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Abstract: Rare actinobacterial species are considered as potential resources of new natural products.
Marisediminicola antarctica ZS314T is the only type strain of the novel actinobacterial genus
Marisediminicola isolated from intertidal sediments in East Antarctica. The strain ZS314T was
able to produce reddish orange pigments at low temperatures, showing characteristics of carotenoids.
To understand the biosynthetic potential of this strain, the genome was completely sequenced for
data mining. The complete genome had 3,352,609 base pairs (bp), much smaller than most genomes
of actinomycetes. Five biosynthetic gene clusters (BGCs) were predicted in the genome, including
a gene cluster responsible for the biosynthesis of C50 carotenoid, and four additional BGCs of
unknown oligosaccharide, salinixanthin, alkylresorcinol derivatives, and NRPS (non-ribosomal
peptide synthetase) or amino acid-derived compounds. Further experimental characterization
indicated that the strain may produce C.p.450-like carotenoids, supporting the genomic data analysis.
A new xanthorhodopsin gene was discovered along with the analysis of the salinixanthin biosynthetic
gene cluster. Since little is known about this genus, this work improves our understanding of its
biosynthetic potential and provides opportunities for further investigation of natural products and
strategies for adaptation to the extreme Antarctic environment.
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1. Introduction

Actinobacteria are considered as one of the most important producers of natural products for
drug discovery. To date, more than half of antibiotics were produced by the genus Streptomyces [1].
However, the re-discovery of known natural products, especially from the genus Streptomyces due to the
so-called diminishing marginal effect, has become an issue [1,2]. Meanwhile, the increased prevalence
of multi-drug resistance pathogens and the emergence of cross-resistance to antibiotics have driven
researchers to seek for novel natural products [3]. Therefore, rare actinobacteria (non-Streptomyces),
especially those from underexplored extreme environments, draw increasing attention for discovering
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novel bioactive compounds [4]. Antarctica, a frozen continent surrounded by the Southern Ocean, is
characterized by extremely low temperatures, strong ultraviolet radiation and a relatively isolated
ecosystem [5]. It represents one of the most under-investigated environments. Hence, it was considered
as a huge reservoir of microorganisms with biosynthetic potential of novel natural products.

The genus Marisediminicola belonging to rare actinobacteria was first proposed nine years ago [6],
with the only type species Marisediminicola antarctica and the only type strain M. antarctica ZS314T. The
strain ZS314T was isolated from intertidal sediments of the coast off the Chinese Antarctic Zhongshan
Station in East Antarctica (69◦22′13” S, 76◦21′41” E). To date, no other type strains have been reported
belonging to this species or this genus. However, many 16S rRNA sequences sharing over 99%
identities have been deposited in the NCBI GenBank database, with most of them from the Arctic,
Antarctica or glacier-associated environments. It suggests that M. antarctica is a phylotype adapted
and probably specific to extreme environments. The strain ZS314T was psychrophilic, with the growth
temperature range of 0–26 ◦C (optimum 18–23◦C). It developed a bright reddish orange color, which
is usually caused by various carotenoid pigments. Carotenoids are a group of natural isoprenoid
pigments mainly isolated from a wide variety of plants, algae, fungi and bacteria [7–12]. The major
functions of known carotenoids are to prevent cells from oxidative damage [8], protect against UV
radiation and modulate membrane fluidity in bacteria [7]. Therefore, carotenoids are important not
only for the survival of the organisms but also for industrial applications.

To investigate the biosynthetic abilities of M. antarctica ZS314T, we performed genome sequencing
and bioinformatics data mining. Further experiments including HPLC/TOF-MS (high-performance
liquid chromatography/time-of-flight mass spectrometry) and anti-oxidation assays were carried out to
characterize the pigments, as supported by the presence of a carotenoid biosynthetic gene cluster and
the indicative color. M. antarctica was identified and reported nine years ago, but still little is known
about this novel genus/species. Here, we report the findings through wet lab experiments and data
mining of the genome to increase our understanding of this novel Antarctic actinobacterium. This
study represents the first investigation of the novel Antarctic Marisediminicola genus for its potential in
natural product biosynthesis, and also the first complete genome of the genus for future studies.

