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Abstract: Antibodies constitute a major component of serum on protein mass basis. We also know
that the structural diversity of these antibodies exceeds that of all other proteins in the body and they
react with an immense number of molecular targets. What we still cannot quantitatively describe is
how antibody abundance is related to affinity, specificity, and cross reactivity. This ignorance has
important practical consequences: we also do not have proper biochemical units for characterizing
polyclonal serum antibody binding. The solution requires both a theoretical foundation, a physical
model of the system, and technology for the experimental confirmation of theory. Here we argue that
the quantitative characterization of interactions between serum antibodies and their targets requires
systems-level physical chemistry approach and generates results that should help create maps of
antibody binding landscape.
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1. Introduction

Our immune system is responsible for more than protecting us from pathogens. It also
regulates the removal of our own molecules and cells once these are losing function due to
ageing, attrition, or infection. It maintains a healthy balance with the myriad of microbes
and viruses present in our bodies [1]. To carry out these functions, the system utilizes an
intricate regulatory mechanism that tunes its potential for destruction over a very wide
range [2,3]. The humoral adaptive immune system consists of cells (B cells) and soluble
molecules (antibodies) and has the remarkable ability to generate an immensely diverse
repertoire of its element by adjusting, amongst others, one critical factor of molecular
interactions: affinity [4,5]. Together with albumin and other macromolecules antibodies,
(Ab) creates a molecularly crowded environment in blood, where molecules are in constant
interaction with each other. Because of the huge structural diversity of antibody binding
sites, these interactions in the blood, and with all molecules and cells contacted by blood,
the strength of binding interactions also spans a huge range. In this article we expand a
conceptual framework, based on physics and B-cell differentiation, for the distribution and
organization of antibody interactions, and argue that a recently developed quantitative
serology technology is suitable for characterizing the proposed model.

2. Immunological and Physical Rules of the System: B Cells as Sensors and Effectors

Antibodies are present in three main forms in blood: as part of a receptor complex, the
B-cell antigen receptor (BCR) or membrane immunoglobulin (mIg), with cellular signaling
capacity [6–8]; in secreted, freely circulating form (this is what we usually refer to as
serum antibodies) [9,10], and in receptor-bound form, attached to the immunoglobulin Fc
receptors of cells [11–13]. The last form is responsible for effector functions and is not dealt
with in this article but is also important in quantitative modeling of antibody homeostasis.
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Based on the form of antibody they express, there are three categories of B cells:
(1) resting naïve B2 lymphocytes and memory B cells (MBC) display BCR but do not
secrete Abs; (2) activated B1 cells, pre-plasmablasts, lymphoblasts express both surface and
secreted Ab; (3) plasma cells, such as short-lived plasma cells (SLPC) and long-lived plasma
cells (LLPC), only secrete antibodies. The second and third group together is also called
antibody secreting cells (ASC). In accordance with these categories, these cell types function
as antigen (Ag) sensors, as both sensors and effectors and as effectors only (Figure 1).
A feedback mechanism based on antigen concentration and antibody engagement operates
to generate sensors and effectors against all potential targets [8]. In short, the extent of
antigen binding to BCR determines cell survival via signals delivered through the BCR [6].
Too much or too little BCR engagement leads to cell death, while the proper extent of BCR
engagement initiates cell activation or cell survival. Activated B cells become lymphoblasts,
with the ability to secrete antibody and yet depend on BCR signals for survival [14–16].
Terminally differentiated antigen secreting cells, plasma cells, do not depend on BCR
signals [17–19] but produce secreted antibodies, which in turn reduce the concentration of
target antigen [20]. As antigen is cleared the immune response retracts, short-lived effector
cells (SLPC) die, and a new steady state equilibrium is established. Affinity maturation of
antibodies changes the concentration of antigen required for a given extent of antibody
engagement, therefore resulting in memory cells capable of more sensitive detection (sensor
MBC) or more effective removal (LLPC) of antigen [20]. The new equilibrium allows
MBC with increased sensitivity to survive, backing up the front line of secreted antibodies.
Cycles of these events shape the lymphocyte repertoire and the theoretical space of all
antibody interactions.
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Figure 1. Categorization of antibodies based on sensor and effector function. The two functional
types of antibodies, two corresponding cell types and the mixed type are shown. BCR, B-cell receptor.

