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Abstract

Objectives—This study sought to evaluate adventitial vasa vasorum (VV) in vivo with novel 

imaging technique of optical coherence tomography (OCT).

Methods—To verify OCT methods for quantification of VV, we first studied 2 swine carotid 

arteries in a model of focal angiogenesis by autologous blood injection, and compared 

microchannel volume (MCV) by OCT and VV by m-CT, and counts of those. In OCT images, 

adventitial MC was identified as signal-voiding areas which were located within 1 mm from the 

lumen-intima border. After manually tracing microchannel areas and the boundaries of lumen-

intima and media-adventitial in all slices, we reconstructed 3D images. Moreover, we performed 

with OCT imaging in 8 recipients referred for evaluation of cardiac allograft vasculopathy at 1 

year after heart transplantation. MCV and plaque volume (PV) were assessed with 3D images in 

each 10-mm-segment.

Results—In the animal study, among the 16 corresponding 1-mm-segments, there were 

significant correlations of count and volume between both the modalities (count r2=0.80, P<0.01; 

volume r2 =0.50, P<0.01) and a good agreement with a systemic bias toward underestimation with 

m-CT. In the human study, there was a significant positive correlation between MCV and PV 

(segment number=24, r2 =0.63, P<0.01).
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Conclusion—Our results suggest that evaluation of MCV with 3D OCT imaging might be a 

novel method to estimate the amount of adventitial VV in vivo, and further has the potential to 

provide a pathophysiological insight into a role of the VV in allograft vasculopathy.
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Introduction

Neovascularization of the arterial wall is an important process associated with the 

progression and complication of atherosclerosis. It is characterized by proliferation of vasa 

vasorum (VV) which is a network of microvessels located in the walls of arteries and 

veins 1-3. We have previously reported the role of VV in atherosclerosis using micro-

computerized tomography (m-CT) which is considered one of the established tool for the 

imaging of VV in Vitro 4, 5. Furthermore, in initial stage of atherosclerosis, VV increased in 

the adventitia prior to intraplaque neovascularization, which reflect advanced 

atherosclerosis 4. Therefore, an assessment of coronary adventitial VV could be important to 

predict the progression of the coronary lesion.

Since cardiac allograft vasculopathy remains one of the leading causes of graft failure and 

late death among heart transplantation recipients 6-8, prevention and detection of the 

vasculopathy is important to improve prognosis in heart transplantation recipients. 

Prevalence of cardiac allograft vasculopathy was high even in first year 9, 10, and 

progression of intimal thickness in the first year after transplantation was a significant 

predictor for cardiac events 11. Although a recent case report has indicated that the lesion 

with neovascularization detected by optical coherence tomography (OCT) shows obvious 

progression of the allograft vasculopathy compared to other lesions 8, the impact of 

neovascularization on early stage vasculopathy is not as manifest as native atherosclerosis, 

and methods for quantifying VV in vivo has not been established yet. OCT is an emerging 

tool to evaluate coronary artery lesions in vivo, and a recent study has shown that 

microchannels (MC) observed in OCT images are a significant predictor of plaque 

progression in patients with native atherosclerosis but not in those with cardiac allograft 

vasculopathy 12.

Although m-CT is an established tool to evaluate adventitial VV, it has the disadvantage of 

the limited utilization only in vitro. In this study, we sought to examine the feasibility of the 

in-vivo methods to evaluate adventitial microvessels with 3D OCT images. To verify the 

validity of OCT, we first used an animal model to compare OCT versus m-CT 

measurements. Subsequently, we assessed the usefulness of OCT to evaluate VV in 

transplant recipients with early cardiac allograft vasculopathy.

