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SUMMARY

Clinical outcomes for patients with COVID-19 are heterogeneous and there is inter-
est in defining subgroups for prognostic modeling and development of treatment
algorithms. We obtained 28 demographic and laboratory variables in patients
admitted to hospital with COVID-19. These comprised a training cohort (n = 6099)
and two validation cohorts during the first and second waves of the pandemic (n =
996; n = 1011). Uniformmanifold approximation and projection (UMAP) dimension
reduction and Gaussian mixture model (GMM) analysis was used to define patient
clusters. 29 clusters were defined in the training cohort and associated with mark-
edly different mortality rates, which were predictive within confirmation datasets.
Deconvolution of clinical features within clusters identified unexpected relation-
ships between variables. Integration of large datasets using UMAP-assisted clus-
tering can therefore identify patient subgroupswith prognostic information and un-
covers unexpected interactions between clinical variables. This application of
machine learning represents a powerful approach for delineatingdisease pathogen-
esis and potential therapeutic interventions.
Institute of Immunology and
Immunotherapy, University of
Birmingham, Birmingham,
UK

2The Centre for
Computational Biology,
University of Birmingham,
Birmingham, UK

3Institute of Applied Health
Research, University of
Birmingham, Birmingham,
UK

4NIHR Birmingham
Biomedical Research Centre,
University Hospitals
BirminghamNHS Foundation
Trust and University of
Birmingham, Birmingham,
UK

5University Hospitals
BirminghamNHS Foundation
Trust, Birmingham, UK

6Institute of Inflammation and
Ageing, University of
Birmingham, Birmingham,
UK

7Health Data Research,
London, UK

8Lead contact

*Correspondence:
p.moss@bham.ac.uk

https://doi.org/10.1016/j.isci.
2022.104480
INTRODUCTION

The COVID-19 pandemic has led to >4.6 million deaths to date, but the clinical outcome after primary

infection is heterogeneous and approaches to predict outcome within individual patients are of value.

Several demographic features increase the mortality risk, including age and comorbid conditions, and

have been used to define clinical risk scores. The ISARIC4C mortality score is used widely and assesses

nine demographic and laboratory values (Knight et al., 2020).

This clinical heterogeneity of COVID-19 has led to interest in further defining patient subgroups (Gutiérrez-

Gutiérrez et al., 2021; Rodriguez et al., 2021), but although inclusion of more demographic and laboratory

values can improve accuracy, the associated increase in data dimensionality is challenging for clustering

algorithms. As such, integration of outputs from very high dimensional datasets usually requires either

feature selection or dimensionality reduction. Although the latter approach loses some information, the

associated compression and noise reduction greatly improves utility and is used commonly in biological

assessments such as analysis of single-cell RNA sequencing data (Peyvandipour et al., 2020). The reduced

dimensional outputs created through principal component analysis (PCA) are a linear combination of the

input and struggle to capture complex nonlinearities (Jolliffe and Cadima, 2016). Nonlinear dimension

reduction or manifold learning techniques such as Uniform Manifold Approximation and Projection

(UMAP) (McInnes et al., 2018; Tang et al., 2016) are based on topological analysis and can define groups

without prespecifying a target for the algorithm (Grollemund et al., 2020). The combination of UMAP

dimensionality reduction and model-based clustering offer a powerful approach to unsupervised machine

learning (Allaoui et al., 2020; Prabakaran et al., 2019).