3. The Configuration Space of Serum Antibodies

From the medical and biological perspective, the humoral immune response takes
place in various anatomical locations of the host: lymph nodes, spleen, bone marrow, blood,
or periphery. The specialized structure of these tissues contributes to the development,
differentiation and activation of B-cells and antibody secreting cells [4,21,22]. Nevertheless,
all these tissues are physically connected, and while cell trafficking is regulated and cells
are not allowed to go anywhere, secreted circulating antibodies do reach most tissues.
Naïve and memory B cells are recruited into the pool of ASC by antigenic stimulation and
co-stimulation by other cells [23,24]. There is a continuous supply of antibodies from ASC
into the circulation, along with a continuous removal via immunoglobulin Fc receptors
on immune effector cells [13,25,26]. This flow of antibodies maintains target antigen
concentrations at levels defined by the immune system. Where antibodies are present, they
continuously search for their highest affinity binding partner—in other words, for their
lowest energy bound state. For a physical interpretation of the whole system of antibody
interactions, it is reasonable to simplify the system, neglect anatomy, and introduce an
abstract space instead: the antibody interaction space [27].

This interaction space can be thought of as a coordinate system of chemical potentials.
Chemical potential here refers to the ability of the system to contribute to the generation
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of Ab-Ag complexes. An Ab with given specificity can be identified by a vector pointing
towards a given direction in the landscape of molecular targets (Figure 2). The chemical
potential of the antibody is determined by the affinity (standard chemical potential), the
concentration, and its thermodynamic activity coefficient (see later). In the center of the
system is the generation of lymphocyte precursors, which develop into antibody secreting
cells as they mature [27]. Within the boundaries of the system, cells generate a diverse
repertoire of surface antibodies (B-cell receptors, BCR) that allows them to probe the
complete antigen landscape or antigenome. In fact, BCRs are probing not whole molecules
but rather patches of molecular surfaces called epitopes. We can think of the horizon of
interaction space as the continuity of epitopes forming a canvas around the interaction
space, as the landscape of target molecular surface patterns. Once a B-cell starts secreting
an antibody, it will push the boundary of the system towards the recognized epitope, which
is to an extent determined by its chemical potential (Figure 2).
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Figure 2. Immune responses displayed in configuration space of antibody interactions. Distance of
the lines representing immune system boundary from the center corresponds to chemical potential.

During an immune response, naïve and memory cells of the adaptive immune system
are activated, expanded, and differentiated [28]. B cells in germinal centers undergo affinity
maturation: somatic hypermutations introduce changes into antibody structure, followed
by the selection of structural variants with higher affinity [4,5,29,30]. The process gives
rise to genetically different new clones carrying antibodies with higher standard chemical
potential. As long as the stimulus persists, germinal centers generate these new clones
by cycles of random somatic hypermutation and selection. The result is the expansion of
the system in the configuration space (Figures 2 and 3): sensor-effector lymphoblasts start
secreting antibodies and also increase their antibodies’ affinity by mutations [31].

As the stimulus is cleared by the immune response, most effector cells die and only
memory cells remain. This corresponds to a retraction and reorganization in configuration
space. It is important to note that the new boundary of the system is established by
the negotiation between the host and the intruder: very harmful intruders will tend
to leave a long-lasting and high affinity imprint, while softer attacks will have weaker
effects [32,33]. Regulatory mechanisms in the host also cut back clones with potentially
harmful autoimmune effects [34]. This negotiation results in a steady state, which entails
the formation of networks that insert newly generated clones into a previously established
architecture. The system of interactions optimizes itself: randomness is finally replaced by
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hierarchy and optimized antibody cross-reactivity networks. Activated cells will disappear,
with resting lymphocytes and LLPC with adjusted affinity surviving (Figure 3).
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Figure 3. Expansion and affinity maturation of germinal center B cells displayed in configuration
space. Naive and memory sensor B cells seed an active response, being activated via BCR. Somatic
hypermutations generate random shifts in configuration space (blue lines between purple nodes), a
selection of higher affinity mutants produce lymphoblasts. Secretion of antibodies with higher affinity
appears as a protrusion of the interaction space towards the targeted antigen. Following an active
immune response, the system retracts leading to a steady state with new borders, corresponding to
LLPC and MBC with an affinity higher than original.

