.0599 Human
movement

Percentage of premises with no bicycle nor motorcycle

Live France mainland
04

-0.349 0.0685 Human
movement

Percentage of people living in the mainland of France before 2004

Individual water 0.345 0.0722 Housing Percentage of premises using an individual watering place located
outside

Shed 0.330 0.0866 Housing Percentage of premises that are temporary sheds

Born WF -0.305 0.1150 Activity Percentage of people born in Wallis and Futuna

Tap water -0.302 0.1179 Housing Percentage of premises with access to tap water

Sector 1 0.262 0.1774 Activity Percentage of people employed in the primary sector (agriculture. . .)

Main home 0.258 0.1849 Human
movement

Percentage of premises that are the main home of a household

Sector 2 -0.244 0.2115 Activity Percentage of people employed in the secondary sector (industry. . .)

Spc** executives -0.233 0.2334 Activity Percentage of people working as managers or executives

Spc** labour -0.206 0.2926 Activity Percentage of people working as labour workers

Live abroad 04 -0.170 0.3861 Human
movement

Percentage of people living abroad before 2004

Transport public 0.164 0.4037 Human
movement

Percentage of people using public transportation to get around

Studying 0.148 0.4529 Activity Percentage of people unoccupied and studying

Activity
undergraduate
student

0.148 0.4529 Activity Percentage of people registered in an undergraduate course

Collective water 0.132 0.5037 Housing Percentage of premises using collective watering places

Sector 3 0.024 0.9015 Activity Percentage of people employed in the tertiary sector (sales, trade,
services. . .)

Spc** other 0.024 0.9049 Activity Percentage of people working but not as farmers nor managers nor
workmen nor artisans nor employees

Spc** employee 0.001 0.9958 Activity Percentage of people working as employees

* Pearson correlation coefficient (Rho) with dengue mean (across epidemic years) annual incidence rates and associated p-value. Variables are sorted by

category (socio-economic or climate) and by decreasing order of their absolute Pearson correlation coefficient. Variables selected for the multivariable

modelling are in bold

** Spc = Socio-professional category

doi:10.1371/journal.pntd.0004211.t001
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Fig 2. Maps of the 5 explanatory variables selected for modelling dengue incidence rates. A: average mean temperature; B: average daily rainfall;C:
average daily rainfall during the wettest quarter;D: percentage of unemployed people; E: average number of people per premise.

doi:10.1371/journal.pntd.0004211.g002
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series. This average is hereafter called “climate index”, thus obtaining one climate index for
each climate variable at each weather station.

To model the link between climate and incidence rates by means of regression models, we
had to project the punctual station-based climate data to the same spatial level as the epidemio-
logical data (i.e. the commune level). In order to take into account the fact that incidence rates
are calculated from individual data, and the fact that the population is distributed heteroge-
neously within each commune, we assigned every tribe the climate index value of the closest
station, assuming all people and all mosquitoes within a tribe to be exposed to the same climate
conditions. We then averaged the climate index values over all tribes in the same commune,
repeated the process over all towns of the same commune, and then calculated an average of
the tribe and town values, weighted by the respective proportion of people living in either
place, thus obtaining a mean climate index value per commune (see Fig 2). The distance
between a tribe or a town and the closest station ranges from 0 km to 27 km, with a mean of 9
km (see Fig 1). This “projection” process was done for rainfall, minimal and maximal tempera-
ture, and for 16 other climate indices built from these three raw variables (see Table 1 for a
complete list). The 16 climate indices we built included the key variables most explicative of
the inter-annual variability of dengue epidemics in New Caledonia, i.e. the number of days
when maximal temperature exceeds 32°C during January/February/March [43], and the num-
ber of days when precipitation exceeds 2 mm in January [57]. They also included variables
known to have an influence on biological processes (see all other climate indices in Table 1)
[58]. Fig 2 shows maps of three of the climate indices built: the mean temperature (Fig 2A), the
average daily rainfall (Fig 2B) and the average daily rainfall during the wettest quarter of the
year (Fig 2C). Mean temperature as experienced by people during epidemic years ranges from
22°C to 25°C over the territory. Globally, mean temperature experienced by people is higher in
the Northern part of New Caledonia than in its Southern part. People living on the East coast
are receiving more rainfall (up to 8 mm/day on average over the epidemic years) than people
living on the West coast (barely more than 5 mm/day on average over the epidemic years). On
the East coast, there are two “hotspots” of heavy rainfall: communes of Touho, Poindimié and
Ponérihouen, in the middle-North of the East coast, and Yaté in the South. All observed cli-
mate variables and those built from these observed variables are referred to as "observed data"
in the article.

As we are here focusing on modelling the spatial variability of dengue incidence rates and
not their inter-annual variability, we have not included variables linked to the El Niño South-
ern Oscillation in the analysis.

Climate covariates: assessing the trends of future mean temperature in New Caledo-
nia. To obtain maps of mean temperature under different global warming scenarios, we first
retrieved historical (1971–2005) and future (2006–2099) projections of mean temperature sim-
ulated by ten coupled ocean-atmosphere models from the 5th Phase of the Coupled Model
Intercomparison Project–Assessment Report 4 (CMIP5-AR4) experiments [59,60]. The ten
selected models are "bcc-csm1-1", "CanESM2", "CCSM4", "CNRM-CM5", "HadGEM2-CC",
"inmcm4", "IPSL-CM5A-MR", "IPSL-CM5B-LR", "MPI-ESM-LR", and "NorESM1-M". They
were selected based on their capacity to reproduce a reasonable climate in the South Pacific
[61]. All GCM used simulate some ENSO-like variability but with a large disparity [61]. Two
scenarios of emission (greenhouse gases and aerosols)—referred to as "Representative Concen-
tration Pathways" (RCPs)–were chosen: RCP 8.5 refers to a high emission scenario while RCP
4.5 refers to a midrange mitigation emission scenario. In this article, these data are respectively
denoted "historical" (1971–2005), "RCP 4.5" and "RCP 8.5" (2006–2099).