Methods

This study protocols was approved by the Mayo foundation institutional animal care and use 

committee, and the institutional review board of Mayo Clinic. We obtained the written 

consents for participation from all of the human subjects in this study.
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Animal model

To study the correlation and agreement between VV detected by m-CT and MC by OCT, we 

used a model of temporal local angiogenesis in a predetermined anatomic location 13. This 

model consists of a controlled injection of autologous blood in the arterial wall leading to 

local inflammation and proliferation of VV which peak two weeks after the injection.

Two domestic swine (mean weight 35kgs) were sedated with a telazol/ketamine/xylazine 

(TKX, 2.2 mg/kg, 2.2 mg/kg, 2.2 mg/kg) mixture IM and anesthetized with Buprenex 

(0.01mg/kg) IM. After intubation, anesthesia was maintained with Isoflurane 1.5-2%. 0.5 

mL of autologous blood was drawn from the ear vein and then injected into 4 locations, 

under direct visualization, in the adventitia of the left common carotid artery, while the right 

carotid served as internal control.

OCT studies—Two weeks after the injection 13, we performed in-vivo OCT studies under 

the same anesthetic procedures as described above. Guiding catheter (7Fr) was inserted from 

a right femoral artery and placed in a proximal common carotid artery. After angiographic 

identification of the carotid artery, an over-the-wire OCT catheter (Dragonfly, St Jude 

Medical, St. Paul, MN) was introduced and placed 5 mm beyond the carotid bifurcation. 

Then, OCT images were recorded over 50 mm in the left and right common carotid arteries 

with C7-XR OCT Intravascular Imaging System (St Jude Medical, St Paul, MN), using 

automatic pull-back at a speed of 20 mm/sec and 100 frames/sec, and high-speed (6 mL/sec, 

total = 30 mL) injection of iodinated contrast to clear the lumen from blood. OCT images 

were saved as a DICOM files for offline analysis.

The 3-D reconstruction and analysis was performed with the ANALYZE software 11.0 

(Biomedical Imaging Resource, Rochester, Minnesota), which was demonstrated as the 

useful modality of 3D volumetric analysis of IVUS images 14. DICOM file of OCT images 

was loaded as red channel data with 8 bit matrix of 20*20*200 μm cubic voxels. MC areas 

and lumen-intima borders are traced in every cross-sectional OCT image slices separated by 

a distance of 200 μm. Adventitial MC was defined as signal-voiding tubular or layer 

structures with major diameters from 50 to 300 micrometer 15, which were observed in at 

least 2 consecutive slices, and located within 1 mm from the lumen-intima border (Figure 

1A and 1B). After volume rendering process, which provides a variety of display 

representation of 3-D image data sets, 3D pattern of MC was determined visually (Figure 

1C). Then, volumetric analysis of MC and lumen was performed in every 1 mm segment 

consisted of 5 OCT image slices.

Micro-CT studies—Following the OCT imaging, the swine were euthanized with 100 

mg/kg IV injection of pentobarbital and the carotid arteries were cannulated at their 

bifurcation. The vessels were cleared of blood with an infusion of heparinized Ringer's 

Lactate via an injection pump under a controlled pressure of 100 mmHg. Subsequently a 

radiopaque, lead-containing, liquid, low-viscosity polymer (Microfil® MX-122, Flow Tech; 

Carver MA) was infused until the compound flowed freely from the distal end of the vessel. 

As we reported previously, m-CT images were obtained after dehydration with alcohol and 

embedding into paraffin wax 4, 16-19.
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The areas of VV and vessel lumen were determined as previously reported (Figure 1D and 

1E) 16, 17, 20. Micro-CT images were reconstructed into 3-D images at 20 μm cubic voxel 

resolution with the ANALYZE software (Figure 1F) 16, 17, 20. We calculated VV volume 

and lumen volume, and average number of VV, in each 1-mm-segment. Each 1-mm-

segment contained 50 slices, because a slice interval was 20 μm. Image analysis of m-CT 

was performed by a support of Mr. Andrew J Vercnocke, a medical imaging analyst at 

Physiological Imaging Research Lab.

