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Abstract 

Background: Enhancers are emerging regulatory regions controlling gene expression in diverse cancer 
types. However, the functions of enhancer regulatory circuit perturbations driven by copy number 
variations (CNVs) in malignant glioma are unclear. Therefore, we aimed to investigate the comprehensive 
enhancer regulatory perturbation and identify potential biomarkers in glioma.  
Results: We performed a meta-analysis of the enhancer centered regulatory circuit perturbations in 683 
gliomas by integrating CNVs, gene expression, and transcription factors (TFs) binding. We found 
widespread CNVs of enhancers during glioma progression, and CNVs were associated with the 
perturbations of enhancer activities. In particular, the degree of perturbations for amplified enhancers 
was much greater accompanied by the glioma malignant progression. In addition, CNVs and enhancers 
cooperatively regulated the expressions of cancer-related genes. Genome-wide TF binding profiles 
revealed that enhancers were pervasively regulated by TFs. A network-based analysis of TF–enhancer–
gene regulatory circuits revealed a core TF–gene module (58 interactions including seven genes and 14 
TFs) that was associated survival of patients with glioma (p < 0.001). Finally, we validated this 
prognosis-associated TF–gene regulatory module in an independent cohort. In summary, our analyses 
provided new molecular insights for enhancer-centered transcriptional perturbation in glioma therapy. 
Conclusion: Integrative analysis revealed enhancer regulatory perturbations in glioma and also identified 
a network module that was associated with patient survival, thereby providing novel insights into 
enhancer-centered cancer therapy. 
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Introduction 
Glioma is one of the most common brain tumors 

[1, 2], which is classified into grades I–IV according to 
the World Health Organization (WHO) [3]. 
Accumulating evidence suggests that perturbation of 
gene expression is closely associated with 
carcinogenesis, which might be triggered by genomic 
rearrangement [4], site-specific transcription factors 

[5], or long-range enhancer interactions [6]. However, 
the molecular basis of glioma pathogenesis is still 
poorly understood.  

With the development of high-throughput 
sequencing technologies, it has been proven that DNA 
copy number aberrations (CNAs) play an important 
role in cancer biology [7, 8]. Gene CNAs may impact 
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the activities of a variety of oncogenic or 
tumor-suppressive pathways [9-11]. However, CNAs 
located outside the gene regions also affect the 
expression of genes via an indirect mechanism. Our 
knowledge about the effects of these CNAs on gene 
expression at a genome-wide level is still limited. 
Enhancers are a well-known class of regulatory 
regions [12-14], and they have been shown to control 
genes important for maintaining cellular identity. 
CancerEnD is a comprehensive resource recently 
developed for annotating expressed enhancers and 
associated genes across cancer types [15]. 
Perturbations of enhancer activities are also 
frequently associated with oncogenes and 
translocations that result in aberrant gene expression 
in cancer [16]. Paul et al. reported that gains of CNAs 
impact the enhancer activation in medulloblastoma, 
which might be responsible for overexpression of 
target gene GFI1B [17]. Gene copy number 
amplification can also lead to chemotherapy 
resistance and poor overall survival in patients with 
cancer [11, 18]. Copy number gains of non-coding 
regions harboring super-enhancers were found near 
four known cancer-related genes in human epithelial 
cancers [19]. However, a global view of enhancer 
activity alterations during glioma progression 
remains poorly understood.  

Moreover, the transcriptional activity of genes is 
regulated through the interplay between enhancers 
and other cis-acting regulatory elements bound by 
transcription factors (TFs) [20]. Recent studies have 
shown that TFs play critical roles in the regulation of 
enhancer activation and, thus, control enhancer 
function [21]. For example, tumor suppressor p53 
regulates enhancer accessibility and activity in 
response to DNA damage [22]. Under the regulation 
by TFs, enhancers usually perform their functions 
through targeting upstream and downstream genes. 
Therefore, genome-wide identification and 
characterization of the regulatory relationships 
between enhancers, TFs and target genes during 
glioma progression are necessary to reveal underlying 
regulatory circuit perturbations in enhancer 
regulatory contexts. 

In this study, we performed a meta-analysis of 
the relationship between TFs, enhancers, and target 
gene networks, and a comprehensive functional 
dissection of enhancer circuits during glioma 
progression. By integrative analysis of the CNAs and 
enhancer data, widespread CNAs of enhancers were 
observed during glioma progression. In addition, 
CNAs and enhancers cooperatively regulated the 
expression of target genes. Importantly, a 
network-based analysis of TF–enhancer–gene 
regulatory circuits revealed a core TF–gene module 

that was associated with glioma prognosis.  