Model simulations are available at different spatial locations depending on the spatial grid
used by each model. For each model, we selected time-series from the spatial point closest to
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Noumea. We first assessed the necessity of performing a statistical downscaling to correct the
retrieved time series so they fit the locally observed temperature time series [62], but concluded
that correction was not necessary for estimating average increases in mean temperature in New
Caledonia. For the periods 2010–2029 and 2080–2099, we calculated the increase of mean tem-
perature averaged over the 20-year periods compared to the 1980–1999 historical data average
(see S2 Fig). By comparing this mean increase to the mean increase in time series taken from
other close grid points around New Caledonia, we concluded that this mean increase could be
considered homogeneous over the whole territory. As all 10 selected models predictions were
coherent (see S3 Fig), we averaged the mean increases over all models. By applying this mean
increase to the map of current temperature experienced by people during epidemic years
(shown in Fig 2A), we obtained temperature maps for the periods 2010–2029 and 2080–2099
for both climate change scenarios. As projection errors are not readily available for each model,
to calculate prediction error of the projections of the mean increase in temperature, for each
20-years period and each scenario, we used the standard deviation across all 10 models as a
proxy (see S3 Fig to see the inter-model variability of temperature increase).

Altitudinal variation and upscaling to the communal scale. To assess the effect of altitu-
dinal variation on dengue incidence rates, we used the official New Caledonia’s digital elevation
model, available on a 10 m resolution grid map ([63] and Fig 1). To obtain a map of the mean
altitude of human settlements per commune (variable “dem” in Table 1), we applied the same
upscaling algorithm as for the climate data: we assigned each tribe and each city the altitude of
the pixel the tribe or city was lying in, then we calculated a mean altitude over all tribes belong-
ing to a same commune, a mean altitude over all cities belonging to a same commune, and
finally calculated an average of the tribe and city mean altitude weighted by the percentage of
people living in either. We thus obtained a map of mean altitude per commune that takes into
account only the altitude of the locations where hosts are present, and where dengue transmis-
sion can actually occur. Although mountains in New Caledonia can be as high as 1 629 m, in
24 out of the 28 communes included in the study, people live below 100 m of altitude in aver-
age. In 3 communes, people live between 100 m and 150 m in average. In only one commune
people live at 250 m in average.

Multivariable modelling of past dengue incidence rates
Spatial autocorrelation of the response variable. In order to assess the global spatial

autocorrelation (SAC) of average (across epidemic years) yearly dengue incidence rates over
the territory to know whether we had to take it into account in the modelling process, we used
semi-variograms [64]. We compared the semi-variogram of observed incidence rates to 200
semi-variograms obtained by random permutations (i.e. without replacement) of the spatial
locations of each commune centroid. Distances between pairs of commune centroids were cal-
culated along the roads to take into account the potential influence of the central mountainous
chain in the spatial spread of the disease. These semi-variograms measure the global auto-cor-
relation over the entire territory. Therefore, they are not able to detect potential localised auto-
correlation. We also assessed the SAC of annual incidence rates for each epidemic year, to
assess the presence of global diffusion patterns that could be masked by calculating the average
annual incidence rates across epidemic years.

Pre-selection of explanatory variables. To reduce the number of variables to study, the
number of models to build and to facilitate interpretation, we first used principal component
analysis (PCA) [65] separately on climate and socio-economic variables to identify clusters of
correlated explanatory variables. In each cluster, we selected the variable most correlated with
average (across epidemic years) annual dengue incidence rates as representative of all other
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variables in the cluster. We were then left with a set of three climate variables and two socio-
economic variables as inputs for modelling the incidence rates (see Fig 2).

Modelling the spatial association between explanatory variables and dengue incidence
rates. To overcome several methodological issues such as multi-collinearity between explana-
tory variables [66,67] or the possible existence of complex non-linear links between the explan-
atory and the response variables, we chose to use Support Vector Machines (SVM) to model
the link between the five selected explanatory variables and mean yearly dengue incidence
rates. SVM is a non-parametric supervised learning algorithm that can be used in high dimen-
sional multivariable classification or regression problems [68,69]. It can be used to model non-
linear links without any a priori knowledge of the shape of the link [70]. The advantages of
using such models are that they do not rely on any assumption regarding the distribution of
the response variable; hence there is no need for checking the normality or homoscedasticity of
residuals. As they are non-parametric, they are also robust to collinearity between explanatory
variables and, compared to classic parametric non-linear models, there is no need for data
exploration to specify the shape of the link between the explanatory and the response variables.
Another advantage of using such non-linear models to begin with instead of classic linear ones
is that explanatory variables potentially linked to the response variable in a non-linear way are
not wrongly discarded.

To classify the selected explanatory variables according to their importance in shaping den-
gue spatial distribution, we compared the overall performance of models based on all possible
combinations of one, two or three variables. For each possible combination of explanatory
variables, we optimised the SVM parameters combination by building several models using a
range of different values for the parameters and selecting the best parameters combination
by minimising the models root mean squared errors (RMSE), calculated using a 10-fold cross
validation procedure [71]. The RMSE is a global model performance criterion calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1ðŷi � yiÞ2

n

s
, where yi is the observed dengue incidence rate in commune

i, ŷ i is the incidence rate in commune i as predicted by the model, and n is the total number of
communes included in the model. The influence of each explanatory variable on the spatial dis-
tribution of dengue cases was then assessed by comparing the RMSE of all optimised models:
models based on the best explicative variables have the lowest RMSE.