2. Results and Discussion

2.1. General Feature of the Genome

The complete genome of M. antarctica ZS314T was circular, containing 3,352,609 bp with an average
GC content of 67.17% (Figure S1). Compared with other actinobacteria, M. antarctica species tended
to have a relatively small genome (3.35 Mb vs. the largest actinobacterial genome of 13.05 Mb from
Nonomuraea sp. ATCC 55076) and low GC content (67.17% vs. the highest GC content of 74.8 % in
Streptomyces). To get an idea of the average genome size of the phylum Actinobacteria, a total of
1674 genomes (complete genomes and genomes assembled to the chromosome level) available in the
GenBank database were analyzed. The resulting average genome size was 4.52 Mb. Meanwhile, the
average GC content was 64.12% and the average number of CDSs was around 3937. Therefore, M.
antarctica ZS314T has a genome size below average but a GC content slightly higher than average.
A total of 2992 (below average) protein-encoding genes were annotated in the genome, with up to
36% genes annotated as hypothetical proteins or without significant similar matches in the NCBI nr
(non-redundant) database. Up to 44%, 41%, 36%, and 23% of genes had no match in the Swiss-Prot,
gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and clusters of orthologous
groups (COG) databases, respectively. Two rrn operons and 44 tRNA genes were detected in the
genome. The complete genome can be further analyzed for genome evolution and genetic adaptation
to the extreme environment.
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2.2. Prediction of Secondary Metabolite Biosynthetic Gene Clusters

Five secondary metabolite BGCs were predicted by the antiSMASH software (Table 1 and Table S1,
and Figure 1). Since most BGCs are large (over 20 kb to around 100 kb), more BGCs are usually found in
larger genomes (e.g., about 20 to 40 BGCs are generally predicted in Streptomyces genomes over 9 Mb).
Although fewer BGCs were found in the genome of M. antarctica ZS314T compared with Streptomyces,
the difference of relative abundance of BGCs normalized to genome size is small. In the relatively
small genome of M. antarctica ZS314T, the presence of the five gene clusters suggests their importance
to the strain.

Table 1. Five secondary metabolite biosynthetic gene clusters predicted in M. antarctica ZS314T genome.

Cluster ID Type Gene Number Most Similar Known
Gene Cluster

Percentage of
Similar Genes

1 T3PKS 7 Alkylresorcinol 100%
2 Terpene 7 Carotenoid 50%
3 Terpene 6 NA * 0
4 NRPS 7 NA * 0
5 Oligosaccharide 30 NA * 0

* NA indicates not available.
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2.2.1. Cluster 1: T3PKS

After manual analysis, cluster 1 (Figure 1) was found to contain three core biosynthetic genes
encoding stilbene synthase (srsA, orf7), isoprenylcysteine carboxyl methyltransferase (srsB, orf6) and
monooxygenase (srsC, orf5), sharing 51–63% amino acid identities with the srs operon of Streptomyces
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griseus NBRC 13350 [13]. Two putative transporter-encoding genes (orf1 and orf2) were detected in
the opposite orientation upstream of orf3 and orf4, encoding a hypothetical protein and a haloacid
dehalogenase. The two genes (orf3 and orf4) seem not to be related to the srs operon since the
three core genes (srsABC) alone can biosynthesize alkylresorcinols. SrsA is a specialized type III
polyketide synthase (PKS), catalyzing the formation of alkylresorcinols from acyl-CoAs of various
chain lengths [13,14]. The alkylresorcinols are further modified by SrsB and SrsC through methylation
and hydroxylation [13]. SrsA plays a key role in determining the structure of alkylresorcinols. The
most similar record of SrsA from M. antarctica ZS314T in the NCBI nr database was a stilbene synthase
from Agreia sp. leaf244, sharing 65% amino acid identity. However, SrsA from M. antarctica ZS314T

was separated from the known stilbene synthases including the most similar one, as shown in the
phylogenetic tree of related stilbene synthases found in the NCBI nr database (Figure S2). It suggests that
this specialized type III PKS is distinct from the known enzymes, and hence indicates the production of
alkyresorcinols with potential new chemical structure. Alkyresorcinols, a type of non-isoprenoid lipids
with an aromatic ring, have important antibiotic activities [13,14]. Alkyresorcinols are relatively rare in
nature, with plants as the major sources. Some species of bacteria are known to produce alkyresorcinols,
such as Streptomyces griseus [13], Azotobacter and Pseudomonas species [15]. The detection of this putative
alkyresorcinol biosynthetic gene cluster extends its distribution to this novel genus.