Methods 
CNA and gene expression data during glioma 
progression 

We obtained the level-3 copy number variation 
(CNV) data of Affymetrix SNP 6.0 array for both 
low-grade glioma (LGG) and glioblastoma 
multiforme (GBM) from The Cancer Genome Atlas 
(TCGA) data portal [23]. The patients with LGG (n = 
529) were divided into grade II and grade III glioma 
based on clinical information downloaded from the 
TCGA project. As a result, there were 258 patients 
with grade II, 271 patients with grade III and 154 
patients with grade IV glioma with CNV data, 
respectively. 

RNA-Seq based gene expression data for 
patients with glioma (LGG and GBM) were also 
downloaded from the TCGA data portal. The 
expression levels of genes were measured as 
fragments per kilobase of transcript per million 
fragments mapped reads (FPKM). There were also 
five normal samples. We obtained 224, 233, and 146 
samples with both the CNV and expression data in 
grade II, III, and IV gliomas, respectively. 

Identification of enhancers with CNV 
alterations in glioma 

To identify the enhancers with CNV alterations 
in glioma, we first downloaded 65,423 human 
enhancers from FANTOM5 data portal [24]. The 
enhancer activity in FANTOM5 was detected by 
CAGE-Seq (Cap Analysis of Gene Expression). The 
expressions of enhancers were measured by 
transcripts per kilobase million (TPM). The expression 
level of an enhancer has been used as an index of its 
activity [25]. Therefore, we removed enhancers with 
no expression in brain tissue samples (Figure 1A). 
Moreover, we limited enhancers to those overlapped 
within intronic or intergenic regions but not 
promoters (TSS ± 2 kb) or exon regions, resulting in a 
subset of intronic and intergenic enhancers. In total, 
27,165 enhancers were identified in brain tissue. 

Next, GISTIC was used to identify recurrent 
CNV regions in glioma and peaks with confidence 
window 0.95 were identified [26]. Both CNV 
amplified and deleted regions were identified during 
glioma progression. We hypothesized that the activity 
of an enhancer would be increased or decreased if it 
overlapped with a CNV amplified or deleted region. 
Thus, BEDtools was used to assign enhancers to 
CNVs-associated peak regions [27]. In addition, the 
CNV status of enhancers in each glioma sample was 
obtained for characterizing the activity alterations. 
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To validate the enhancers with CNVs alteration 
in glioma tissues, we also obtained the CNVs of cell 
lines from Cancer Cell Line Encyclopedia (CCLE). 
Cell lines annotated as “Central_nervous_system” 
were used. GISTIC was used to identify recurrent 
CNV regions in cell lines. Peaks with confidence 
window 0.9 were identified. Next, BEDtools was used 
to assign enhancers to CNV-altered regions. We used 
the hypergeometric test to evaluate the overlap of 
enhancers between the cell lines and glioma tissues. 

Enhancer-target gene regulation in glioma 
Identification of target genes of enhancers is 

critical for understanding their function in cancer. We 
next predicted the enhancers’ potential target genes 
by considering the distance and expression between 
enhancers and protein-coding genes. First, we 
identified the nearest protein coding gene located 
within 1 kb to 10 Mb from an enhancer. This process 
was performed using BEDtools [27]. 

Next, we evaluated the expression correlation 
between enhancers and these genes. Patients with 
glioma were divided into two groups depending on 
the presence of CNVs of an enhancer (the group with 
CNAs of an enhancer, and the group without CNAs). 
Gene expression differences between the two groups 
were evaluated by t-test. Genes with a false discovery 
rate (FDR) < 0.05 were identified as potential target 
genes of enhancers. Moreover, we looked for genes 
showing higher expression in enhancer-amplified 
patients or lower expression in enhancer-deleted 
patients. After iterations for all enhancers, we 
identified enhancer–target gene regulation in glioma.  

Identification of TF–enhancer–target gene 
regulatory circuit in glioma 

For the prediction of TF-binding sites on 
enhancers, we uploaded the coordinates of enhancers 
to UCSC Table Browser to obtain the sequences. All 
the sequences of enhancers with FASTA format were 
downloaded. We next screened the sequences of 
enhancers for potential TF-binding sites by Match 
(TM) in TRANSFAC Professional (release 2013.6). 
Only human TF-binding sites were screened. We 
identified all enhancers with at least one TF-binding 
site. To identify TFs that significantly targeted these 
enhancer sequences, we first obtained TF motifs from 
TRANSFAC professional. The AME tool integrated in 
MEME Suite was used to identify TF motifs that were 
significantly enriched in CNV-altered enhancers 
compared with all enhancers provided by FANTOM5 
[28, 29]. TF motifs with p < 0.005 were identified as 
enriched motifs. 