To confirm the proliferation of VV, we compared VV volume between the left (injected 

blood) and the right carotid arteries (control) which were reconstructed from same slice 

levels as the left carotid arteries.

Comparison of MC by OCT with VV by m-CT—Finally, to verify the evaluation with 

3D OCT, we matched the segments obtained from both methods. After volume rendering 

and 3D reconstruction of OCT and mCT images, anatomical characteristics of VV including 

bifurcation was evaluated visually and used to match the corresponding image slices 

(expressed in yellow, Figure 1C). Cross-sectional slices corresponding for anatomical 

landmark, bifurcation of VV, were determined and volumetric analysis was evaluated in 

every 1mm segments. The correlation and agreement of the counts and volumes between 

MC detected by OCT and VV detected by m-CT were evaluated.

OCT study in transplant patients

Patients—From September 28, 2011 and June 7, 2012, we enrolled 11 transplant patients 

who were referred for annual coronary angiography one year after transplantation, and OCT 

imaging for the assessment of cardiac allograft vasculopathy. After exclusion of 3 recipients 

because of poor images, we analyzed the remaining 8 patients. The patient characteristics 

were collected from the medical records.

Image acquisition and analysis—OCT images in the mid segment of left descending 

artery were performed as previously described 21. OCT images were recorded over 50 mm 

which were divided into five 10-mm-segments of 50 slices each from the most distal slice. 

We excluded the segments which contained poor images to observe vessel adventitia due to 

incomplete blood removal and existence of fatty plaque, because the light signal of OCT 

might be attenuated in such segments. Furthermore, we excluded the segments with major 

branches which occupied 90-degree of vessel wall, where we might not observe vessel 

adventitia. As with the animal study, we defined and traced MC, the boundaries of lumen-

intima, and media-adventitia in all slices (Supplemental figure 1). Subsequently, 3D images 

were reconstructed. We defined lumen and vessel volume as reconstructed volume 

surrounded by boundaries of lumen-intima and media-adventitial, respectively. In each 

segment, the volumes of MC, lumen, and vessel were calculated. The plaque volume (PV) 

was calculated by subtracting lumen volume from vessel volume. Percent MCV (%MCV) 

and %PV were expressed as (MCV [or PV]/vessel volume) * 100. Image analysis was 

performed by the examiner (TA) who was well-trained to analyze OCT images and blind to 

clinical characteristics. Two independent examiners analyze MCV to evaluate interobserver 

and intraobserver variability.
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Statistical methods—Continuous variables are summarized as mean ± standard deviation 

or median and interquartile range [25%, 75% quartiles] as appropriate. Discrete variables are 

presented as frequency (percentage). Comparisons between the two variables were 

performed using Student's t or Mann–Whitney U test as appropriate. In the animal model, 

we examined the correlation and the agreement between the two methods with Spearman's 

rank correlation coefficient and Bland-Altman method, respectively22. In the human study, 

we tested the correlation between %MCV and %PV, and apply generalized linear mixed 

effects model to account for the correlation between segments from the same individual. The 

Lin's concordance correlation coefficient was used to evaluate the interobserver and 

intraobserver variability. All statistical tests were 2-sided and a p value < 0.05 was 

considered to be statistically significant. Statistical analysis was performed using JMP 9 

software (SAS Institute, Cary, NC).

Results

Animal model

After adjusting the segments, we were able to obtain 8 one-mm-segments corresponding in 

both the methods (m-CT and OCT) in each swine (total 16 segments). VV volume by m-CT 

was too small to match corresponding OCT images with anatomical landmark in right 

carotid artery. The comparison between VV volume by mCT and MCV by OCT was 

evaluated in the left carotid artery. The blood-injected, left carotid arteries had larger VV 

volume compared with the control right carotid arteries (Supplemental figure 2A). Also, 

MCV and arterial lumen volume of left carotid artery by OCT were significantly greater 

than VV and lumen volumes by m-CT (Supplemental figure 2B and 2C). With the left 

carotid arteries, volume and count of MC detected by OCT significantly correlated with 

those of VV detected by m-CT (Figure 2A and 2B).