2.2.2. Cluster 2: Terpene

Cluster 2 was predicted to produce terpene type compounds, a large and diverse group of natural
products [2]. Cluster 2 shared some similarity in structure and sequence with four C50 carotenoid
synthetic gene clusters from Dietzia sp. CQ4, Corynebacterium glutamicum, Leifsonia xyli and Agromyces
mediolanus (Figure 2 and Table 2). The three genes (orf2 to orf4) in cluster 2 of M. antarctica ZS314T shared
34–61% amino acid identities with geranylgeranyl pyrophosphate synthase gene (crtE), phytoene
synthase gene (crtB) and phytoene desaturase gene (crtI) of the four gene clusters, respectively (Table 2).
The three genes crtEBI were reported to be core genes responsible for biosynthesis of C40 carotenoid
lycopene. In addition, two genes (orf5 and orf6) encoding C50 carotenoid cyclases and orf7 encoding
a lycopene elongase were predicted in cluster 2, sharing 35–65% amino acid identities with those in
the other four gene clusters (Table 2). These three genes (orf5 to orf7) were expected to convert C40

carotenoid lycopene to C50 carotenoids, by elongating the carbon chain and forming cyclized end
groups finally, as reported in previous studies [9,12]. In certain instances, one C50 carotenoid cyclase
encoding gene could be fused with the lycopene elongase gene, such as lbtBC in Dietzia sp. CQ4
(Figure 2). A few additional genes were present in some of the clusters. For example, both cluster 2 of
M. antarctica ZS314T and the cluster from Agromyces mediolanus contained a gene (orf1/idi) encoding
isopentenyl-diphosphate Delta-isomerase, which is responsible for isoprenoid biosynthesis. The cluster
of Dietzia sp. CQ4 contained crtX encoding a glycosyl transferase, likely involved in the glucosylation
of C50 carotenoids [12]. In addition, a transcriptional regulator was encoded with opposite orientation
in the gene cluster of Agromyces mediolanus. Similarly, a putative transcriptional regulator of MarR
family was detected close to the core biosynthetic genes in cluster 2 with opposite orientation.
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Table 2. A comparison of key genes within the carotenoid biosynthetic gene clusters based on amino
acid sequence identities.

Cluster 2 M. antarctica ZS314T Corynebacterium
glutamicum Dietzia sp. CQ4 Leifsonia xyli Agromyces

mediolanus

Gene Annotation Gene Identity Gene Identity Gene Identity Gene Identity

orf 2 Geranylgeranyl
pyrophosphate synthase crtE 34% crtE 34% crtE 44% crtE 43%

orf 3 Phytoene synthase crtB 46% crtB 49% crtB 58% crtB 61%
orf 4 Phytoene desaturase crtI 52% crtI 61% crtI 61% crtI 58%
orf 5 Lycopene cyclase crtYe 41% lbtA 40% crtYe 65% lctA 50%
orf 6 Lycopene cyclase crtYf 38% lbtBC1 46% lctB 35% lctB 43%
orf 7 Lycopene elongase crtEb 56% lbtBC2 59% crtEb 61% lctC 64%

lbtBC1, the N-terminal region of LbtBC (1 to 134 residues) is homologous with lycopene cyclase domain. lbtBC2, the
C-terminal region of LbtBC (135 to 432 residues) is homologous with lycopene elongase domain.