To identify subgroups of patients with COVID-19, we obtained information on 28 clinical, demographic,

and laboratory variables in a training cohort of 6099 patients on the day of their hospital admission with

acute COVID-19 with outcomes followed for 28 days including inpatient and community mortality.
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Figure 1. Survival probability by ISARIC4C risk group

KM survival curves (95% CI) and composition of cohorts by risk group.
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UMAP dimensionality reduction and clustering were then applied to define clinical subgroups that pre-

dicted mortality and were confirmed in two large patient validation cohorts. Besides, it identified unex-

pected interrelationships between variables that could be valuable for guiding treatment pathways.
RESULTS

Survival probability between cohorts and risk groups

Significant differences in survival probability were observed between the cohorts (p < 0.0001). 28 days after

admission, the survival probability in the training cohort was 74% (CI 73–75), whereas this was 71% in the

wave 1 cohort (CI 69–74) and increased to 86% (CI 83–88) in wave 2. Patients within each ISARIC4C risk

group exhibited markedly different outcomes within all cohorts (training p < 0.0001, wave 1 p < 0.0001,

wave 2 p < 0.0001) (Figure 1). The relative frequency of ISARIC4C risk groups was comparable in the training

and wave 1 cohorts, whereas a notable increase in the proportion of low and intermediate risk patients was

seen in wave 2.

Low-risk patients had a consistently high survival probability of 99% (trainingCI 98–100; wave 1CI 96–100; wave 2

CI 97–100). For the intermediate risk group, the survival probability was 92% (CI 91–94) in the training cohort, 93%

(CI 90–97) inwave1andmarginally higher inwave2at 95% (CI 93–97).High riskpatientshada lower survivalprob-

ability of 70% in both the training (CI 68–71) andwave 1 cohorts (CI 66–74), but this improved inwave 2 to 82% (CI

78–85). However, patients in the very high-risk group had a consistently poor prognosis in each cohort. The sur-

vival probability was 41% (CI 38–45) in the training cohort, 40% (CI 34–49) inwave 1, and 34% (CI 23–47) inwave 2.

Taken together, these data indicate that although overall prognosis improved for patients in wave 2, this

was driven mainly by improvements in the outcome of intermediate and high-risk patients, with no

apparent improvement for those in the very-high risk group.
UMAP transformation and GMM clustering of clinical variables identifies distinct patient

groups

28 demographic and laboratory variables were obtained for each patient on the day of entry to hospital and

used for inclusion within the UMAP analysis (Table 1). Patient subgroups were identified within the UMAP

embedding using GMM clustering (Figure 2A).

A global estimate of intrinsic dimensionality indicated between two and six dimensions in the training

cohort (Figure S4A). The FAMD scree plot indicated an ‘‘elbow’’ point at four or five dimensions (Fig-

ure S4B). Cluster silhouette was relatively stable with increasing dimensionality (Figure S4C). However,
2 iScience 25, 104480, July 15, 2022



Table 1. Characteristics of patients and clinical variables within the cohorts

Variable

Cohort Adj. P value

Training Wave 1 Wave 2

Wave 1 v

Training

Wave 2 v

Training

UMAP

Input

Patient number 6099 996 1011

Age (years) [IQR] 73.00 [58.00, 83.00] 70.00 [56.00, 83.00] 64.00 [50.00, 79.00] 0.04 0.01 U

Male (%) 3361 (55) 564 (57) 525 (52) 0.97 0.16 U

BMI (kg/m2) [IQR] 26.84 [23.31, 31.03] 27.78 [24.22, 32.73] 28.02 [23.95, 32.87] 0.01 0.01 U

28-day deaths (%) 1570 (26) 284 (29) 146 (14) 0.22 0.01

ISARIC4C Score [IQR] 10.00 [7.00, 13.00] 11.00 [8.00, 14.00] 9.00 [5.00, 11.00]

Glasgow coma score [IQR] 15.00 [15.00, 15.00] 14.00 [9.00, 15.00] 15.00 [14.00, 15.00]

Clinical frailty scale [IQR] 4.00 [2.00, 6.00] 4.00 [2.00, 6.00] 3.00 [2.00, 4.00] 0.02 0.01 U

Cough (%) 4259 (70) 529 (58) 386 (38) 0.01 0.01 U

Delirium (%) 1160 (20) 78 (9) 28 (3) 0.01 0.01 U

Fever (%) 3212 (53) 454 (50) 303 (30) 0.41 0.01 U

Cancer (%) 649 (11) 123 (12) 110 (11) 0.35 1.00 U

COPD / Sleep Apnoea /

Asthma (%)