Since Bland-Altman plot of MC and VV count showed proportional correlation 

(Supplemental figure 3), both the values were transformed to common logarithms. 

According to the Bland-Altman plot of these values, mean difference and limits of 

agreement were 0.315 (95% confidential interval (CI) 0.262, 0.368) and 0.119 to 0.511 

(Figure 2C). Back-transformation of the common logarithms provided that a ratio of the 

counts of both the methods was 2.1 (95% CI 1.8, 2.3), and the limits of agreement were 

from 1.32 to 3.24, which meant that MC counts consistently exceeded VV counts by 2.1 

times regardless of the counts. Bland-Altman plot of MCV and VV volume showed the 

similar range of limit of agreement compared to the range of the average (Supplemental 

figure 4).

OCT study in transplant recipients

Patients—The median value of age at examination date was 52 years old [46, 64]. Six of 8 

were male, and 7 of the 8 had been affected with idiopathic cardiomyopathy before heart 

transplantation (Table 1). The coronary angiography in all of the 8 patients showed no 

significant cardiac allograft vasculopathy based on ISHL nomenclature.
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3D reconstruction of coronary artery and MC—Representative 3D OCT image of 

coronary artery and the segmental MCV and PV were shown in Figure 3A. We analyzed 24 

(average 3 segments per person) of 40 segments after exclusion of 16 segments; 11 

segments had poor images due to incomplete blood removal, and 5 segments with major 

branches. We indicated the summary of the parameters among the 24 segments in Table 2. 

The medians value of %MCV and %PV were 1.27% [0.88, 1.59] and 19.3% [16.9, 22.5]. 

There were no segments with intraplaque MC and more than1 mm of vessel wall.

A total of 75 image slices were analyzed by two independent examiners to evaluate 

interobserver and intraobserver variability on volumetric analysis of MC. The Lin's 

concordance correlation coefficient values for interobserver and intraobserver agreement 

were 0.89 and 0.91, respectively.

Correlation between %MCV and %PV—There was a significant correlation between 

%MCV and %PV (r2 = 0.63, P<0.01, Figure 3B). Even after correcting with generalized 

liner mixed effects model, the correlation was significant (P<0.01).

Discussion

The present study demonstrates the feasibility of using OCT for the assessment of the 

adventitial MCV which may represent the adventitial VV lumen volume in vivo. In the 

animal study, volume and count of adventitial MC significantly correlated with those of VV 

in m-CT, suggesting that adventitial MCV evaluated by 3D OCT might be a useful surrogate 

marker of adventitial VV in vivo. Furthermore, there was a significant correlation between 

%MCV and %PV among patients in early period after heart transplantation, which might 

give a new insight into association of adventitial VV with development of allograft 

vasculopathy.

Comparison of MC by OCT with VV by m-CT

Animal m-CT and histological studies have indicated that coronary VV significantly 

correlate with the degree of atherosclerosis 17, 23, and increment of VV was associated with 

the advancement of atherogenesis 5, 16, 24. Previous human studies have also indicated that 

VV is associated with advanced plaque characteristics in autopsy samples 21, 25. Thus, m-CT 

is an established tool to evaluate the amount of VV in vitro; however, the usage is limited in 

vivo.