Although the gene clusters responsible for C50 carotenoids were quite similar, the final products had
different structures. The final product of the gene cluster in Dietzia sp. CQ4 was C50 β-cyclic carotenoid
(C.p.450 monoglucoside) [12], while the final products of the two clusters in Corynebacterium glutamicum
and Agromyces mediolanus were the same, i.e., C50 ε-cyclic carotenoid (decaprenoxanthin) [12,16]. The
final product of the gene cluster in Leifsonia xyli was predicted to be a putative C50 carotenoid, without
further identification [12]. As previously reported, the C50 carotenoid cyclase was the key to determine
the final structure and may have multiple catalytic functions [9]. Usually, the C50 carotenoid cyclase in
Gram-positive bacteria was reported to be encoded by two genes, forming a heterodimeric complex to
catalyze the cyclization reaction leading to carotenoids with different end groups [9,17]. Phylogenetic
analysis of the C50 carotenoid cyclases showed that the two monomers formed two different groups
in the tree (Figure 3). The C50 carotenoid cyclases (encoded by orf5 an orf6) of M. antarctica ZS314T

clustered with LbtA and LbtBC of Dietzia sp. CQ4, respectively (Figure 3). It suggests that cluster
2 of M. antarctica ZS314T may produce C50 β-cyclic carotenoid-like products, as in Dietzia sp. CQ4.
However, it is hard to predict the final products of the gene cluster 2 of M. antarctica ZS314T solely
based on the gene cluster analysis.
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2.2.3. Cluster 3: Terpene

Cluster 3 was predicted to be a terpene-producing gene cluster due to the presence of a core
biosynthetic gene (orf3) encoding lycopene cyclase (Figure 1 and Table S1). Next to the orf3 was a
gene encoding xanthorhodopsin (orf2). Xanthorhodopsin is a light-driven proton pump with a dual
chromophore, containing one retinal and one salinixanthin [18,19]. Xanthorhodopsin is more effective
than bacteriorhodopsin for collecting light due to the presence of salinixanthin. Salinixanthin is a C-40
acyl glycoside carotenoid, a kind of rare carotenoid produced mostly from haloarchaea and halophilic
bacteria [20]. However, the biosynthesis of salinixanthin has not been reported yet, according to our
knowledge. A gene annotated as β-carotene 15,15’-monooxygenase (orf4) was found downstream of
the core biosynthetic gene (orf3), which was reported to catalyze the breakdown of β-carotene into
two molecules of retinal. A putative pathway for salinixanthin and retinal biosynthesis was hence
proposed (Figure 4), according to reactions in the KEGG database and the genes existed in cluster
3 and the genome. Lycopene, which can be biosynthesized by the three genes crtEBI in cluster 2,
was further converted to 3,4-dehydrolycopene by CtrI. The later was cyclized at one end to form
torulene by most likely the lycopene cyclase in cluster 3. The reactions from lycopene to torulene were
the same as the steps in the biosynthesis of neurosporaxanthin [21]. From torulene to salinixanthin,
hydroxylase, dehydrogenase or ketolase, glucosyltransferase, and acyltransferase were proposed to
catalyze the reactions, according to similar reactions in the biosynthesis of canthaxanthin [22] and
myxol [23] (Figure 4). Gene candidates encoding for these enzymes have been annotated in the
genome, however, not in cluster 3. We also performed metabolic pathway reconstruction for the
biosynthesis of salinixanthin using PathPred, a web-based server integrated into the KEGG database to
predict plausible enzyme-catalyzed reaction pathways using the information of biochemical structure
transformation patterns and chemical structure alignments of substrate-product pairs [24]. The
reconstructed pathway from lycopene to the core structure of salinixanthin without glucoside ester
modification was shown in Figure S3 (since pathway reconstruction from lycopene to salinixanthin
was frequently disrupted due to some unknown reason). The predicted pathway was quite complex,
involving up to 19 reactions different from the pathway we proposed. It is unknown whether both
pathways are possible without further experimental verification. Genetic manipulation and chemical
identification are encouraged to verify the hypothetical pathways and identify the enzymes responsible
for the catalysis of these reactions. Moreover, genome-scale metabolic pathway reconstruction can be
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used to further discover new metabolic pathways and analyze metabolic networks of M. antarctica
ZS314T, as shown in previous studies [25,26].Mar. Drugs 2019, 17, x 7 of 15 
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of xanthorhodopsin from M. antarctica ZS314T.