1579 (26) 297 (30) 271 (27) 0.04 1.00

CVD (%) 3033 (50) 531 (53) 293 (29) 0.12 0.01 U

Dementia (%) 934 (15) 343 (34) 236 (23) 0.01 0.01 U

Diabetes (any) (%) 1794 (29) 356 (36) 318 (32) 0.01 0.42

Alt (U/L) [IQR] 24.00 [16.00, 41.00] 25.00 [16.00, 39.25] 25.00 [16.00, 41.00] 1.00 1.00 U

Base excess [IQR] 0.20 [-2.00, 2.30] -0.30 [-2.50, 2.00] 0.10 [-1.70, 1.70] 0.04 0.13 U

Chest x-ray imaging (%) 0.01

Appeared clear 1604 (29) 192 (24)

Local consolidation 3226 (59) 229 (28)

GGO / bilateral infiltration 637 (12) 389 (48)

CRP (mg/L) [IQR] 73.00 [27.00, 146.00] 100.00 [43.00, 176.00] 55.00 [14.00, 118.50] 0.01 0.01 U

Diastolic BP (mmHg) [IQR] 75.00 [66.00, 84.00] 75.00 [66.75, 84.00] 77.00 [69.00, 84.00] 1.00 0.01 U

EGFR (mL/min) [IQR] 72.08 [47.41, 90.00] 68.00 [38.00, 90.00] 82.00 [58.00, 90.00] 0.01 0.01 U

Fraction of inspired O2 (%) [IQR] 0.21 [0.21, 0.36] 0.21 [0.21, 0.21] 0.21 [0.21, 0.21] 0.01 0.01 U

Hydrogen ion conc.(pH) [IQR] 7.41 [7.36, 7.45] 7.40 [7.36, 7.44] 7.40 [7.37, 7.44] 0.08 0.23 U

Haemoglobin [IQR] 129.00 [114.00, 142.00] 129.00 [111.00, 144.00] 131.00 [117.00, 143.00] 1.00 0.16 U

HCO3 [IQR] 24.30 [22.00, 26.50] 24.60 [21.85, 27.30] 24.60 [22.30, 26.70] 0.41 0.15 U

Heart rate/min. [IQR] 90.00 [78.00, 104.00] 90.00 [79.00, 103.75] 88.00 [76.00, 102.00] 1.00 0.03 U

Lactate (mmol/L) [IQR] 1.57 [1.13, 2.20] 1.69 [1.27, 2.29] 1.73 [1.36, 2.33] 0.01 0.01 U

Lymphocytes (10*9/L) [IQR] 0.91 [0.62, 1.34] 0.92 [0.64, 1.30] 1.10 [0.73, 1.50] 1.00 0.01 U

N:L ratio [IQR] 6.00 [3.47, 10.62] 6.00 [3.68, 10.49] 4.81 [2.86, 8.51] 1.00 0.01 U

Neutrophils (10*9/L) [IQR] 5.63 [3.80, 8.50] 5.80 [4.05, 8.35] 5.20 [3.60, 7.97] 0.81 0.02

O2 saturation (%) [IQR] 96.00 [93.00, 97.00] 96.00 [94.00, 97.00] 96.00 [94.00, 98.00] 0.03 0.01 U

pCO2 [IQR] 4.63 [4.06, 5.38] 5.40 [4.70, 6.40] 5.40 [4.70, 6.10] 0.01 0.01

Respiratory rate/min. [IQR] 20.00 [18.00, 25.00] 20.00 [18.00, 25.00] 19.00 [17.00, 23.00] 0.07 0.01 U

Systolic BP (mmHg) [IQR] 130.00 [115.00, 144.00] 128.00 [114.00, 145.00] 127.00 [115.00, 145.00] 1.00 1.00 U

Temperature (
�
C) [IQR] 37.10 [36.50, 38.00] 36.90 [36.20, 37.60] 36.60 [36.10, 37.30] 0.01 0.01 U

Urea (mmol/L) [IQR] 7.50 [5.00, 12.00] 6.80 [4.60, 12.00] 5.70 [4.00, 8.80] 0.06 0.01 U

Variables summarized by median (continuous) or count (categorical) by cohorts. Variables labeled with a U were included as input into UMAP analysis.