Specific model for exploring dengue spatial trends in the future under
changing climatic conditions
As described below in the results section, temperature is a key factor determining dengue spa-
tial variability over New Caledonia. We thus decided to explore the evolution of dengue average
annual incidence rates during epidemics under changing climate conditions (considering all
others variables as remaining constant), by applying the best explicative multivariable model
with inputs from maps of temperature for the future (see methods/data/climate covariates:
assessing the trends of future mean temperature in New Caledonia). Because the use of kernels
in non–linear SVMmodels impairs predictions outside the observed range of explanatory vari-
ables, we built a linear approximation of the best SVMmodel on present observed data. The
linear approximation consists of a simple linear model linking the two best explanatory vari-
ables to observed dengue age-standardised average (across epidemic years) annual incidence
rates as the response variable. Normality and homoscedasticity of residuals were confirmed by
the Shapiro-Wilks' test and the Bartlett's test respectively [67]. To evaluate the error in inci-
dence rates predictions due to the inter-GCM variability of mean temperature increase projec-
tions, we calculated, for each time-period and each scenario, the average annual incidence rates
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during epidemics as predicted by each GCM, and then calculated a standard deviation of pre-
dicted annual incidence rates across the different models.

Results

Spatial distribution of dengue cases
Fig 3 shows that once an epidemic spreads over the territory, dengue cases are distributed het-
erogeneously. Mean annual age-standardised incidence rates across epidemic years range from
22 to 375 cases per 10,000 people per year, with a mean across communes of 168 cases per
10,000 people per year and a standard deviation across communes of 83 cases per 10,000 peo-
ple per year. On average the East coast is more affected than the West coast. We can also see
that the North-eastern corner of New Caledonia is heavily affected, with dengue incidence
rates two to three times higher than in the rest of the territory.

Fig 3. Spatial heterogeneity of dengue annual incidence rates in New Caledonia.Map of annual incidence rates per commune averaged over epidemic
years of the 1995–2012 period (years 1995, 1996, 1998, 2003, 2004, 2008, 2009).

doi:10.1371/journal.pntd.0004211.g003

Multi-factorial Modelling of Dengue Epidemics

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004211 December 1, 2015 13 / 31



By definition, the average across epidemic years of age-standardised annual incidence rates
reflects mainly the spatial pattern of severe epidemics, i.e. epidemics of years 1995, 1998, 2003
and 2009. During years 1995, 1998 and 2003, the North-eastern corner was the most affected.
During the 2009 epidemic, the most affected communes were Voh and Koné, on the West
coast (see Fig 3 for the location of these communes), but the North Eastern corner was still
severely affected [72].

Autocorrelation of the response variable
The semi-variograms of dengue incidence rates did not reveal any significant spatial autocorre-
lation, whether they were calculated for each epidemic year separately or on the average inci-
dence rates across years. This suggests that the local spread of dengue viruses around a case
imported in a commune do not exceed the mean radius of a commune in New Caledonia, e.g.
approximately 13 kilometres. Hence, we did not incorporate any spatial structure into the sub-
sequent models.

Pre-selection of explanatory variables
Table 1 shows Pearson's correlation coefficients (rho) between each explanatory variable and
dengue age-standardised annual incidence rates averaged across epidemic years. Dengue is spa-
tially positively correlated with variables related to temperature and precipitation, but is nega-
tively correlated with variables reflecting mean thermal range or extreme thermal conditions
(see "Isothermality", "Temp range" or the number of days when maximum temperature exceeds
32°C in January, February and March in Table 1). This suggests that, in a given commune,
marked temporal variations of temperature is a factor limiting viral circulation. Based on the
linear dependence measure of correlation, dengue is also more strongly associated with tem-
perature than with precipitation. Socio-economic variables are highly spatially correlated to
dengue average (across epidemic years) annual incidence rates. Variables reflecting people's
way of life (e.g. place of birth), local human density (e.g. mean number of people per house-
hold, percentage of premises under 40 m2), or human movement are more correlated with den-
gue average (across epidemic years) annual incidence rates than variables related to the
housing type (e.g. premises with inside toilets) (absolute value of rho up to 0.75 for the former
and 0.58 for the latter). In particular, the fact that the place where people were born is spatially
significantly associated with dengue fever incidence rates (correlation coefficient around 0.5
for people born in New Caledonia and– 0.5 for people born elsewhere) whereas the type of
premise is not (absolute correlation coefficient lower than 0.3 for variables describing access to
water or electricity) suggests that individual behaviours have a stronger influence on incidence
rates than local housing conditions.

Fig 4 shows the PCA results. For clarity reasons, we only show the results of PCA performed
on the variables most spatially correlated with dengue average (across epidemic years) annual
incidence rates, with an absolute Pearson correlation coefficient over 0.6 for socio-economic
variables, and over 0.4 for climate variables (these thresholds were selected after verifying that
they did not modify the variable pre-selection results).

PCA of climate variables (Fig 4A) shows that in New Caledonia, temperature is the factor
accounting for most of the spatial climatic variability among communes. Temperature is highly
correlated with the first PCA axis which represents 68% of the total climatic variance. Temper-
ature and rainfall are not spatially correlated at the commune level. In each group of tempera-
ture or rainfall variables, the variables most spatially correlated with dengue average (across
epidemic years) annual incidence rates were the average mean temperature (Mean temp) and
the mean daily rainfall during the wettest quarter of the year (Wettest quarter) (see Table 1). In
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addition to these two variables, we decided to keep a third variable, the average daily rainfall,
for further statistical modelling, as this variable is more easily available in other countries or cli-
mate model simulations.