We integrated TF–enhancer regulation and 
enhancer–target interactions identified above to 

identify all TF–enhancer–target gene triplets. 
Moreover, we calculated the Spearman correlation 
coefficient (SCC) between the expression of TFs and 
target genes. The triplets with co-expressed TF–gene 
(absolute SCC > 0.3 and FDR < 0.01) were kept for 
further analysis.  

Next, we used t test to identify the TFs and target 
genes showing differential expression between cancer 
and normal tissues. TFs and genes with FDR < 0.1 and 
> 1.2-fold changes were identified as differentially 
expressed. The expression of TFs and target genes 
were positively correlated if both of them were 
upregulated or downregulated in glioma. Otherwise, 
the expression of TFs and target genes had a negative 
correlation if they showed the opposite directions in 
glioma. All of the TF–genes were assembled into a 
gene regulatory network in glioma. The network was 
visualized by Cytoscape 3.6.1 [30, 31]. 

Functional enrichment analysis 
A cumulative hypergeometric test was used to 

identify the significantly overrepresented biological 
function categories or pathways for a gene set of 
interest. All human genes were considered as 
background gene set in this analysis. Gene Ontology 
(GO) term and Kyoto Encyclopedia of Gene and 
Genome (KEGG) pathways were considered.  

Survival analysis 
All patients with glioma were divided into a 

training set and a testing set of similar gender and 
age. We next used the Cox hazard analysis to identify 
the genes associated with survival [32, 33]. Genes with 
p < 0.05 were identified based on the expression 
profiles in the training set. We calculated the risk 
score for a patient with glioma i as follows: 

𝑅(𝑖) = �𝛽𝑘

𝑛

𝑘=1

𝐺𝑘𝑖 

where n is the number of genes identified in the 
Cox regression analysis. 𝛽𝑘  is the regression 
coefficient for gene k, and 𝐺𝑘𝑖 is the expression of gene 
k in patient i. Patients in the training set were divided 
into low-risk and high-risk groups based on the 
median of the risk scores. In the testing set, we used 
the same regression coefficients generated in training 
set to calculate the risk scores. The same threshold as 
in the training set was used to classify patients into 
low-risk and high-risk groups. Log-rank test was used 
to compare the survival between low-risk and 
high-risk patients.  

Cell lines and reagents 
U251 cells were obtained from the American 

Type Culture Collection (ATCC, Manassas, Virginia, 
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USA). All cells were cultured at 37°C in a humidified 
incubator with 5% CO2 in Dulbecco’s modified 
Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, 
USA) with 10% fetal bovine serum (FBS) (HyClone, 
Logan, UT, USA), 100 U/mL penicillin and 
100 μg/mL streptomycin (Invitrogen), and 8 mg/l 
antibiotic tylosin tartrate against mycoplasma 
(Sigma-Aldrich, St. Louis, Missouri, USA). Cell lines 
were authenticated by short tandem repeat (STR) 
profiling and confirmed to be mycoplasma-free. The 
cell line was used within 20 passages and subjected to 
routine cell line quality examinations (e.g., 
morphology, mycoplasma), and thawed fresh every 
two months. 

RNA interference 
The sequences of small interfering RNA (siRNA) 

oligonucleotides targeting MAML2/FAM84B/CDK6 
and the negative control siRNA were purchased from 
RiboBio (RiboBio Biotechnology, Guangzhou, China). 
Transfections with siRNA (75 nM) were performed 
with Lipofectamine 2000. The sequences of siRNAs 
were provided in Table S1. 

Reverse transcription PCR and quantitative 
real-time PCR 

RNA samples from the U251 cell line were 
extracted with TRIzol reagent (Invitrogen). 
First-strand cDNA was synthesized using the 
PrimeScript™ Reverse Transcriptase kit (Takara, 
Dalian, China). Relative RNA levels determined by 
quantitative real-time PCR (qPCR) were measured on 
a 7900 Real-Time PCR System with the SDS 2.3 
software sequence detection system (Applied 
Biosystems, USA) using the SYBR Green (Takara) 
method. β-actin was employed as an internal control. 
The relative levels of RNA were calculated using the 
comparative CT (2−ΔΔCT) method. 

Cell proliferation assay  
siNC and siRNA U251 cells were seeded in 

96-well flat-bottomed plates, with each well 
containing 1500 cells in 100 μL of cell suspension. 
After a certain time in culture, cell viability was 
measured using Cell Counting Kit-8 (CCK-8) assay 
(Dojindo, Kumamoto Prefecture, Japan). Each 
experiment with six replicates was repeated three 
times. 