Adj., adjusted; BMI, body mass index; BP, blood pressure; comp., complications; conc., concentration; COPD, chronic obstructive pulmonary disease; CRP,

C-reactive protein; CVD, cardiovascular disease; EGFR, Estimated Glomerular Filtration Rate; GGO, ground glass occlusion; HCO3, bicarbonate; IQR, interquar-

tile range; L, Liter; min., minute; mmol, Millimoles; N, number; N:L, Neutrophils:Lymphocytes; pCO2, partial pressure of carbon dioxide; U, units; umol,

micromole.
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Figure 2. Visualization of patient clusters within the training cohort

(A) Using a 4-D embedding as input, patients within the training cohort were classified into 29 clusters by fitting a GMM.

Each 4-D cluster was then visualized by labeling the training cohort with colors on a 2-D embedding.

(B) The fitted GMMwas then applied to classify patients from waves one and two of the validation cohort into the same set

of 4-D clusters. The proportion of patients assigned to each cluster was calculated within each cohort.
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with >4 dimensions BIC comparisons showed greater variance (Figure S4D). From this, a UMAP embedding

with four dimensions (‘4-D embedding’) was selected as input for clustering analysis.

The number of mixture components — K — was substantially higher when selected by BIC than by silhou-

ette width (Figure S4E). As no clear optimal choice was apparent, several models were fitted, and the

28-day mortality rate was compared between clusters to ensure that the range of this value was comparable

to that seen with the ISARIC4C score (Figure S4F). The manual BIC model resulted in the largest range of

28-day mortality (2–65%) where K = 29, in addition to comprising markedly fewer components than the
4 iScience 25, 104480, July 15, 2022



Figure 3. Sex allocation and Day-28 mortality within patient clusters

(A) Representation of patient clusters in the three patient cohorts.

(B) Sex distribution within each cluster.

(C) Relative mortality at day 28 after admission within each cluster. Analysis was performed on clusters which comprised at

least 10 patients.
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optimal BIC model of K = 49, where the mortality range was 1–63%. In contrast, silhouette models resulted

in substantially less diversity in the mortality range between clusters (e.g., 23–38% where K = 3 and 8–45%

where K = 9). As such, K = 29 was chosen for onward analysis.

The final model — a GMM with 29 mixture components — was fitted to the training cohort using a 4-D

embedding. The median number of patients per cluster was 175 (range 84–548). This model was then

applied to patients within the validation datasets (Figure 2B) with comparable representation. Patient dis-

tribution within clusters was broadly similar between the training and validation cohorts. Strong cluster sep-

aration was observed using silhouette width analysis, although some clusters showed low levels of separa-

tion (Figure S5). In particular, clusters 17, 22, 26, and 14 each had consistently negative silhouette widths

whereas clusters 27, 1, 24, and two had a negative silhouette only in the validation cohorts.
Patient clusters defined from the training cohort are predictive of mortality rates within

confirmation cohorts

2-D visualization of the 4-D clustering was used to display clusters across the three patient cohorts (Fig-

ure 3A). Allocation of sex to the clusters was investigated as this is a significant determinant of mortality.

Relative distribution of sex varied between clusters and supported its importance of a key factor in clinical

outcome (Figure 3B). We were next interested to assess their potential predictive power for subsequent

mortality. The overall 28-day mortality rates for the training cohort and the wave 1 and 2 cohorts were

26%, 29, and 14%, respectively. Mortality at day 28 after admission varied markedly between clusters in

the training dataset ranging from 2% within Cluster 18 to 65% in Cluster 24 (Figure 3C).