Fig 4B shows that the spatial variability of socio-economic factors mainly reflects the spatial
distribution of people with different cultural habits. Communes where a high proportion of
inhabitants live in a tribal way, in small premises, with few means of transportation and a high
percentage of unemployment are opposed to communes where many people live a western way
of life, in permanent buildings, using air conditioning and getting around using cars. Even
though the number of people per premise seems to be correlated with the proportion of people
living in tribes, we kept this variable as it stands out of the cluster of variables representing the
way of life. We thus decided to keep the percentage of unemployed people and the mean num-
ber of inhabitants per housing as representative of socio-economic factors for further statistical
modelling.

Modelling the spatial association between explanatory variables and
dengue average (across epidemic years) annual incidence rates
Table 2 shows the RMSE of the optimised models built on all possible combinations of one,
two or three of the five selected explanatory variables (Mean temperature, daily rainfall aver-
aged over the wettest quarter, average daily rainfall, number of people per household and frac-
tion of unemployed people).

When looking at univariable non-linear SVMmodels, the best variable explaining the spa-
tial heterogeneity of dengue average (across epidemic years) annual incidence rates is the per-
centage of unemployed people per commune. The second most important explanatory variable

Fig 4. Principal component analysis over the set of climatic variables (A) and socio-economic variables (B). The figure shows the correlation circles
of PCA performed on the variables most spatially correlated with dengue average (across epidemic years) annual incidence rates (see methods/multivariable
modelling of present dengue incidence rates/spatial autocorrelation of the response variable). Pearson correlation coefficients between variables can be
approximated by the angle between the corresponding arrows: 1 for a 0° angle, 0 for a 90° angle, and -1 for a 180° angle.

doi:10.1371/journal.pntd.0004211.g004
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is the mean temperature. Rainfall is the least explanatory variable of those selected for multi-
variable regression modelling. Moreover, the RMSE of models based on observed rainfall
almost equal the initial standard deviation (across the territory) of dengue average annual inci-
dence rates, which means that rainfall are poor predictors of dengue average annual incidence
rates during epidemic years. The relationship between dengue average annual incidence rates
and each of the explanatory variables is linear, except for the fraction of unemployed people
(S4 Fig). When looking at the spatial structure of dengue average annual incidence rates pre-
dicted by SVMmodels based only on one of the selected variables (S5 Fig), we see that temper-
ature captures mainly the South to North gradient of increasing incidence rates (S5B Fig)
whereas socio-economic variables captures the spatial heterogeneity between the West coast
and the East coast (S5E and S5F Fig). Temperature seems to have no influence in communes
located below 21°S (S5B Fig).

All models based on two explanatory variables and including at least one variable related to
rainfall (best RMSE of ~58 cases per 10,000 people per year) performed worse than the best
univariable model (RMSE of ~53 cases per 10,000 people per year). This suggests that in New

Table 2. Univariable andmultivariable modelling of dengue average (across epidemic years) annual incidence rates: variable selection according
to the RMSE of the SVMmodels

Variable 1* Variable 2* Variable 3* RMSE**

Activity unemployed - - 53

Nb people per household - - 68

Mean temp - - 69

Wettest quarter - - 72

Rainfall - - 75

Mean temp Nb people per household - 45

Mean temp Activity unemployed - 47

Activity unemployed Nb people per household - 49

Rainfall Nb people per household - 58

Rainfall Mean temp - 65

Wettest quarter Activity unemployed - 66

Wettest quarter Mean temp - 67

Rainfall Activity unemployed - 68

Wettest quarter Nb people per household - 69

Wettest quarter Rainfall - 73

Mean temp Nb people per household Activity unemployed 42

Mean temp Nb people per household Rainfall 47

Mean temp Activity unemployed Rainfall 48

Mean temp Activity unemployed Wettest quarter 49

Nb people per household Activity unemployed Rainfall 50

Nb people per household Mean temp Wettest quarter 52

Nb people per household Activity unemployed Wettest quarter 53

Nb people per household Rainfall Wettest quarter 63

Mean temp Rainfall Wettest quarter 66

Activity unemployed Rainfall Wettest quarter 65

* Variables included as explanatory variables for modelling dengue average (across epidemic years) annual incidence rates

** Root mean square error of each model, in number of cases /10,000 people / year. Models are classified first by the number of explanatory variables

used, then by increasing RMSE.

Models highlighted in bold perform better than the best univariable model

doi:10.1371/journal.pntd.0004211.t002
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Caledonia, rainfall has little influence on the spatial variability of dengue viral circulation at the
commune level. Models combining two explanatory variables (excluding rainfall) performed
better than models based on only one variable. The addition of a third explanatory variable did
not improve significantly model performances. Hence we focused our attention on models
combining two explanatory variables.

The best explicative model is a model predicting increasing average annual incidence rates
during epidemics in communes where the mean temperature and the mean number of people
per premise increase (see Fig 5). The influence of these two variables on the spatial structure of
dengue incidence rates is close to linear as shown by almost parallel contour lines on Fig 5A.
This model accurately predicts the sharp mean increase in incidence in the three communes of
the North East of New Caledonia (Hienghène, Ouégoa and Pouébo). The maximal error of the
model is observed for Farino (West coast), which is the only commune where all inhabitants
live at an altitude higher than 200 m above sea level.

Fig 6 shows the spatial structure of observed average (across epidemic years) annual inci-
dence rates (Fig 6A) and of average annual incidence rates as predicted by the best SVMmodel
based on two explanatory variables (Fig 6B). This model captures the observed spatial hetero-
geneity in average annual incidence rates between the East coast and the West coast, as well as
the sharp increase in the three communes of the North East.

Future trends in the spatial distribution of dengue cases under changing
climatic conditions
Table 3 shows, for both climate change scenarios, the average increase of mean temperature for
the two selected 20-year periods compared to the 1980–1999 historical simulations. All models
predict that the mean temperature will increase over time, with projections being more pessi-
mistic for RCP 8.5 simulations. The CMIP5-AR4 inter-model variability in temperature
increase is presented in Table 3 and S3 Fig. According to the RCP 8.5 scenario, temperature
could increase by more than 3°C by the end of the next century, with a standard deviation
across models of only 0.6°C, showing the strong coherency in different model projections.