Migration assay 
The migration assay was conducted similar to 

our previous studies [18, 34], without coating the 
filters with Matrigel. The cells (5 × 104) were added to 
the coated filters in a serum-free medium. We added 
DMEM containing 10% FBS to the lower chambers as 
a chemoattractant. After 24 h at 37°C in an incubator 

at 5% CO2, the cells that migrated through the filters 
were fixed with methanol and stained with crystal 
violet. The cell numbers were counted in five random 
fields. 

Results 
Widespread CNAs of enhancers during glioma 
progression 

CNAs and somatic mutations are common types 
of genomic alterations in cancer. To explore the 
relationship between genomic instability and 
enhancers during glioma progression, we proposed a 
computational pipeline to determine CNV-driven 
enhancers (Figure 1A). Particularly, we focused on 
intergenic enhancers expressed in brain tissues. In 
total, we identified 27,165 active enhancers in brain 
tissue out of 65,423 FANTOM enhancers. 

Next, we applied GISTIC 2.0 to Affymetrix 
SNP6.0 arrays in TCGA LGG and GBM cohorts. We 
found 226, 193, and 367 amplification peaks and 309, 
249, and 317 deletion peaks in patients with grade II, 
grade III and grade IV glioma, respectively. Similar to 
a previous study [35], we found that CNAs were 
frequently observed in chromosomes 1, 7, and 10 
(Figure S1). Moreover, the CNAs were more complex 
and prevalent during glioma progression, and 
patients with high-grade glioma were likely to harbor 
more CNAs (Figure S1A-C). 

To identify enhancers implicated by CNAs, we 
examined the overlap of the CNAs-associated peak 
regions and active enhancers in brain tissue. A total of 
933, 1,230, and 140 enhancers located in 26, 32, and 46 
amplification peaks and 658, 1,066, and 30 enhancers 
located in 25, 22, and 22 deletion peaks were 
identified in patients with grade II, grade III and 
grade IV glioma, respectively (Figure 1B). Moreover, 
we found that there were more CNA-driven 
enhancers shared between grades II and III, and more 
specific enhancers (87 amplified and 20 deleted) were 
specifically altered in grade IV (Figure 1C and Figure 
S1D). We also identified 18 enhancers shared in all 
grades, including six consistently amplified and seven 
consistently deleted enhancers (Figure 1D and Figure 
S1D). Next, we identified the CNA-driven enhancers 
in cell lines of the central neural system. We found 
that a significantly overlap of the CNA-driven 
enhancers between the cell lines and glioma tissues 
(Figure S2, p < 0.001 for amplification and deletion), 
demonstrating the predicted amplification or deletion 
of enhancer regions in glioma. Taken together, those 
results presented a general picture of enhancer 
alterations (1,641 amplified and 1,115 deleted 
enhancers in total) during glioma progression and 
suggested widespread CNAs of enhancers, 
complementary to other genomic elements. 
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Figure 1. Widespread CNAs of enhancers during glioma progression. (A) Flowchart showing identification of enhancers with CNAs in different grades of glioma 
patients. (B) Numbers of enhancers with CNAs in G2, G3 and G4 glioma patients. Red for enhancers with copy number amplification, and blue for enhancers with copy number 
deletion. (C) Venn plots showing the overlap of enhancers with CNVs in G2, G3 and G4. (D) Heat map showing the normalized CNVs of enhancers during glioma progression. 
(E) Boxplots showing the differences of enhancer expression between amplified/deleted and other glioma patients.  

 

CNAs are associated with enhancer activation 
To explore the relationship between genomic 

instability and enhancer expression during glioma 
progression, we overlapped the active enhancers in 
the brain to 15,808 enhancers identified in a recent 
study [36]. The expression data of enhancers retrieved 
from RNA-Seq in the TCGA LGG and GBM cohorts 
were downloaded. Moreover, we considered only 
enhancers that were expressed in at least 10% of 
samples. Previous studies have demonstrated that an 
obvious consequence of copy number changes is 
alteration in gene dosage [37, 38], which results in 
perturbations of gene expression. Therefore, we 
explored whether the expression levels of enhancers 
were perturbed by CNAs during glioma progression. 
We found that enhancer RNAs (eRNAs) were 
upregulated for enhancers located in CNV-amplified 
regions (Figure 1E and Figure S1E). In contrast, 
enhancers that located in CNV-deleted regions 
exhibited downregulated expression trend in gliomas. 
Moreover, the expression difference for amplified 
enhancers was much greater during the glioma 
malignant progression (Figure 1E). Collectively, all 

these results suggested the association of CNAs with 
enhancer activation during glioma progression. 