OCT is a high resolution (10μm), light-based and in-vivo imaging modality which has the 

capability to detect near histological findings 26, 27. Recently, Shimokawa H, et al. 

demonstrated that adventitial VV of human coronary artery can be evaluated precisely with 

OCT 28. In the present study, we found a significant correlation of MC counts and volume 

detected by OCT with their counterparts of VV by m-CT. However, there were differences 

in size and distribution between MC and VV, and the volume and counts of MC were 

significantly greater than those of VV. Bland-Altman plot showed that the count of MC was 

consistently 2.1 times larger than the one of VV. As previously reported, there are three 

types of VV as follows; VV interna (originated directly from main lumen), VV externa 

(originated from branches), and venous VV (developed in vessel wall and drained into 
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concomitant veins) 3. Direct injection of a radiopaque liquid polymer into the vessel lumen 

for the m-CT images acquisition limits the visualization of VV to VV interna, not VV 

externa and venous VV. MC evaluated with OCT included all three types of VV and VV 

interna was not evaluated separately. In addition, dehydration with alcohol following 

euthanasia for ex vivo m-CT imaging resulted in insufficient vessel dilatation. As with a 

previous report 29, therefore, underestimation of lumen diameter calculated by using m-CT 

could attribute to the discrepancy between both measurements in this study.

Despite such constraints, we considered that 3D-OCT could be useful method to estimate 

adventitial VV in vivo, and that a histological validation study is needed to elucidate the 

accuracy of the OCT method.

Adventitial MCV in heart transplantation recipient

In the present study, we have measured the adventitial MCV to evaluate adventitial VV in 

the initial stage of cardiac allograft vasculopathy using 3D OCT images, and observed a 

strong correlation between MCV and PV, similar to the histological study 30.

The prevalence of intraplaque MC is higher in advanced stage of allograft vasculopathy than 

in early stage 21, however, there are few clinical and experimental studies that focuses on 

adventitial VV in initial stage of the vasculopathy regardless of imaging modalities. With 

respect to native atherosclerosis, the increase in adventitial VV precedes the progression of 

native atherosclerosis 31, and the prevention of the VV proliferation is associated with 

attenuation of plaque regression 19, 32. Since prevalence of cardiac allograft vasculopathy is 

high even in first year after heart transplantation 9, 10, early intervention to prevent the 

vasculopathy could be important, and proliferation of VV might be a potential therapeutic 

target. The evaluation of adventitial MCV by 3D-OCT might be a useful method to assess 

adventitial VV in the early stage of allograft vasculopathy in vivo.

Limitations

There were several limitations in the present study. First, the difference in the segment 

length used in the animal and human studies might affect the results. A previous study 

reported heterogeneous characteristics of adventitial VV among different vascular beds 33, 

VV density of the coronary arteries is significantly greater compared with the carotid 

arteries in a given vessel diameters. We used this swine carotid model in which VV would 

be increased without plaque progression, then we could minimize an attenuation of OCT 

light signal due to vessel wall thickening, and easily observe adventitial structures. 

Furthermore, the difference in the voxel resolution between the two modalities might affect 

the discrepancy. Secondly, exclusion of several segments from image analyses due to low 

quality of images may introduce bias, which should not be critical to this feasibility study. 

Thirdly, by limited penetration depth of OCT, this method could be applicable to segments 

with early stage of allograft vasculopathy, but not advanced lesions. Since this was a cross 

sectional study with relatively small cases, further investigations might be needed to 

examine a mechanistic role of coronary adventitial VV in development of cardiac allograft 

vasculopathy.
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Conclusion

The present study demonstrated the strong and significant correlation between MCV 

assessed by OCT and VV volume by m-CT in the animal model, as well as a significant 

correlation between MCV and PV in heart transplantation recipients, suggesting that in-vivo 

evaluation of adventitial MCV with 3D reconstructed OCT images might be a useful method 

to assess coronary adventitial VV, and supporting association of VV with development of 

cardiac allograft vasculopathy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of Abbreviations

MC microchannels

m-CT micro computed tomography

MCV microchannel volume

OCT optical coherence tomography

PV plaque volume

VV vasa vasorum
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Highlights

• We studied 2 swine to verify OCT methods for quantification of vasa vasorum.

• We compared microchannel(MC) volume by OCT and vasa vasorum(VV) 

volume by micro-CT.