Fig 6 shows a comparison of the average (across epidemic years) annual dengue incidence
rates predicted by the SVMmodel (panel 6B) or the linear model (panel 6C). The SVMmodel
performs slightly better than the linear one: the correlation coefficient between observed and
predicted incidence rates are 0.89 (SVM) and 0.85 (linear), and the RMSE are 42 and 43 cases/
10,000 people/year respectively for the SVM and the linear model. The low RMSE of the linear
model (~43 cases per 10,000 people per year) shows that the linear model based on the two
best explanatory variables is suitable. The Shapiro-Wilks and the Bartlett's test confirmed the
normality and homoscedasticity of residuals.

Fig 6D and 6E show the potential future spatial distribution of dengue incidence rates dur-
ing epidemics according to the RCP 4.5 and RCP 8.5 emission scenarios. By the end of the cen-
tury, dengue incidence rates during epidemic years could reach a maximum of 378 cases per
10,000 people per year in the most affected commune under the RCP 4.5 scenario (Fig 6D),
and 454 cases per 10,000 people per year in the most affected commune under the RCP 8.5 sce-
nario (Fig 6E). Under the RCP 8.5 scenario, communes at low risk now might experience a
sharp increase in dengue incidence rates during epidemic years from 64 to more than 200 cases
per 10,000 people per year. According to RCP 8.5 climate projections, the average (across com-
munes) dengue mean annual incidence rates during epidemic years could raise by 29 cases per
10,000 people per year for the 2010–2029 period, and by 149 cases per 10,000 people per year
for the 2080–2099 period, almost doubling dengue burden in New Caledonia by the end of the
century (Table 3).
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Fig 5. Results of the best multivariable model of the spatial structure of dengue incidence rates. A:
Predicted mean (across epidemic years) annual incidence rates as a function of the two best explanatory
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Discussion

Association between climate factors and dengue spatial dynamics in
New Caledonia
The spatial association found between temperature and dengue incidence rates during epidem-
ics in New Caledonia can be explained by the influence of temperature on the life cycle of the
mosquito transmitting the virus in New Caledonia, Aedes aegypti. High temperatures increase
the productivity of the breeding sites through an acceleration of the metabolism of the mos-
quito, and a faster development of the micro-organisms the larvae feed on, resulting in a higher
vector density even with the same number of breeding sites [7,73–75]. High temperatures also
speed up the extrinsic incubation period [7,76,77], with the effect that an increased proportion
of females Ae. aegypti can reach the infectious stage before dying. Finally, warmer temperatures
accelerate the mosquito gonotrophic cycle, and make females Ae. aegyptimore aggressive
[7,74,78–80], increasing the biting rate and the frequency of potential transmission of viral par-
ticles to susceptible hosts. Regarding the effect of increasing temperatures on the mortality of
Ae. aegypti adult mosquitoes, a review of 50 field mark-release-recapture studies has shown
that in the field, unless temperatures become extreme (over 35°C or less than 5°C), temperature
has little effect on daily mortality rate [81], highlighting the central importance of the length of
the extrinsic incubation period in the ability of adult mosquitoes to transmit dengue viruses.

In Noumea, the main city, precise climate variables and important thresholds values have
been identified as necessary conditions to trigger an epidemic (e.g. number of days when maxi-
mal temperature exceeds 32°C in January/February/March, and number of days when maximal
relative humidity exceeds 95% during January [43]). At the scale of the entire territory, we found
that the spatial distribution of dengue cases during epidemic years is strongly influenced by the
average mean temperature. These results suggest that temperature has a major role in dengue
dynamics in an insular territory characterised by climate seasonality. However, we did not find a
strong association between the spatial distribution of dengue cases during epidemics and average
rainfall or with the number of days when maximal temperature exceeds 32°C. The variables influ-
encing either the triggering of an epidemic [43] or its spatial distribution are not the same. Our
findings highlight the complexity of studying and understanding dengue dynamics, the impor-
tance of well separating the two epidemiological processes of epidemic triggering in a susceptible
population, and its intensity once it has started by clearly defining the modelling target (incidence
rates for epidemic intensity, or dummy variables for epidemic triggering), and the importance of
well defining the scale of study (temporal evolution, or spatial distribution).

The positive association found between the mean temperature and dengue incidence rates is
consistent with the one found in previous studies having analysed the spatial distribution of
dengue cases at spatial scale> 200 km [38–42]. In these studies as well as in ours, all regions
were located between 10° and 25° of latitude, at the fringe of the tropical area, except Argentina,
where the region studied extends to 35° South. In the 10° ˗ 25° latitudinal band, annual mean

variables (mean temperature and mean number of people per premise). The axes represent the value of the
two best explanatory variables. Predicted average annual incidence rates are represented by the colour (blue
for low incidence rates to orange for high incidence rates) and by the contour lines giving incidence rates in
number of cases per 10,000 people per year. Each commune that has been used to build the model is placed
on the graph according to the observed value of the two explanatory variables in the commune. Its position on
the graph hence provides the average (across epidemic years) annual incidence rate in the commune as
predicted by the model. For each commune, the coloured dot represents the difference between the
predicted and the observed incidence rate (model error).B: Scatter plot of the predicted and observed
average (across epidemic years) annual incidence rates for each of the 28 communes. The RMSE of this
model is 45 cases per 10,000 per year.

doi:10.1371/journal.pntd.0004211.g005
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Fig 6. Maps of observed and predicted average annual incidence rates. A:map of observed dengue annual incidence rates.B and C:maps of dengue
annual incidence rates predicted by the SVMmodel (B) and the linear model (C) based on the mean temperature and the mean number of people per
premise (over epidemic years of the study period).D and E: Trends of dengue spatial distribution under global warming. Average annual incidence rates
during epidemics as projected over the 2080–2099 period under the RCP 4.5 (D) and the RCP 8.5 (E) scenarios.

doi:10.1371/journal.pntd.0004211.g006
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temperature lies in a range of temperature where the life cycle of the mosquito is very sensitive
to temperature changes [7].