These values were then compared to clinical outcomes for patients assigned to the equivalent cluster

within the validation cohorts. Mortality prediction from cluster assignment modeled from the training
iScience 25, 104480, July 15, 2022 5



Table 2. Proportion of Day-28 deaths by cluster

N patients Day-28 deaths (%) Odds ratio p value

Cluster Rank T W1 W2 T W1 W2 W1 v T W2 v T W2 v W1 W1 v T W2 v T W2 v W1

1 13 158 18 19 20 6 21 0.2 1.0 4.4 0.20 1.00 0.34

2 4 171 41 172 8 2 2 0.3 0.3 1.0 0.31 0.03 1.00

3 27 84 3 1 44

4 26 237 32 24 43 50 42 1.3 1.0 0.7 0.45 1.00 0.60

5 3 375 83 94 5 9 5 1.9 1.2 0.6 0.17 0.78 0.55

6 17 378 5 3 30

7 19 147 0 0 33

8 28 210 21 5 49 62 1.7 0.36

9 20 125 11 10 34 64 20 3.3 0.5 0.2 0.10 0.50 0.08

10 7 175 38 83 15 10 10 0.7 0.6 0.9 0.61 0.33 1.00

11 23 240 40 9 39 45 1.3 0.49

12 12 264 42 11 20 36 18 2.2 0.9 0.4 0.03 1.00 0.47

13 8 241 34 5 19 24 1.3 0.49

14 6 188 35 34 9 17 3 2.1 0.3 0.1 0.22 0.32 0.11

15 16 151 80 120 29 39 30 1.5 1.0 0.7 0.14 0.89 0.22

16 2 156 24 35 4 8 6 2.3 1.5 0.7 0.29 0.64 1.00

17 25 548 69 35 43 36 34 0.8 0.7 0.9 0.37 0.38 1.00

18 1 316 52 66 2 6 3 3.8 1.9 0.5 0.09 0.35 0.65

19 22 175 61 25 39 34 43 0.8 1.3 1.5 0.65 0.66 0.47

20 11 131 8 8 19

21 18 136 4 1 32

22 14 235 47 74 24 26 13 1.1 0.5 0.5 0.85 0.07 0.15

23 9 170 22 7 19 27 1.6 0.39

24 29 94 46 13 65 59 54 0.8 0.6 0.8 0.58 0.54 0.76

25 5 166 29 45 8 14 11 1.9 1.5 0.8 0.29 0.55 0.73

26 10 212 28 18 19 39 17 2.8 0.9 0.3 0.02 1.00 0.19

27 21 265 36 12 38 36 16 0.9 0.3 0.4 1.00 0.22 0.29

28 15 259 61 60 25 31 12 1.4 0.4 0.3 0.33 0.04 0.01

29 24 92 26 22 40 27 18 0.6 0.3 0.6 0.26 0.08 0.51

The proportion of deaths by day 28 within each cluster in the training, wave 1 and wave 2 cohorts. Odds ratios are calculated with a Fisher’s test of significance.

Clusters are ranked by the proportion of deaths observed within the training cohort.

N, number; T, training cohort; W1, wave 1 cohort; W2, wave 2 cohort.
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dataset was found to be highly predictive for patients within the validation cohorts. Indeed, of the 24 clus-

ters within the wave 1 validation cohort, only two had significantly different odds of mortality from the

training cohort (Table 2). Specifically, Cluster 12 had amortality rate of 36% compared to 20% in the training

cohort (OR 2.2, p = 0.03), and Cluster 26 had values of 39 vs 19%, respectively (OR 2.8, p = 0.02) (Figure 4A).

Cluster-associated mortality rates also showed a high degree of concordance between the wave 2 valida-

tion cohort and the training dataset (Figure 4B) with differences observed only for Cluster 2 (2 vs 8%; OR 0.3,

p = 0.03) and Cluster 28 (12 vs 25%; OR 0.4, p = 0.04).