The immune system is never totally at rest. It is the dynamism, the constant restructur-
ing of this landscape by antigenic stimuli that maintains system architecture and adjusts the
configuration space to the molecular environment. Therefore, whilst the overall hierarchy
is expected to be governed by the laws of physics, shifting, and changing, locally active
sites respond to the biological needs of the system.

4. Probing Serum Antibody Configuration Space: Quantitative Systems Serology

Understanding the underlying hierarchy and architecture of the network of antibodies
has an immediate practical use: the design of serological assays with results that char-
acterize this network. Current serological assays are standardized according to medical
purposes, with the aim of establishing optimal cut-off values for diagnostic accuracy. The
units obtained this way do not allow any kind of comparison of results, even for the identi-
cal antigen when different platforms are used, or different antibody isotypes are measured.
The units are standardized but arbitrary with no biochemical meaning [35].

By using the configuration space model, we can identify the parameters that are
required to describe such a system. Considering that serum antibodies are mixtures of
molecules with a wide range of affinities against antigenic targets and a wide range of
concentrations of each molecule, it is reasonable to assume that these parameters need to
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be estimated. We can probe this space by measuring the formation of antigen–antibody
complexes in immunoassays and map the space by applying mathematical functions that
model physical properties of the system.

The logistic function (also referred to as logistic equation, logistic growth curve,
or Verhulst model) describes population growth with an exponential growth limited by
maximum capacity of the system. The logistic function is the solution of the logistic
differential equation, which describes rate of change against a given variable. While
originally it was introduced for modeling growth in time, it is also used for modeling
chemical reactions and antibody–antigen binding reactions [36]. In immunoassays we
follow the increase of the equilibrium concentration of reaction products (Ab-Ag complexes)
as a function of the logarithm of increasing concentrations of a reactant. Thus, the growth
in this case is not in time but along an experimentally created concentration series. The
time factor in these reactions can be omitted if the reaction is allowed to reach a point
where concentrations of reaction components do not change any more, and equilibrium
is reached.

For a reaction where we increase Ag concentration and follow the concentration
of bound Ab (equivalent to measuring Ab-Ag complexes), we can rewrite the logistic
differential equation

dN
dt

= r ∗ N ∗ (1 − N
K
) (1)

where N is the number of entities and K is the capacity of the system for such entities, and r
is the rate of exponential growth, as

dAbb
dlog(Ag)

= r ∗ Abb ∗ (1 −
Abb
Abt

) (2)

where Abb is bound antibody concentration, Abt is total antibody, and Ag is total antigen
concentration. We have previously described that Abb is a logistic function of log(Ag)
(see Supplementary Text S1 of [37]), which is the solution of this logistic differential equa-
tion. This means that the rate of change of generation of bound antibody while increasing
Ag is determined by the actual bound antibody concentration, its relationship to the total
antibody concentration, and the rate parameter.

We can simplify this expression by using the relative thermodynamic activity of
antigen under equilibrium conditions. This activity is characterized by the thermodynamic
activity coefficient of antigen γAg, a coefficient that adjusts concentrations to relative
thermodynamic activity a

aAg = γAg ∗ Ag (3)

By normalizing, i.e., with aAg = Abb/Abt, Equation (2) becomes

daAg

dlog(Ag)
= r ∗ aAg ∗

(
1 − aAg

)
(4)

The explicit solution of this differential equation is the function known to immunolo-
gists as the four-parameter logistic function or 4PL (see Appendix A) with a lower limit of
zero. The 4PL can be used to estimate the affinity of a monoclonal antibody with known
concentration [38]. However, the 4PL models an ideal binding curve, which may not
reflect real binding that is modified by other interactions. To allow for an asymmetry in
the binding curve and thereby take into account such intricate events, the five-parameter
model, 5PL, was introduced (see Appendix A) [39].