Xanthorhodopsin was first discovered in Salinibacter ruber, a halophilic bacterium [18]. Later,
two Octadecabacter strains from the Antarctic and the Arctic were reported to have a new subgroup
of xanthorhophosins and were predicted to be an adaptation advantage to icy environments [27].
The xanthorhodopsin from M. antarctica ZS314T clustered with those from Actinobacteria within
the subgroup I as proposed previously (Figure 5) [27]. However, it was separated from the known
xanthorhodopsin genes within the subgroup I with the highest similarity of around 57%, indicating
that it was a new xanthorhodopsin gene. Although xanthorhodopsin genes were horizontally
transferred, it seems that Actinobacteria shared a common ancestor distinct from non-actinobacterial
genes. The residues involved in keto-carotenoid binding identified in Salinibacter ruber DSM 13855
were not conserved, except for two residues highlighted in red boxes (Figure 5b). It suggests that
xanthorhodopsins may adopt different mechanisms for chromophore binding.
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Figure 5. Comparison of xanthorhodopsins from M. antarctica ZS314T and other representative microbial
groups used in a previous study [27]. (A) Neighbor-joining tree of xanthorhodopsins based on amino
acid sequences. Bootstrap values below 50 were not shown. (B) Multiple alignments of the putative
keto-carotenoid-binding region of the xanthorhodopsins in (A), as identified previously [27,28]. Same
as in the previous study [27], residues are marked by the letters r, c, g, and k to indicate contact with the
ring, chain, glucoside and keto group of the carotenoid. The alignment was made using the ClustalW
program online (https://www.genome.jp/tools-bin/clustalw) and shaded by the BoxShade program
(https://embnet.vital-it.ch/software/BOX_form.html). Similar and identical residues in the alignment
are highlighted with grey and black colors on the background, respectively.

2.2.4. Cluster 4: NRPS

A putative cluster containing an NRPS gene as the core biosynthetic gene (orf4) was predicted
right next to cluster 3 (Figure 1 and Table S1). However, the NRPS only contained an adenylation (A)
domain, a peptidyl carrier protein (PCP) domain, and a termination (T) domain, lacking the required
condensation (C) domain for elongation. In addition, the NRPS gene is much smaller than those
multimodular assembly lines for non-ribosomal peptide compound biosynthesis. A peptidase M1
gene (orf5) followed the NRPS gene. No other biosynthetic gene was detected in the cluster (Figure 1).
Therefore, it seems that cluster 4 may not produce large non-ribosomal peptide compounds or may
produce single amino acid-derived compounds. However, homologs of this NRPS gene were found in
other bacteria including mostly Cryobacterium species within Microbacteriaceae of Actinobacteria, with
76.86% as the highest amino acid identity. It is unclear whether this NRPS gene is inactivated or not.
The function of this NRPS gene requires further investigation.

https://www.genome.jp/tools-bin/clustalw
https://embnet.vital-it.ch/software/BOX_form.html
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2.2.5. Cluster 5: Oligosaccharide

Cluster 5 was predicted to biosynthesize oligosaccharides, including genes encoding
polysaccharide biosynthesis protein, glycosyltransferases and epimerases etc. (Figure 1 and Table S1).
However, no known gene cluster was found to be similar. Currently, only a few gene clusters
biosynthesizing oligosaccharides have been identified, such as gene clusters producing orthosomycins,
moenomycins, saccharomucins, and acarviostatins [29]. In general, these gene clusters are complex and
large, usually including multiple genes for sugar synthesis and modification. For example, there are 39
biosynthetic related genes in the gene cluster producing avilamycin (a member of orthosomycins),
including four glycosyltransferases, 22 sugar synthesis and tailoring genes, and other genes involved in
further modification, resistance, regulation, and transport [30]. Due to the complexity of oligosaccharide
producing gene clusters, the biosynthesis of oligosaccharides is lagged behind. Indeed, oligosaccharide
natural products are under-represented in pharmacopeia compared with other classes, although
oligosaccharides have a wide range of biological activities and high structural diversity [29]. Possible
reasons were proposed including low levels of expression in nature, difficulties in detecting, isolation,
and identification, as well as low stability [29]. Since oligosaccharide secondary metabolite BGCs are
rarely identified and biochemically characterized, the prediction of these gene clusters in genomes
is also less frequent than other classes of natural products. Therefore, further identification of the
putative oligosaccharide gene cluster 5 is important but challengeable.