These data show a high level of correspondence between the cluster-specific mortality rates in the training

cohort and those seen in the validation cohorts indicating confidence that clustering can be generalized to

external and temporally independent patient cohorts.
6 iScience 25, 104480, July 15, 2022



Figure 4. Day-28 mortality rate within patient clusters across study cohorts

(A) The proportion of deaths by day 28 after admission within each cluster in the training and wave 1 cohorts.

(B) The proportion of deaths by day 28 after admission within each cluster in the training and wave 2 cohorts. Dashed lines

indicate the total proportion of deaths in each cohort. Clusters are ranked by mortality rate observed in the training

cohort. Log odds ratios are calculated (95% CI, 1000 bootstraps) such that intervals centered on 0 indicate no difference in

the odds of mortality between cohorts. Analysis was performed on clusters that comprised at least 10 patients.
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Mortality rates within clusters reveal differential improvement in outcome between wave

one and wave two of the COVID-19 pandemic

The period between waves one and two witnessed changes in the clinical management of COVID-19, and

the mortality rate of 29% in wave 1 fell to 14% in wave 2. As such, we were interested to determine the utility

of cluster modeling to assess relative improvements within different patient subgroups across this period.

Several differences in the demographic profile of patients between the two validation cohorts were

apparent. Patients within wave 1 were an average 6 years older than those in wave 2 and had higher rates

of comorbidity. Indeed, 53% had cardiovascular disease compared to 29% in wave 2 and rates of dementia

or cancer also both fell during wave 2 (34 vs 23%; 12 vs 11%) (Table 1). In addition, the proportion of patients

with diabetic complications halved to 5% in wave 2 (Table S1).
iScience 25, 104480, July 15, 2022 7



Figure 5. Distribution of clinical variables and cluster-associated mortality rates within waves one and two of the

validation cohorts

(A) Distribution of clinical variables in patients within the validation cohorts. Dashed lines indicate the median values.

Missing values were excluded.

(B) The proportion of deaths by day 28 after admission within the validation cohorts. Dashed lines indicate the total

proportion of deaths. Clusters are ranked by mortality rate observed in the training cohort. Log odds ratios are calculated

(95% CI, 1000 bootstraps) such that intervals centered on 0 indicate no difference in the odds of mortality between

cohorts. Analysis was performed on clusters which comprised at least 10 patients.
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Changes in the profile of laboratory variables were also apparent over time. For instance, the neutrophil:

lymphocyte (N:L) ratio fell from 6.0 to 4.8, driven by an increase in lymphocyte count and less marked

neutrophilia, whereas estimated glomerular filtration rate (EGFR) and albumin both showed improvements

(68 vs. 82 mL/min; 31 g/L vs 34 g/L) (Figure 5A).
8 iScience 25, 104480, July 15, 2022
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We next contrasted cluster-associated mortality rates for patients in wave 1 and wave 2, noting that these

were managed in the same hospital. Comparison was possible for 20 clusters, of which, 17 showed a

decrease in the odds of mortality, whereas two increased and Cluster 2 remained unchanged (Figure 5B).

However, these changes were only significant for Cluster 28, which showed a 70% fall in the odds of mor-

tality within wave 2 (OR 0.3, p = 0.01). Clusters with above average mortality showed little evidence of

improvement such as clusters 4, 17, and 24 (OR 0.7, p = 0.6; 0.9, p = 1; OR 0.8, p = 0.76). Strikingly, the num-

ber of patients within Cluster 2, which was associated with a very low mortality rate, increased markedly

from 4% to 17% between waves 1 and 2.

As such, these findings reveal that the fall in mortality rate in wave 2 was not uniform across clusters. There

was a marked improvement in outcomes in the middle of the risk spectrum, whereas high-risk clusters

continued to have a bad prognosis. Moreover, low risk patients remained highly likely to survive.