However, while the 5PL is the solution of a modified differential equation, it is less
suitable for the description of a system’s behavior because of its parametrization. First
order differential equations define relationships between functions representing physical
quantities and their derivatives, the latter representing rates of change of the physical
quantity. In an immunoassay, the physical quantity is the amount of antigen–antibody
complex (or bound antibody) formed during the assay once equilibrium is reached. The
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rate of change in this quantity, while changing reaction conditions by titrating antibody or
antigen, is the derivative of the function that relates the amount of complex formed to the
logarithm of the titrated component. We proposed the use of the generalized logistic model
(GL) or Richards growth model [40,41] instead of 5PL [37], because the Richards growth
function, like the 5PL, is the solution of the differential equation

daAg

dlog(Ag)
=

r
ν
∗ aAg ∗

(
1 −

{
aAg
}ν
)

(5)

but is parameterized in a way that the logarithm of the inflexion point [Ag]i is one of
the parameters. This differential equation implies that besides the activity coefficient of
antibody and the rate parameter, the rate of generation of bound antibody while increasing
log(Ag), is determined by a power of the activity coefficient. The exponent in the power
expression ν is a parameter that modifies the influence of the ratio Abb

Abt
on the rate of

growth of bound antibody. The reason for this modification is the changing behavior of
antibodies at different antigen concentrations. This parameter introduces asymmetry into
the sigmoid binding curve in a way that is more suitable for the description of the system.
We propose that ν is related to a special activity coefficient, γ∞

Ag = 1/ν, which defines Ag
thermodynamic activity at infinite Ab dilution and is determined by the composition of
antibodies in the total pool (Figures 4 and 5).
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Figure 4. Probing the configuration space with antigen. Configuration space (a,b) can be probed
(brown arrow) by measuring the changes of chemical potential of serum antibodies with the antigen
of interest, using an immunoassay. Using antigen microspot titration key parameters of interaction,
such as standard chemical potential and limiting activity coefficient, can be modeled by the Richards
curve (c,d) parameters, including the determination of inflection point (blue circle) position. During
an active immune response (a,c), the apparent affinity increases, as reflected by a decreased average
standard chemical potential, and changes in clonal composition alter the limiting coefficient γ∞

Ag.
A memory response (b,d) is characterized by optimized affinity and clonal heterogeneity. [Ag]i,
antigen concentration at point of inflection.
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Figure 5. Interpretation of the limiting activity coefficient of antigen. The limiting thermodynamic
activity coefficient reflects the contribution of epitope to binding by all antibody structures or the
epitope-paratope fit in other words. Only the outlines of the paratope surfaces are shown (circles)
to allow the visualization of overlaps. (a) A monoclonal antibody paratope-epitope fit is shown for
comparison. Memory formation (b) reduces surviving clones to minimal optimal binders, while
during an active immune response (c) several structurally distinct antibodies co-exist and compete
for binding.

By fitting the Richards curve to experimental binding data from Ag and Ab titration
experiments we can obtain the parameters that are suitable for the quantitative characteri-
zation of serum Ab. One of these is the antigen concentration at the point of inflection [Ag]i
and the other is the limiting activity coefficient (Figure 4) [37]. The first is an estimate of
the apparent equilibrium dissociation constant (determined by average standard chemical
potential) of the antibodies bound to the Ag. The second characterizes the hierarchy of
antibodies bound to the Ag. A proof-of-concept study by our group, utilizing antigen
microspot titration on protein arrays, suggests that this approach provides quantitative
results suitable for comparing distinct isotypes or different antigens [37]. The mapping of
these values to collections of structurally related epitopes could serve as a starting point for
describing the serum antibody binding landscape.