CNAs of enhancers perturb expression of 
cancer-related target genes 

To investigate the potential functions of 
enhancers in cancer development and progression, it 
is critical to identify their downstream target genes. 
By integration of genomic locations and expression 
profiles, we predicted the potential candidate target 
genes of enhancers in two steps (Figure 2A). In total, 
we identified 170 genes showing higher expression in 
enhancer-amplified patients, and these genes were 
involved in 678 interactions with enhancers (Figure 2B 
and Figure S3). By contrast, 173 genes involved in 565 
interactions showed lower expression in 
enhancer-deleted patients. In particular, we found 
that the interactions of the amplified enhancers were 
mainly located on chromosomes 8 and 11 (Tables S2 
and S3). The interactions of deleted enhancers 
primarily occurred on chromosomes 6 and 10 (Figure 
2B and Figure S3). 
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Figure 2. CNAs of enhancers regulate cancer-related genes. (A) The framework for identifying genes potentially regulated by enhancers. (B) Circos plots showing the 
enhancer–gene regulation in glioma. Red regions for enhancers with copy number amplification, blue regions for enhancers with copy number deletion, and green regions for 
genes regulated by CNV-driven enhancers. (C) Numbers of genes regulated by enhancers in glioma. Bar plots showing the number of genes. Venn plots showing the overlaps of 
target genes regulated by amplified or deleted enhancers. (D) Pathways enriched by target genes of enhancers. Red for genes regulated by amplified enhancers and blue for genes 
regulated by deleted enhancers. (E) Proportion of cancer genes in target genes regulated by enhancers. The significance levels were calculated by comparison with randomly 
selected genes.  

 
We next repeated this process for each grade of 

glioma and found that these enhancers regulated a 
number of cancer-related genes, such as ARID1B [39], 
EGFR, MDM2 [40], PRGFRA, and MYC (Figure 2C). 
For instance, EGFR has been demonstrated as a 
clinical marker in glioblastoma [41]. We found that it 
was regulated by two enhancers (E1 and E2, Figure 
S4A). E1 was amplified in grade III, and E2 was 
amplified in both grade III and grade IV patients. We 
investigated the expression of E1 and found 
significantly higher expression in amplified patients 
(Figure S4B, p = 2.12e-4). Moreover, we found 
significantly higher EGFR expression in patients with 
E1- and E2-amplified glioma (Figure S4C-D). Another 
example is the MYC gene, we found seven enhancers 
with increased activity regulating MYC in both grades 
II and III (Figure S5). The majority of these enhancers 
were located in super-enhancer deriving from brain 
tissue–SF268 [42]. 

To investigate the function of genes regulated by 
enhancers, we performed functional enrichment 

analysis. We found that these genes were significantly 
enriched in P53 pathway, ultraviolet (UV) response, 
angiogenesis and protein secretion (Figure 2D). These 
results suggested that genes regulated by enhancers 
were likely to be involved in cancer. We next explored 
to what extent these genes were validated as 
cancer-related genes. Thus, we calculated the 
proportion of cancer genes among the amplified or 
deleted enhancer-regulated genes. Approximately 
30% of genes were curated in CancerMine [43], while 
15% of genes regulated by amplified enhancers were 
annotated as known cancer genes in Cancer Gene 
Census [44] (Figure 2E). We next randomly selected 
the same number of genes as enhancer regulated 
genes and recalculated the proportion of 
cancer-related genes. This process was repeated 
10,000 times. We found that genes regulated by 
enhancers were more likely to be associated with 
cancer (Figure 2E, p < 0.05). Together, all these results 
suggested that CNAs of enhancers perturbed the 
expression of cancer-related genes. 
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Figure 3. CNAs and enhancers cooperatively regulate the expression of genes. (A) Number of genes regulated by different number of enhancers in glioma. (B) The 
expression of genes regulated by different number of amplified enhancers. (C) The expression of genes regulated by different number of deleted enhancers. (D) Regulatory 
models proposed for CNAs and enhancers cooperative regulation. (E) The expression differences for genes in different amplified models. (F) The expression differences for genes 
in different deleted models.  

 

Enhancers and CNAs cooperatively regulate 
expression of target genes 

We next calculated the number of enhancers 
regulating each target gene. Interestingly, we found 
that approximately 62.4% of target genes were 
associated with two or more enhancers (Figure 3A 
and Figure S6A). This result suggested that multiple 
enhancers could cooperatively regulate the expression 
of target genes. Particularly, MYC, CCND2, and 
ARID1B were regulated by more than six enhancers in 
gliomas. We obtained similar results for different 
grades of glioma (Figure S6B–D). Next, we 
investigated the expression of genes regulated by a 
different number of enhancers. We found that the 
expressions of genes regulated by amplified 
enhancers were higher than those not regulated by 
enhancers (Figure 3B). Moreover, genes regulated by 
more than two amplified enhancers exhibited 
significantly higher expression in patients with 
glioma (Figure 3B). By contrast, genes regulated by 
deleted enhancers exhibited significantly lower 
expression, particularly for genes regulated by more 
than two deleted enhancers (Figure 3C). These results 
suggested that CNVs of enhancers might 
cooperatively regulate the expression of genes. 