Patient clusters reveal interactions between clinical variables that determine patient

outcome

As patient clusters variedmarkedly in relation to 28-day mortality, we were next interested to determine the

profile of clinical variables within each subgroup. In particular, the unsupervised nature of the analysis was

thought likely to uncover interactions between variables that were not predictable before UMAP transfor-

mation and clustering.

Variables that were significantly associated with each cluster were identified and those which could be

confirmed in more than one cohort were presented as a word cloud on the UMAP plot (Figure 6A) where

the size of the word was scaled according to strength of association with the cluster.

Interesting relationships between variables were observed within the clusters. Increasing age correlated

with the clinical severity of cluster-associated outcome, but it was noteworthy that this was not uniform (Fig-

ure 6B). Cluster 24, which showed the highest rate of mortality, included many patients with dementia and

was associated with low EGFR and high levels of lactate and urea, suggesting a prognostic interaction be-

tween impaired renal function and metabolic acidosis (Figures 7 and 8). In contrast, Cluster 17 comprised

somewhat younger patients with markedly low EGFR and high levels of lactate and urea.

Furthermore, this process of deconvolution of thedeterminants of clinical riskwithin clustersdoesnot need tobe

limited to variables includedwithin the UMAP transformation, allowing additional features associated with each

cluster to be assessed in relation to prognostic importance. As an example, the association tests for patients

within the Cluster 17 validation cohorts were repeated to include additional variables that were absent in the

training cohort (Table 3) and revealed high potassium concentration (K+) as an additional feature of this cluster.

DISCUSSION

Clinical practice is focused increasingly on defining and managing subgroups of patients to facilitate

personalized approaches to therapy. Such a process is underway in conditions such as cancer where the

use of genetic mutation testing has led to stratification of management (Middleton et al., 2020). However,

across most conditions this process is not well advanced. The huge amount of demographic and clinical

information that is acquired during patient assessment offers the opportunity to assess discrete subgroups

of patients, but a major challenge has been the complexity of using such large datasets with the associated

high-level dimensionality that they bring. Here, we used UMAP dimension reduction and GMM clustering

to define subgroups of patients with acute COVID-19. We found that clusters were consistent between

different populations, are predictive of subsequent mortality, and can be used to uncover unexpected re-

lationships between clinical features.

We chose to use UMAP for dimensionality reduction; this uses topological data analysis and a cross valida-

tion optimization process to create a lower dimensional embedding, which retains much of the original

data structure. This is an alternative approach to tSNE analysis but is scalable to larger datasets and

more effectively captures local as well as global data structure (McInnes et al., 2018). A key advantage of

UMAP is that the transformation can be applied to embed new observations into the same latent space,

allowing it to be built into a model development pipeline. UMAP has been applied to a range of clinical

and biological analyses, including stratification of patients with ALS (Grollemund et al., 2020), polygenic

risk prediction (Sakaue et al., 2020), and single cell analyses (Becht et al., 2019).
iScience 25, 104480, July 15, 2022 9



Figure 6. Cluster characterization reveals clinical variables associated with clusters

(A) Clinical variables associated with patient clusters in the training cohort and at least one validation cohort (p = 0.001).

Continuous variables were categorized, and Fisher’s tests were applied to each factor level. The strength of the

association was used to construct a word cloud with larger words having a stronger association with a cluster in the

training cohort.

(B) Age distribution of patients within clusters. Boxes represent themedian and IQR with whiskers extended to the lowest/

highest datumwithin 1.5 IQR of the lower/upper quartile. Clusters are ordered along the x axis in relation to the increasing

rate of associated 28-day mortality. Analysis was performed on clusters which comprised at least 10 patients in each

cohort.
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Grollemund et al. (2020) demonstrated that UMAP is capable of stratifying patients into risk groups and

used dimension reduction to develop a 1-year mortality prognostic model based on the distribution of pa-

tients on a 2-D embedding and comparison of groups based on coordinates on a grid. We extended this

approach by dividing the embedding into subgroups through unsupervised clustering. UMAP preprocess-

ing can also improve the results of clustering algorithms (Allaoui et al., 2020; Hozumi et al., 2021). The com-

bination of risk-stratification and improved clustering thus makes UMAP-assisted clustering a powerful

approach for the detection of novel clinical risk groups.
10 iScience 25, 104480, July 15, 2022