5. Consolidation and Steps towards Systems Serological Mapping of Immunity

Our model of configuration space and mathematical approach to specific serum
antibody measurement builds on idea that B cells can only remain in the resting state if
they receive the appropriate signals via the BCR [8]. This is called tickling: a certain degree
of BCR engagement between under- and overstimulation [42]. In order to remain in this
state, B cells can modulate antibody variable region (affinity) and constant region (isotype
and glycosylation). If these changes result in the adjustment of antigen binding in a way
that the B cell collects survival signals then, following differentiation, it becomes a resting
B cell again. If these effector properties are successfully selected by class switching, then
the antigen concentration is properly set for the purposes of the particular B cell clone.

The equation we propose for use, the GL instead of 4PL and 5PL, estimates the
average and the distribution of affinities of antibodies against a given antigen. Antibody-
mediated clearance should depend on the generation of immune complexes, which itself
is determined by the affinity of antibodies. The binding of antibodies to antigens and
the clearance of the formed complexes should be harmonized, otherwise either immune
complexes would accumulate (high affinity, low clearance, as it happens under some
pathological conditions) or would unnecessarily remove antibodies and antigen (low
affinity, fast clearance). The overall balance can be kept if the immune system tunes
clearance to match affinity by switching isotypes to enhance FcR binding and complement
activation when affinity increases. This harmonization shapes the binding landscape, which
is modeled by the proposed configuration space.

The equation we propose addresses serum antibody measurements and thereby sys-
temic immune responses. Because lymphatic circulation drains into the blood via sites
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of lymphocyte differentiation and activation, the lymph nodes and systemic immune re-
sponses have access to practically all antigens in the host. The other way round, antibodies
in the bloodstream also reach lymphoid organs. It is in the lymphoid organs that affinity
maturation takes place and adjusts distribution of affinities. Otherwise, at sites where the
flow of immune complexes is unidirectional (out of the host), like mucosal surfaces, we do
not expect to have direct effects on the equation. Consequently, we also do not expect that
the systemic configuration space model is applicable to mucosal surfaces.

The key message of our article is that the binding landscape of serum antibodies cannot
be approached as the simple sum of individual, independent interactions. The word binding
is rather meaningless unless we identify conditions and quantify interaction energy. Blood
plasma is crowded with macromolecules, with a significant contribution from circulating
antibodies. The conditions are therefore defined by the composition of antibodies by the
intricate cross-reactivity network of antibodies, their structures, and concentrations. Most
of the immunological studies have been directed towards defining how an active immune
response happens. Molecular biology helped us clone, sequence, and recombinantly
express monoclonal antibodies. Structural biology allowed the characterization of antibody
structures in detail. Now it is time to organize this information into a complex biological
system. We propose that instead of examining the active phase of an immune response,
the characterization of landscape of serum antibody binding in steady state is a better goal
from the point of view of physics.

The ability to quantitatively characterize and map serum antibody binding to vast
collections of antigens can open several possibilities. Via the standardization of simplex
measurements, we could generate comparable binding data from quantitative immunoas-
says and integrate that into epitope databases. Epitope databases would develop into
quantitative databases in terms of incorporating binding strength data. By generating
antigen arrays with whole molecule antigens, peptides, and modified random peptides
suitable for binding strength quantitation, we can attempt to create complete maps of serum
antibody binding landscape. By the selective detection of isoforms IgG, IgA, IgM, and IgE,
a further dimension, related to biological effects, can be introduced into the database. In
the long term, such quantitative maps of individual’s Ab interaction spaces should become
the foundations for immunodiagnostics and therapeutics as well. Our model provides a
theoretical framework of systems-level physical approach to the functioning of adaptive
immunity. Experimental testing will be necessary to see how and when and with what
accuracy the model can be applied to map the antibody landscape of a living organism,
especially with regard to the relationship of MBC and secreted antibodies, the effects of
antigen and antibody multivalency, and the possibilities of merging quantitative binding
data with BCR repertoire sequencing.
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Appendix A