2.3. Analysis of the Pigments from M. antarctica ZS314T

As revealed by the genomic data mining, a putative carotenoid biosynthetic gene cluster was
detected, suggesting the production of carotenoids. The physiological characteristics indicated the
production of carotenoid-like pigments as well. Colonies of M. antarctica ZS314T were reddish orange
on Marine Agar 2216 (Difco) (Figure 6A). The supernatant of liquid culture was almost colorless, and
the cell pellets were reddish orange after centrifugation (Figure 6B,C). It suggested that the pigments
were stored in the cells rather than being secreted into the broth. The UV-visible absorption spectrum
of the concentrated methanolic extracts showed three major absorption peaks at 450, 472, and 500 nm,
with the highest at 472 nm (Figure 7A). The shape of the absorption spectrum resembled that of
carotenoids in general, and the wavelengths fell within the range of carotenoids as well, indicating the
presence of carotenoids in the extracts. The concentrated methanolic extracts were separated by using
HPLC, resulting in three major peaks (peak 1, peak 2 and peak 3) at retention times of 24.786 min,
29.661 min and 33.284 min (Figure 7B). The three peaks showed UV-visible absorption spectrum
characteristic of carotenoids, indicating that carotenoids may exist in the peaks. The absorption spectra
of the three peaks were slightly different from the overall spectrum of total methanolic extracts. Peak
1 showed maximum absorptions at around 468 nm, 490 nm, and 520 nm (Figure 7C). Peaks 2 and
3 had similar absorption spectra, with three maximum absorptions at around 448 nm, 472 nm, and
505 nm (Figure 7C). In order to isolate putative carotenoids indicated by HPLC, three pooled fractions
showing indicative color and relatively good purity were obtained after column chromatography with
silica gel and Sephadex LH-20. Fraction 1 had one peak showing characteristic absorption spectrum
of carotenoids (λmax 452 and 480) (data not shown), with the major MS signal MH+ at 704.54898
(Figure S4), which is close to the molecular mass of C.p.450, sarcinaxanthin and flavuxanthin [9,12]. In
addition, the same absorption spectrum was reported for C.p.450, rather than the other two carotenoids.
Therefore, the preliminary data suggested that fraction 1 was likely C.p.450. Fraction 2 had one
putative carotenoid-like peak (λmax 450 and 475) (data not shown), showing the major MS signal MH+

at 866.59451 (Figure S4). Fraction 3 had two putative carotenoid-like peaks, showing similar absorption
spectra (λmax 450 and 475 for the first peak, and λmax 452 and 477 for the second peak) (data not shown).
The major MS signal MH+ for the first peak was at 866.58174, while it was at 865.57678 for the second
peak (Figure S4). The major MS signals in fractions 2 and 3 had close m/z value and absorption spectra,
which generally agreed with that of C.p.450 glucoside (MH+: 867). However, it should be interpreted
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with caution, since high-resolution mass spectrometry accepts small deviation and the reported MS
data of these C50 carotenoids were obtained using low resolution mass spectrometry. As suggested
by cluster 2, M. antarctica ZS314T is expected to produce C50 carotenoids probably similar to C.p.450
and its glucoside derivatives, the products of Dietzia sp. CQ4. Considering the analysis of the gene
cluster and the preliminary characterization of the pigments, the carotenoids produced by M. antarctica
ZS314T are most likely C.p.450 and its glucosylated derivatives.
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Figure 7. Analysis of the concentrated methanolic extracts of M. antarctica ZS314T. (A) UV-visible
absorption spectra of total methanolic extracts. (B) HPLC chromatogram of the concentrated methanolic
extracts showing three peaks (1, 2, 3) with typical UV absorption spectra of carotenoids. (C) The
UV-visible absorption spectra of peaks 1, 2, and 3. (D) The anti-oxidation assay (FRAP assay) of total
methanolic extracts.
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Carotenoids have many biological activities and biotechnological applications, including
antioxidant activity, absorbing light and energy, transporting oxygen, antitumor activity and enhancing
antibody production etc. [31,32]. The most apparent activity of carotenoids is their excellent antioxidant
activity, due to their electron rich polyene chains proficient in quenching reactive oxygen species [8].
The formation of iron ferrocyanide (Prussian blue) in the ferric reducing antioxidant power (FRAP)
assay due to the presence of the reddish orange pigment extracts suggested antioxidant activity of the
pigments, compared with the blank control showing yellow color of potassium ferricyanide solution
(Figure 7D). The absorbance of iron ferrocyanide (Prussian blue) at 700 nm (A700) further supported
the above observation, with A700 of 1.045 in the pigment group on average vs. A700 of 0.085 in the
control group on average. The A700 was significantly elevated in the experimental group compared
with the control group, with p value < 0.01 (Student’s t-test). Since M. antarctica ZS314T inhabits the
intertidal sediments in Antarctica, it has to deal with UV radiation, increased oxidative stress and all
other challenges caused by low temperature. Therefore, the production of carotenoids contributes to
survival and increases the fitness of M. antarctica ZS314T under the extreme environmental conditions
by increasing the antioxidant capability. Moreover, the carotenoids produced by M. antarctica ZS314T