• Coronary reconstructed 3D OCT images from heart transplant recipients were 

analyzed.

• In the animal study, there were significant correlations between both the 

modalities.

• Human study showed a significant correlation between MC volume and plaque 

volume.
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Figure 1. OCT and m-CT Images of Swine Carotid Artery
Cross sectional images of OCT (A) with trace line (B) at the level of dashed line in 3D OCT 

image (C). The white arrows indicate corresponding microvessels in both of OCT and m-CT 

(Figure 2). The arrow heads means mismatched vessels between both images. Areas 

surrounded by yellow and green lines indicate MC; lumen area, by red line. MC are depicted 

in green; MC used for segment matching, yellow; Vessel lumen, red. White bar indicates 1 

mm.

Cross sectional images of m-CT (D) with trace line (E) at the level of dashed line in 3D m-

CT image (F). The white arrows indicate corresponding VV to MC in OCT images. Areas 

surrounded by green lines indicate VV; lumen area, red. MC is depicted in green; vessel 

lumen, red. White bar indicates 1 mm.

MC, microchannels; m-CT, micro-computerized tomography; OCT, optical coherence 

tomography; VV, vasa vasorum.
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Figure 2. MC in OCT and VV in m-CT
A. The correlations between MCV detected by OCT and VV volume detected by m-CT in 

the swine model are shown. MCV were significantly correlated with VV volume among 16 

corresponding 1-mm-segments. B. The correlations between average counts of MC and VV 

significantly correlated in the each corresponding 1-mm-segment. C. Bland-Altman plot of 

logarithmic MC and VV count. Black solid line indicates mean difference of both the 

logarithmic values; black dashed lines, 95% CI; red dashed lines, limits of agreement.

MC, microchannel; m-CT, micro-computerized tomography; MCV indicates microchannel 

volume; OCT, optical coherence tomography; VV, vasa vasorum.
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Figure 3. Representative coronary 3D OCT Images with MCV and PV of each segment, and 
correlation between %MCV and %PV
A. Representative coronary 3D images obtained from a transplant recipient; right image was 

obtained by 180 degrees of rotation of left one. In this case, most proximal segment was not 

depicted because of exclusion due to poor images. Vessel lumen is depicted in red; 

microchannel, green.

B. %MCV was significantly correlated with %PV.

MCV indicates microchannel volume; PV, plaque volume.
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Table 1
Patient Characteristics

Parameters n = 8

Average segment number per patient 3

Age (years old) 52 [46, 64]

Male (%) 6 (75)

BMI 29 [26, 33]

Idiopathic cardiomyopathy 7 (88)

Comorbidity

 HT (%) 3 (38)

 DM (%) 3 (38)

 Dyslipidemia (%) 7 (88)

Medication

 Aspirin 1 (13)

 blockers 0 (0)

 ACE inhibitors/ARBs 3 (38)

 CCBs 1 (13)

 Statins 7 (88)

Laboratory data

 Total cholesterol 193 [142, 297]

 LDL cholesterol 117.4 [75.5, 155]

 HDL cholesterol 54 [50, 54]

 Triglyceride 127 [96, 363]

 Hemoglobin A1c 5.6 [5.4, 7.5]

 Creatinine 1.2 ±0.28

ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; CCB, calcium channel blocker; DM, diabetes 
mellitus; HDL, high density lipoprotein; HT, hypertension; LDL, low density lipoprotein.
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Table 2
Summary of Parameters among 24 Segments

Parameters (n=24)

MCV (mm3) 1.54 [1.13,1.69]

PV (mm3) 20.5 [18.1, 26.1]

Lumen volume (mm3) 83.0 [69.6, 102.3]

Vessel volume (mm3) 108.5 [86.6, 124.4]

%MCV (%) 1.27 [0.88, 1.59]

%PV (%) 19.3 [16.9, 22.5]

MCV, microchannel volume; PV, plaque volume.
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