Some Aedes species, including Ae. aegypti, are able to breed in very small amounts of water,
e.g. snails’ shells. Rainfall can play a role in dengue transmission cycle by filling up potential
breeding sites [7], thus influencing the vector density. Rainfall also increases the relative
humidity, which extends the mosquitoes’ lifespan and therefore the likelihood of those who
had an infectious blood meal to reach the infectious stage. However, our study suggests that in
New Caledonia, there is no strong association between rainfall and the spatial distribution of
cases during epidemics. A plausible explanation can be the multi-factorial nature of dengue
fever, and the relative influence each factor plays on dengue dynamics: despite suitable rainfall
conditions, dengue might not circulate well if other factors are limiting dengue viral circulation,
such as some human behaviour influencing the contact between vector and host. This aspect
has been highlighted very clearly in the United States [27]. Some studies have found that the
effect of rainfall on vector density can be modulated by human activities such as water storage
practices [82]. However, in New Caledonia, we are not aware of specific practices to store water
that could explain the lack of association between rainfall and virus circulation intensity.
Another potential explanation could be that in dry areas, breeding sites are filled up by other
non-climatic mechanisms, such as automatic irrigation or plant watering.

Worldwide, the spatial association between rainfall and the spatial distribution of dengue
cases at a “national” scale (> 200 km) is not as clear as the one for temperature: one spatial
study did not find any association between dengue incidence rates and rainfall [40], whereas
two others did [38,39]. Other factors influencing dengue transmission (e.g. anthropogenic fac-
tors influencing the availability of filled breeding sites) and not included in the different studies
might blur the rainfall signal.

It would be interesting to perform the same kind of multi-factorial spatial analysis in areas
of epidemic or endemic transmission located closer to the equator, where the mean tempera-
ture is higher, to see what climatic factors impact the spatial distribution of cases. This kind of
study could help understand better the complex interplay between the different factors (cli-
mate, socio-economic, immunologic, viral, entomologic. . .) associated with dengue fever
transmission.

Table 3. Projections of temperature increase and predicted average annual incidence rates during epidemics for three time periods in the future.

Scenario Period Projected
increase of
mean
temperature *
(°C)

Standard deviation of
the projected mean
temperature
increase** (°C)

Predicted average annual incidence rates
during epidemics: territory average across all
communes (number of cases / 10,000 people/
year)

Standard deviation of the
predicted incidence rates**
(number of cases / 10,000
people/year)

- 1980–
1999

- - 168 -

RCP 4.5 2010–
2029

0.57 0.14 195 7

2080–
2099

1.53 0.34 241 17

RCP 8.5 2010–
2029

0.66 0.15 197 8

2080–
2099

3.20 0.60 317 30

* Average of the mean temperature increase predicted by 6 coupled ocean-atmosphere models (see Methods)

** Calculated across the different GCM projections (see S3 Fig for a representation of inter-model variability)

doi:10.1371/journal.pntd.0004211.t003
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Association between socio-economic factors and the spatial distribution
of dengue cases in New Caledonia
Regarding the link between socio-economic variables and dengue incidence rates during epi-
demics, a limitation of this study is the absence of historical time series of socio-economic vari-
ables. We then had to assume that the data retrieved from the 2009 census is representative of
the mean socio-economic spatial pattern over the epidemic years of the 1995–2012 period. As
there has been no major historical event leading to population migration in New Caledonia
during this time period and as socio-economic variables represent mainly people’s way of life,
we think this assumption is realistic.

Our results are consistent with previous studies that have pointed out the importance of
socio-economic factors on the spatial distribution of dengue cases, whatever the spatial scale
studied: national (>200 km) [39–42] or local (<10 km) [20,26,29,83]. The spatial association
between the percentage of unemployed people and dengue in New Caledonia cannot be inter-
preted in terms of lack of economic activity only, as shown by the PCA on socio-economic fac-
tors. This variable we selected as input for the models is highly correlated with other variables
reflecting the way of life, socio-economic and cultural differences existing in New Caledonia,
which are in turn highly correlated to housing type. Therefore, at this spatial scale in New Cale-
donia, it is difficult to statistically differentiate the role played by human behaviour, human
activity or housing type in dengue fever transmission. However, those three factors influence
the contact rate between viraemic patients or susceptible hosts on one hand, and mosquitoes
on the other hand. This highlights the importance of limiting the contact between humans and
vectors and should lead local authorities to strengthen communication campaigns about per-
sonal protection measures towards populations at risk.

Regarding the spatial association found between the fraction of unemployed people (i.e.
people’s way of life) and dengue incidence rates during epidemics in New Caledonia, it is inter-
esting to point out that on the East coast, a larger fraction of inhabitants are Melanesian people
living in tribes, whereas on the West coast, the majority of people are people from French
descent having a western way of life. It would be interesting to perform sociologic studies to
precisely identify which human behaviour leads to an increased risk of catching dengue fever.
Such information would be useful to define communication messages towards at risk
populations.