Comparison of logistic functions
Basic function:
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Table A1. Comparison of parametrization, equations and graphical appearance of logistic functions.
Representative curves in the diagrams use identical [Ag]i and r, and the indicated ν values. diff.
eq., differential equation. To help the comparison of the three logistic functions, the minimum and
maximum values are set to 0 and 1, respectively. This simplifies the functions, though the number
of parameters is less than suggested by the name. This normalization also allows to treat y as the
relative thermodynamic activity of Ag, instead of the concentration of bound antibodies. The basic
function is modified as implicated in the table to obtain the respective functions: four-parameter
logistic (4PL), five-parameter logistic (5PL), and generalized logistic (GL) or Richards function. As
the functions show, compared to the 4PL, the 5PL function introduces parameter ν as the exponent
1/ν of the denominator. The generalized form, in addition to this change, also introduces ν as a
multiplying factor of the ratio of antigen concentration [Ag] and antigen concentration at inflection
point [Ag]i with power −r.

4PL 5PL GL

x = [Ag]
xi = [Ag]i

aAg =
1

1 + (
x
xi
)
−r

aAg =
1{

1 + (
x
xi
)
−r
} 1

ν

aAg =
1{

1 + ν(
x
xi
)
−r
} 1

ν

x = log[Ag]
xi =log[Ag]i

aAg =
1

1 + e−r(x−xi)

aAg =
1{

1 + e−r(x−xi)
} 1

ν

aAg =
1{

1 + νe−r(x−xi)
} 1

ν

diff. eq.
daAg

dlog[Ag]
= raAg

(
1 − aAg

)
daAg

dlog[Ag] =
r
ν

aAg

(
1 −

{
aAg

}ν)

f(x)
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a multiplying factor of the ratio of antigen concentration [Ag] and antigen concentration at inflection 

point [Ag]i with power −r. 

 4PL 5PL GL 

x = [Ag] 

xi = [Ag]i 
𝑎𝐴𝑔 =

1

1 + (
𝑥
𝑥𝑖
)−𝑟

 𝑎𝐴𝑔 =
1

{1 + (
𝑥
𝑥𝑖
)−𝑟}

1
𝜈

 𝑎𝐴𝑔 =
1

{1 + 𝜈(
𝑥
𝑥𝑖
)−𝑟}

1
𝜈

 

x = log[Ag] 

xi =log[Ag]i 
𝑎𝐴𝑔 =

1

1 + 𝑒−𝑟(𝑥−x𝑖)
 𝑎𝐴𝑔 =

1

{1 + 𝑒−𝑟(𝑥−x𝑖)}
1
𝜈

 𝑎𝐴𝑔 =
1

{1 + 𝜈𝑒−𝑟(𝑥−x𝑖)}
1
𝜈

 

diff. eq. 
𝑑𝑎𝐴𝑔

𝑑𝑙𝑜𝑔[𝐴𝑔]
= 𝑟𝑎𝐴𝑔(1 − 𝑎𝐴𝑔) 

𝑑𝑎𝐴𝑔

𝑑𝑙𝑜𝑔[𝐴𝑔]
=

𝑟

𝜈
𝑎𝐴𝑔(1 − {𝑎𝐴𝑔}

𝜈
) 

f(x) 

   

y = 𝑙𝑜𝑔𝑎𝐴𝑔 𝑙𝑜𝑔𝑎𝐴𝑔 = −𝑙𝑜𝑔(1 + 𝑒−𝑟(𝑥−𝑥𝑖)) 𝑙𝑜𝑔𝑎𝐴𝑔 = −
1

𝜈
log(1 + 𝑒−𝑟(𝑥−𝑥𝑖)) 𝑙𝑜𝑔𝑎𝐴𝑔 = −

1

𝜈
log(1 + 𝜈𝑒−𝑟(𝑥−𝑥𝑖)) 

log f(x) 
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