may be further explored for potential applications in biotechnology. Since M. antarctica ZS314T has few
biosynthetic gene clusters and hence a relatively simple background, carotenoids are the major products
in the crude extracts, as indicated by the HPLC analysis as well (Figure 7B). Therefore, it simplifies
further purification and isolation of carotenoids from M. antarctica ZS314T for industrial purposes.

3. Materials and Methods

3.1. Strain and Culture Conditions

M. antarctica ZS314T was isolated on Marine Agar 2216 (Difco) from intertidal sediments of the
coast off the Chinese Antarctic Zhongshan Station in East Antarctica. For further morphological
observation, the strain ZS314T was grown on Marine Agar 2216 (Difco) and in Marine Broth 2216
(Difco) at 20 ◦C for 7 days. For analysis of reddish orange pigments, the strain ZS314T was cultured in
Erlenmeyer flasks containing one liter of Marine Broth 2216 (Difco) at 20 ◦C for seven days, under
rigorous shaking at 200 rpm.

3.2. Genome Sequencing and Data Mining of M. antarctica ZS314T

Genomic DNA was extracted using QIAamp® DNA Mini kit (QIAGEN, Shanghai, China).
The genome was sequenced by a combination of Illumina Hiseq 4000 and PacBio RSII sequencing
platforms. Two genomic libraries with inserts of 500 bp and 10 kb were constructed for Illumina and
PacBio sequencing, respectively. Clean data from Illumina and PacBio sequencing were assembled
using SOAPdenovo software version 2 [33] and RS_HGAP assembly version 3 included in the SMRT
Analysis version 2.3.0 (https://github.com/PacificBiosciences/SMRT-Analysis). Circularization of the
assemblies was evaluated based on overlaps and using SSPACE-LongRead software [34]. Genes were
predicted by using Glimmer version 3.0.2 [35]. Gene annotations were obtained by querying the
databases of GenBank non-redundant protein [36], Swiss-Prot [37], KEGG [38], COG [39], GO [40],
and carbohydrate-active enzymes database (CAZy) [41]. The presence of rRNA and tRNA was
predicted by using rRNAmmer [42] and tRNAscan [43], respectively. The secondary metabolite BGCs
were predicted by the antiSMASH program, using the relaxed parameters recommended by the
program [44]. Circular map of the genome was drawn using the Circos package [45]. Phylogenetic
trees were constructed by using the MEGA 7.0 software with bootstrap replication set at 1000 [46].
Metabolic pathway reconstruction was performed using the web-based server PathPred, following the
reference pathway of biosynthesis of secondary metabolites (plants) with default parameters [24].

https://github.com/PacificBiosciences/SMRT-Analysis
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3.3. Extraction and Analysis of Reddish Orange Pigments

Five liters of liquid Marine Broth 2216 cultures were centrifuged at 7,000 rpm at 4 ◦C for 10 min.
After centrifugation, the supernatant was almost colorless, and the cell pellets were reddish orange.
The pigments were then extracted repeatedly with methanol from freeze-dried cell pellets. To avoid
any chemical change caused by light, all manipulations during the extraction of the pigments were
carried out in the dark and the containers were wrapped in aluminum foil. The extracts were then
pooled and concentrated by rotary evaporation at 45 ◦C.