The spatial association between the number of people per household and dengue incidence
rates can be explained by the short flight range of Ae. aegyptimosquitoes. These mosquitoes
are often captured in the very house where they emerged or in the neighbouring houses, flying
an average of 40 to 80 m during their life [84–87]. Hence, dengue outbreaks involving Ae.
aegypti as the main vector are known to be highly spatially focal, with dengue cases usually
clustering within 200 m to 800 m of each other [23,33,34,88–94]. Our results suggest that, in
New Caledonia, dengue cases probably cluster within houses. Sick people should protect them-
selves until they are no longer vireamic to avoid human to mosquito transmission, and people
living around a case should protect themselves to avoid getting infected while infectious mos-
quitoes are still active in the neighbourhood. Taking such individual actions could reduce the
intensity of dengue transmission and reduce dengue burden over the territory. This message
could be strengthened in the recommendations given by the authorities.

Influence of global warming on future dengue incidence rates in New
Caledonia
The results about climate change must be interpreted keeping in mind that they represent a cli-
mate risk only, and that the spatial association between dengue incidence rates during
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epidemics and temperature might change over time depending on socio-demographic changes,
or changes in dengue control strategy. Assuming all other factors remain constant in time, our
results suggest that Public Health authorities can expect the dengue burden to raise signifi-
cantly during the next century over the territory, and can expect the dengue spatial range to
increase. As the GCM projections are spatially homogeneous over the territory, and as the
model used to predict dengue incidence rates in the future is linear and is based on only one cli-
mate variable, the predicted absolute increase in dengue incidence rates is currently the same
for all communes. This highlights the need for spatially downscaling GCM projections to gain
a better understanding of the impact of climate change in the future.

Communes that are already severely affected by dengue epidemics will have to prepare to
face higher burden of dengue fever. For communes that are at low risk now, we can see that in
the future they might be affected as severely as communes at high risk now. These communes
might not be prepared now to face severe epidemics of dengue fever, and they will probably
need support for adaptation.

As said earlier, the positive association found between temperature and dengue incidence
rates during epidemics for mean temperatures ranging from 22°C to 25°C can be explained by
the effect of temperature on the mosquito life cycle and duration of extrinsic incubation period.
Here, by applying a statistical model built using current observed temperature to future projec-
tions, we make the assumption that the biological effect of temperature on the mosquito life
cycle and on the extrinsic incubation will remain the same under the range of temperature that
might be observed in the future. For most parameters influencing transmission, this assump-
tion is reasonable. For example, we know that in Thaïland, for DENV-2, the extrinsic incuba-
tion period is reduced from 15 days at 30°C to 7 days at 32–35°C [77], which is in support of
increasing temperatures inducing an increase in dengue incidence rates under future climate.
However, because we used a statistical model, we were not able to incorporate the known nega-
tive effect that an increase in temperature might have on dengue transmission when tempera-
ture reaches extremes. For example, a review of fifty mark-release-recapture studies has shown
that the survival and longevity of Ae. Aegyptimosquitoes is highly reduced when temperatures
exceed a threshold, which might be around 35°C [81]. It would be interesting to develop mod-
els that are able to integrate these negative effects in the future in order to gain a better under-
standing of the effects of climate change on dengue transmission.

Type of epidemiological data used
Here we used data collected routinely by the Direction of Sanitary and Social Affairs. As any
surveillance system, it is highly probable that not all dengue cases have been recorded. How-
ever, in New Caledonia, the data is of high quality, and the spatial standardisation of the sur-
veillance system (i.e. all the actions taken to be able to compare data collected by different
people, at different places [95]) is good, which means that the proportion of cases that are not
recorded by the surveillance system are probably comparable from one commune to another.
Hence, maps of incidence rates calculated from routinely collected data can be used to study
the spatial variability of true incidence rates.

To calculate mean incidence rates, we have used the consultation date of cases. Consultation
can occur 1 to 5 days after the onset of symptoms, and the incubation period lasts 4 to7 days
on average [3], which means that the consultation date can differ from one to two weeks from
the date of infection. This loss of temporal precision is not important here to calculate maps of
incidence rates, as for each commune, we have averaged incidence rates across many years.

As in any epidemiological spatial study using routinely collected surveillance data, it is pos-
sible that some spatial bias has been introduced due to the fact that the spatial data recorded is
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the commune where people live, which can sometimes differ from the commune where they
got infected.

Another limitation of using routinely collected data is that only clinically apparent cases are
recorded, dismissing clinically inapparent cases, whose proportion can vary in time and space
[96,97]. A seroprevalence survey is currently undertaken by the Public health authorities. It
will be interesting to compare the spatial distribution of seroprevalence to the spatial distribu-
tion of average incidence.

Methodological issues
The analysis of the spatial pattern of infectious diseases, in relation with environmental or
socio-economic factors raises a number of methodological issues, such as the presence of spa-
tial auto-correlation, the spatial scale of aggregation of the data, the existence of possible non-
linear links between the response and the explanatory variables, or the presence of multi-collin-
earity between the response variables. Most issues have already been addressed in the past, and
solutions already exist to handle them. For example, the reviews by Dormann et al. deal with
multi-collinearity [66] or spatial-autocorrelation [98]. The main issue we have been confronted
with in our study was the spatial upscaling of meteorological data observed at precise locations
to the same spatial level of aggregation as the epidemiological data. In existing spatial studies of
dengue fever at a national scale, authors have geo-spatially interpolated climate variables on
regular grids using kriging methods, and have averaged gridded values over a given administra-
tive division [38–41]. This approach has two drawbacks in New Caledonia. Simple kriging
models do not take into account the potential elevation between two given points, leading to
biased estimates of temperature in mountainous regions. Moreover, the traditional approach
used in climatology, which consist in aggregating temperature over grid points taken uniformly
over the whole aggregative area makes the implicit assumption that people at risk are distrib-
uted homogeneously over the aggregative area. This is particularly problematic in New Caledo-
nia where large areas are not inhabited. In our approach, as epidemiological data are collected
at the individual level, we tried to estimate the climate conditions for each individual (and
therefore for the mosquitoes surrounding each individual). However, the algorithm used intro-
duces some noise, due to the fact that the weather stations are sometimes kilometres away from
some towns or tribes. High spatial resolution climate data obtained from high resolution
modelling of atmospheric conditions could be used, but some noise will be introduced by the
modelling error compared to the observed data. This issue needs further attention in the future
to increase the quality of spatial epidemiological and environmental studies.