In addition, considering that the expression of 
target genes can also be affected by CNVs, we 

proposed six regulatory models for a given enhancer–
gene regulation (Figure 3D). The CNA of both 
enhancers and genes may cooperatively regulate the 
expression of target genes. To validate this 
hypothesis, we investigated the expression of genes 
regulated by enhancers and CNAs. For the amplified 
group, we found that genes exhibited significantly 
higher expression in enhancer- and gene-amplified 
patients than in only enhancer or only gene-amplified 
patients (Figure 3E). Moreover, both enhancer- and 
gene-deleted patients exhibited significantly lower 
expression of genes compared with enhancer- or 
gene-deleted patients (Figure 3F). These results 
suggest that CNAs of enhancers and genes 
cooperatively regulate the expression of target genes. 

Enhancer-TF-target regulatory circuit 
perturbations in glioma 

As active enhancers need to bind TFs to regulate 
downstream gene expression [45, 46], we identified 
the TF–target regulation associated with enhancers to 
understand the regulatory circuit during glioma 
malignant progression. Integrating the TF–enhancer 
pair, enhancer–target gene regulation and the 
expression of TFs and genes, we identified the 
enhancer–TF–target triplets in glioma (Figure 4A). 
Based on the sequences of amplified enhancers, we 
found that the binding sites of MAFK, POU2F1, 
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HOXD13, and FOXA2 were significantly enriched 
(Figure 4B). MAFK is a nerve growth factor, 
responsive immediate early gene that regulates 
neurite outgrowth [47]. PAX6, BCL6, HOXD13, and 
FOX2 have also been shown to be associated with 
glioma in previous studies [48-50]. For the deleted 
enhancers, we identified four TFs significantly 
binding to the enhancer sequences (Figure 4C), 
including CTCF, ESX1, RELA and TCF3. CTCF has 
been found to directly participate in chromosome 
architecture and is involved in forming the loops 
between the binding sites to further affect the 
enhancer–promoter interaction [51]. TCF3 
(Transcription factor 3) is a member of the T-cell 
factor/lymphoid enhancer factor (TCF/LEF) family, 
and high levels of TCF3 in glioma potentially promote 
glioma development through the Akt and Erk 
pathways [52].  

In total, we identified 545 TF–gene regulations 
associated with 141 enhancers with increased activity, 
and 469 TF–gene regulations were associated with 119 
enhancers showing reduced activity (Tables S4–5). By 
integration of the TF–gene regulations, we 
constructed two regulatory networks in glioma 
(Figure 5A–B). Interestingly, we identified a number 
of oncogenes in the activity-increased network, 
whereas tumor suppressor genes were more 
frequently observed in the activity-reduced network. 
We next repeated this process for each grade of 
glioma. A number of interactions reappeared in at 

least two grades (Figure S7), suggesting that these 
interactions influenced the glioma in multi-grades. 
We next performed functional enrichment analysis 
and found that these genes were mainly associated 
with cancer hallmarks, such as “insensitivity to 
antigrowth signals”, “self-sufficiency in growth 
signals”, “tissue invasion and metastasis” and 
“evading apoptosis” (Figure S8). 

Particularly, we found an amplified 
enhancer-SIX1-MYC regulation in glioma (Figure 
S9A). Based on the previous studies, Six1 is able to 
activate the expression of c-Myc [53]. Both SIX1 and 
MYC were upregulated in patients with glioma with 
amplified enhancer. Moreover, the greater slope in the 
amplified group suggested that SIX1 might influence 
the expression of MYC more strongly in patients with 
amplified enhancer. Another example was the 
enhancer-CREB1-MGMT regulatory circuit (Figure 
S9A). CREB1 was upregulated while MGMT was 
downregulated in patients with deleted enhancers. 
Epigenetic silencing of MGMT by promoter 
methylation in glioma cells had been previously 
found [54]. Here, our analysis provided novel insights 
into MGMT regulation in the context of the enhancer 
regulatory circuit. Moreover, we found that patients 
with glioma with distinct survival time can be 
effectively distinguished from each other based on the 
expression of TFs and genes (Figure S9B). Taken 
together, these results suggested that widespread 
enhancer–TF–gene regulatory circuit perturbations in 

 

 
Figure 4. TF–enhancer–gene regulatory circuits in glioma. (A) The computational model for identifying enhancer-TF-gene triplets in glioma. (B) TFs enriched in 
amplified enhancers. (C) TFs enriched in deleted enhancers.  
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glioma. Analysis of these regulatory circuits revealed 
critical genes in glioma. 