The UV-visible absorption spectra scan of concentrated methanolic extracts was performed by
using Epoch spectrophotometer system with the spectrum range of 330–700 nm. The extracts were
analyzed by HPLC (waters e2695) using a C18 reversed-phase column (3.5 µm, 4.6 × 150 mm, waters)
with a flow rate of 1 ml·min−1 and detection wavelength at 480 nm. The mobile phase was a gradient
of 10 to 100% acetonitrile with 0.1% formic acid for 10 min followed by 100% acetonitrile with 0.1%
formic acid for 30 min, with a flow rate of 1 mL·min−1. The extracts were isolated and purified by
column chromatography with silica gel (200–300 mesh, Merck, Darmstadt, Germany). Thin-layer
chromatography (TLC) was used to check the presence and purity of carotenoid-like compounds in
the fractions separated by column chromatography before pooling. TLC was performed in TLC Silica
gel 60F plates (Merck, Germany), and was developed with a 3:2 (v/v) solvent mixture of acetone and
petroleum ether. Carotenoids were indicated by yellow and red colors on TLC plates (Figure S5).
Fractions containing putative carotenoids were further purified by column chromatography with
Sephadex LH-20 (Pharmacia Biotech, Uppsala, Sweden). Purified fractions were identified using an
Agilent 6224 TOF LC/MS spectrometer, with C18 reversed-phase column (3 µm, 4.6 × 75 mm, YMCSep.
Technol., Japan). The mobile phase was a gradient of 20 to 100% acetonitrile with 0.1% formic acid for
12 min, followed by 100% acetonitrile with 0.1% formic acid for 48 min, with a flow rate of 0.3 mL·min−1.
The eluted compounds were monitored at 480 nm using a diode array detector (DAD) detector.

3.4. Anti-Oxidation Assay of Reddish Orange Pigments

The anti-oxidation ability of the reddish orange pigments was measured via the ferric reducing
antioxidant power (FRAP) assay [47]. The mixture of 50 µL of concentrated methanolic extracts and
50 µL of 1% potassium ferricyanide K3Fe[CN]6 were incubated in the dark for 20 min at 50 ◦C. Then,
50 µL of 10% trichloroacetic acid was added to the above mixture, and centrifuged for 10 min at
7000 rpm at 4 ◦C. After centrifugation, 20 µL of sterile deionized-distilled H2O and 20 µL of 0.1%
ferric chloride were added to the supernatant, resulting in the production of iron ferrocyanide, i.e.,
Prussian blue. The absorbance of Prussian blue at 700 nm was measured by Epoch spectrophotometer
system. Methanol was used as a blank control and was manipulated at the same time under the same
conditions. Both the experimental group and the blank group were performed in triplicate.

3.5. Data Accessibility

The complete genome of M. antarctica ZS314T has been deposited in the GenBank database under
the accession number CP017146.

4. Conclusions

M. antarctica ZS314T represents a novel type of under-investigated Actinobacteria. The presence
of the five putative secondary metabolite gene clusters suggested the genetic potential of M. antarctica
ZS314T in producing terpenes, alkylresorcinols, salinixanthin, oligosaccharides or amino acid-derived
compounds. Combined with further experimental characterization and the gene cluster analysis
provided evidence for the production of C.p.450-like carotenoids. In addition, a new xanthorhodopsin
gene was discovered during the analysis of cluster 3. This work contributes to the investigation of
natural product biosynthesis of M. antarctica ZS314T. The report of the complete genome also provides
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opportunities for further investigation of the novel actinobacterium in adaptation to the extreme
Antarctic environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/7/388/s1,
Figure S1: Circular genome map of M. antarctica ZS314T. From outer to inner circle: genome size, protein-encoding
genes in forward orientation, protein-encoding genes in reverse orientation, ncRNA in forward orientation,
ncRNA in reverse orientation, repeat sequences, GC plot and GC skew., Figure S2: Phylogenetic tree of SrsA from
M. antarctica ZS314T and close deposits in the NCBI non-redundant protein sequences (nr) database., Figure S3:
Reconstructed biosynthetic pathway of the core structure of salinixanthin without the glucose ester modification
from lycopene., Figure S4: Mass spectrometry of the purified fractions from the methanolic extracts of the pigments
produced by M. antarctica ZS314T., Figure S5: TLC profile of carotenoid-like pigments indicated by yellow and red
colors., Table S1: Gene organization of the five gene clusters predicted in the genome of M. antarctica ZS314T.
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