Factors not taken into account and perspectives
Some factors that could influence the spatial distribution of dengue cases during epidemics
have not been taken into account in this study: the location of the first cases introduced each
year, the spatial variability in population immunity, viral factors such as the serotype circulat-
ing, or factors associated to the mosquito such as the spatial variability in vector competence,
or dengue vector control measures. We decided not to include the serotype, as we performed
the analysis on averages over several years, and as, except in 2009, there was no co-circulation
of different serotypes over the territory. Therefore, spatial differences in the level of viral circu-
lation cannot be associated with genetic differences between serotypes. A territorial seropreva-
lence survey to assess population immunity has been implemented recently in New Caledonia,
but data are not available yet. It could be interesting to include environmental variables derived
from GIS data or remote-sensing in this kind of study. For example, GIS data about built areas
could be used to create indicators of the proximity of houses to reflect the fragmentation of the
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Ae. aegypti habitat per commune, given that fragmentation of this habitat could potentially
slow down viral circulation. The amount of vector control effort implemented in each com-
mune is heterogeneous on the territory, as this activity falls within the commune’s authority,
and each commune is free to implement or not the territorial guidelines. The vector control
effort in each commune is thus difficult to quantify, and data were not available yet at the time
of analysis. As soon as these data will be collected by local authorities, they could be incorpo-
rated in the modelling process to assess the efficiency of vector control measures.

The study we present here is about the spatial heterogeneity of dengue incidence rates across
epidemic years, independently of the inter-annual variability of dengue incidence rates from
one epidemic year to another. The mean spatial pattern studied is very robust to changes in the
definition of an epidemic year, as severe epidemics will always be considered in the calculation
of the mean, whatever the threshold used to distinguish epidemic from non-epidemic years. It
would be interesting to know whether the spatial association found here between the severity
of dengue epidemics, temperature, local people’s density and people’s way of life is consistent
through time or not, and to identify the factors associated to the temporal variability of spatial
patterns.

Two other viruses transmitted by Ae. aegypti like dengue virus caused outbreaks recently in
New Caledonia. Chikungunya virus has been introduced on four occasions since 2011 but in
each case, the outbreaks were limited to a few cases in Noumea and surroundings. Conversely,
Zika virus caused large epidemics over the territory in 2014 and 2015, with more than 1,500
confirmed cases and more than 11,000 estimated cases. Although these viruses are transmitted
by the same mosquito as dengue fever, no sufficient data are available to know if the socio-eco-
nomic and climatic factors driving epidemics are the same. It is likely that local vector compe-
tence and population immunity represent major limiting factors. Although dengue has caused
major outbreaks in NC in 2013, chikungunya viruses have only caused a limited number of
cases for reasons that remain unexplained today and despite the competence of local Ae.
aegypti for chikungunya virus transmission [99]. It is likely that climatic factors and interac-
tions between viruses circulating together between human-hosts and mosquito-vectors influ-
ence the epidemiology of arboviruses in New Caledonia. A comparative analysis of the spatio-
temporal distribution of these three arboviruses in an insular territory accommodating only
Ae. aegypti represents an important issue to understand and predict outbreaks.

Supporting Information
S1 Fig. Mean dengue annual incidence rates according to age classes. Incidence rates are
averaged over epidemic years between 1995 and 2012 and are shown in number of cases per
10,000 people per year.
(TIF)

S2 Fig. Increase of mean temperature in Noumea as projected by ten coupled atmosphere-
ocean models at the 2100 horizon. The yellow-green curve (1971–2005) represents the
observed mean temperature in Noumea. The other curves represent the average of the annual
time series simulated by the ten models over the historical period (1971–2005, red curve), and
the 2006–2099 period under RCP 4.5 (blue curve) and RCP 8.5 (green curve) scenarios. Hori-
zontal segments represent the average of the time series over the given periods (1980–1999,
2010–2029 and 2080–2099). Arrows represent the average increase in mean temperature for
each time period (see Table 3). Background shadings represent the annual range of mean tem-
perature simulations over the ten models.
(TIF)
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S3 Fig. Distribution of ten coupled ocean-atmosphere model projections for the increase in
mean temperature in Noumea. The boxplot (over the ten GCM selected) of the average
increase in mean temperature is given for two climate change scenarios (RCP 4.5 and RCP 8.5)
and two time periods relative to the historical series of temperature (1980–1999).
(TIFF)

S4 Fig. Relationship between dengue annual incidence rates and the 5 selected explanatory
variables. For each selected explanatory variable (A to E), mean annual incidence rates
observed in 28 communes of New Caledonia (crosses), and mean annual incidence rates pre-
dicted by the univariable SVMmodel based on the corresponding explanatory variable (dots).
The curve represents the univariable SVMmodel predictions over the whole observed range of
the explanatory variable (non-linear regression curve). RMSE of each model are 53 (A), 68 (B),
69 (C), 72 (D), 75 (E), as presented in Table 2.
(TIFF)

S5 Fig. Spatial influence between the selected explanatory variables and dengue incidence
rates. A:map of the observed mean dengue annual incidence rates. B to E: maps of mean
annual incidence rates predicted by univariable SVMmodels based only on one of the 5
selected variables: mean temperature (B), average daily rainfall (C), average daily rainfall dur-
ing the wettest quarter (D), percentage of unemployed people (E) and mean number of people
per household (F).
(TIF)
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