Core TF-target regulatory module associated 
with glioma prognosis 

The above examples suggested that integrating 
the TF–gene regulatory network would help in 
identifying the prognosis biomarkers in glioma. Thus, 
we next aimed to identify the core TF–target 
regulatory module associated with glioma prognosis. 
We first calculated the connectivity of TFs and genes 
in the glioma global network, and found that 
approximately 13.2% of TFs regulated more than 20 
target genes in enhancer-amplified network and 9% in 
enhancer-deleted network (Figure S10A). Moreover, 
approximately 26% of target genes were regulated by 
more than seven TFs in enhancer-amplified network 
and 20% in enhancer-deleted network (Figure S10B). 
These results suggested that a TF may regulate 
multiple target genes and multiple TFs may work in 
concert to regulate the expression of a gene. By 
integration of TFs and genes with higher connectivity, 
we identified 58 interactions including eight genes 
and 18 TFs, thus involving 143 enhancer–TF–target 
triplets in enhancer-amplified network (Figure 6A). In 
addition, 58 interactions with seven genes and 14 TFs, 
involving 203 enhancer–TF–target triplets, were 
identified from the enhancer-deleted network (Figure 
6A). Four TFs (TCF3, HOXD10, HOXD13, and 
NKX2-5) were identified in both networks. We found 
that a large number of TFs were encoded by HOX 
genes, which have been demonstrated to be 
associated with multiple cancer types [55-57]. 

Functional enrichment analysis suggested that these 
genes were mainly involved in differentiation and 
proliferation-related functions (Figure 6B). 

To evaluate the clinical significance of this 
network module, we next divided the patients equally 
into the training and testing sets. Based on the Cox 
proportional model, we identified that 38 genes were 
associated with patient survival in the training set 
(Figure 6C). In total, there were 18 protective factors 
and 20 risk factors (Figure S11). These genes exhibited 
dynamic expression across patients in the training 
and testing sets (Figure 6C). Next, we calculated the 
risk score for each patient by integrating the 
expression of these genes. The patients were divided 
into low-risk and high-risk groups based on the 
median of risk scores in the training set. We found 
that the patients in high-risk group exhibited poor 
survival in both the training and testing sets (Figure 
6D and 6E, log-rank p < 2.2e-16). These results 
suggested that the risk-score may serve as a marker of 
glioma prognosis. Moreover, adjusted comparison 
was then performed by fitting a multivariate Cox 
proportional-hazards model, adjusted for potential 
confounders for patient survival, such as age, grade, 
gender, and IDH mutation. We found that the 
integrated risk score was an independent predictor of 
survival in patients with glioma (Figure 6F, Hazard 
ratio = 3.51, p < 0.001). Taken together, we identified a 
few dozen of new prognostic TF–target regulations in 
glioma, which increased our understanding of the 
transcription regulatory mechanism mediated by 
enhancer activity alteration in glioma. 

 

 
Figure 5. TF-gene regulatory network in glioma. (A) TF–gene regulatory network for amplified enhancers. (B) TF–gene regulatory network for deleted enhancers.  
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Validation of the core regulatory module in 
independent cohorts 

We next validated the prognosis effect of this 
core regulatory module in a Chinese cohort. In total, 
we downloaded the gene expression profiles of 325 
Chinese patients with glioma from the Chinese 
Glioma Genome Atlas (CGGA) [58, 59]. Visualization 
of the expression of these genes showed a great 
variation among the patients (Figure 7A). Based on 
the same model trained in the TCGA data, we divided 
the patients into low-risk and high-risk groups. We 
found significant differences in survival between 
patients in low-risk and high-risk groups (Figure 7B, 
log-rank p = 4.9E-15). Moreover, we performed a 
multivariate Cox proportional-hazards model, 
adjusted for age, grade, gender, and IDH mutation. 
We found that the integrated risk score was an 
independent predictor of survival (Figure 7C, Hazard 
ratio = 1.61, p < 0.01). Together, all these results 
suggested an enhancer-centered TF–gene regulatory 
model driven by CNAs in cancer. The expression of 
the core regulatory module is associated survival in 
patients with glioma.  

Enhancer target genes promote cell 
proliferation and migration in glioma 

We found that TFs encoded by HOX genes 
recurrently appeared in glioma, and these TFs 
regulated critical genes (such as MAML2, CDK6, 
FAM84B, and PTBP1) (Figure 7D). Next, we explored 
the function of enhancer target genes in a glioma cell 
line. Compared with normal tissues, we found that 
MAML2, FAM84B, and CDK6 exhibited higher 
expression in glioma (Figure 8A). We next used 
siRNA technology to knock down these target genes 
in U251 cell line and measure the expression of genes. 
We found that siRNAs significantly reduced the 
expression of target genes (Figure 8B). Moreover, the 
knockdown target genes (MAML2, FAM84B, and 
CDK6) significantly inhibited the cell proliferation in 
glioma (Figure 8C, p < 0.001). Transwell assays were 
employed to explore whether cell migration was 
affected after silencing of enhancer target genes. We 
found that the knockdown of target genes 
significantly decreased cell migration compared with 
the control (Figure 8D, p < 0.001). Together, all of 
these results suggested that enhancer target genes 
significantly promote cell proliferation and migration 
in glioma.  

 

 
Figure 6. Core TF–gene module associated with survival of glioma patients. (A) Network view of the TF–gene regulation in core module. (B) Biological processes 
enriched by the core TF–gene module. (C) Heat maps showing the expression of TF and genes in glioma patients. Left is for training set and right is for testing set. (D) Kaplan–
Meier estimates of the probability of survival based on the risk score model in training set. (E) Kaplan–Meier estimates of the probability of survival based on the risk score model 
in testing set. (F) Forest plot of multivariable hazard ratios.  
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Figure 7. Validation of Core TF–gene regulatory module in CGGA cohort. (A) Heat map showing the expression of prognostic factors in CGGA cohort. (B) The 
Kaplan–Meier estimates of the probability of survival based on the risk score model in CGGA cohort. (C) Forest plot of multivariable hazard ratios in CGGA cohort. (D) Diagram 
showing the model for enhancer-centered TF–gene regulation driven by copy number alterations.  

 

Discussion 
The activity alterations of enhancers, a 

well-known class of distal regulatory element, control 
the expression of cancer-related genes and contribute 
to cancer pathogenesis in multiple cancer types [19]. 
In this study, we identified robust enhancers by 
integration of the CAGE expression of enhancer RNA 
and genomic location. Through integration of TCGA 
copy number data, we identified numerous enhancers 
with activity alterations during glioma progression. 
Particularly, the activity alterations were much 
greater in high patients with high-grade glioma. 
Extensive studies have shown that CNVs not only 
directly affect the expression of genes but also 
regulate gene expression by acting on distal 
regulatory elements, such as enhancers [60]. We, 
indeed, found an additive effect where the 
expressions of genes were affected by CNVs and by 
relevant enhancers. Moreover, the genes regulated by 

enhancers were enriched in cancer-related pathways. 
The enhancers contain some recognition 

sequences that can specifically be bound by TFs that 
regulate gene expression in a spatial and temporal 
fashion [61]. We also observed that activity alterations 
of enhancers perturb the regulation of genes by TFs. 
To identify prognosis-related TF–gene regulation in 
glioma, we identified a network module from the 
global transcriptional regulatory networks. The TFs 
encoded by HOX gene recurrently appeared, 
suggesting that this kind of TFs may play a crucial 
role in the occurrence and progression of glioma [62]. 
These TFs regulate critical genes (such as MAML2, 
CDK6, FAM84B and PTBP1) that play fundamental 
roles in cancer. In addition, we found that several TF 
regulations, such as SOX4–MAML2, CREB1–CDK6 
and NR3C1–FAM84B, were supported by ChIP-Seq in 
Cistrome DB [63]. Finally, we identified several genes 
that potentially contributed to prognosis of glioma, 
which were further validated in an independent 
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cohort. These potential prognosis genes and TF–gene 
regulation provide a new view on the future glioma 
therapy. 

A detailed understanding of the molecular 
mechanisms of enhancer regulatory circuit 
perturbations still remains an important question. 
Given increasing evidence that the majority of 
disease-associated sequence variations are observed 
in enhancers, it is interesting to investigate whether 
these variations will alter the TFs binding [64]. In 
addition to TFs, miRNAs, circRNAs [65], and 
RNA-binding proteins (RBPs) constitute another key 
layer in the maintenance of gene expression [66-68]. 
Surprisingly, relationships between enhancers and 
miRNAs or RBPs have not been studied [69]. The 
further exploration of miRNA or RBP regulation of 
enhancer transcription will therefore be the central 
importance for understanding of function of 
enhancers.  

In summary, our network-based analysis 
revealed enhancer-centered regulatory circuit 
perturbations during glioma progression and 
identified core module associated with patient 

survival. All these results provide new molecular 
insights into enhancer functions and may advance 
novel therapeutic interventions for gliomas.  
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