Figure 7. Distribution of individual clinical variables by cluster

Example of the distribution of four clinical variables by cluster across the three patient cohorts. Base excess, EGFR,

lactate, and urea are shown. Boxes represent the median and IQR with whiskers extended to the lowest or highest data

within 1.5 IQR of the lower or upper quartiles. Clusters are ordered along the x axis in relation to the increasing rate of

associated 28-day mortality. Missing observations were excluded, and the number of observations was used to scale the

width of each box. Analysis was performed on clusters which comprised at least 10 patients in each cohort.
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The default output from UMAP — a 2-D embedding — is ideal for visualization purposes. However, when

applying UMAP for nonlinear dimension reduction, the choice is less clear. Our literature review did not

indicate an established method to select dimensionality in this context. This decision will depend on

both the complexity of the data and the ability of UMAP to represent topological structure on a lower-di-

mensional embedding. A qualitative approach was therefore undertaken, and a 4-D embedding was

selected based on a global estimate of intrinsic dimensionality and assessment of the impact of dimension-

ality on the clustering model. Other parameters such as the number of nearest neighbors and minimum

distance were fixed in our analysis.

Unsupervised clustering analysis was used to label patients by cluster given their distribution in UMAP

space. BIC and silhouette width are validatedmethods for selecting the number of clusters and were adop-

ted in this approach (Batool and Hennig, 2021; Gómez-Rubio, 2021; Keribin, 2000; Rousseeuw, 1987). Se-

lecting the number of clusters is a widely debated topic (Chiang andMirkin, 2010; Fu and Perry, 2020; Fujita

et al., 2014; Gómez-Rubio, 2021). A useful property of a GMM is that it can be used to approximate any
iScience 25, 104480, July 15, 2022 11



Figure 8. Proportion of patients with comorbidity within each cluster

The proportion of patients diagnosed with a comorbidity by cluster is represented as a heatmap by decile. Clusters are

ordered along the x axis in relation to the increasing rate of associated 28-day mortality. Analysis was performed on

clusters which comprised at least 10 patients in each cohort.
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other probability density function, given a sufficient number of mixture components (Nguyen et al., 2020).

This allows the model to fit clusters which follow a non-Gaussian distribution. However, in this context the

model may require multiple mixture components to fit a single cluster. BIC will optimize the number of

components to best fit the underlying data distribution rather than the number of distinct clusters.

When the assumption is made that each component corresponds to a single cluster of patients, BIC

may lead to overestimates in the true number of clusters (Baudry et al., 2010; Gómez-Rubio, 2021). Silhou-

ette, on the other hand, measures the compactness within each cluster and the separation between them

(Rousseeuw, 1987). Using silhouette to select the number of components therefore ensures the most

distinct clustering configuration but can fail to give insight into clustering quality if cluster distributions

require multiple components to be fitted (Gómez-Rubio, 2021).

In our analysis, the optimal BIC indicated 49 components but began to plateaux beyond 29. In contrast, the

maximum silhouette corresponded to three components but showed a secondary peak with 9. This large

discrepancy suggested BIC may have somewhat overestimated the number of clusters, whereas silhouette

provided a relative underestimate. We therefore compared the diversity of 28-day mortality risk between

clusters, to optimize the potential clinical value of the modeling and found that the model with 29
12 iScience 25, 104480, July 15, 2022



Table 3. Clinical variables associated with Cluster 17

Training Wave 1 Wave 2

Base excessYY CVD Base excessYY

CRP[[ EGFRYY Breathlessness

CVD HYY Diabetes (with comp.)

Diabetes (any) K[[ EGFRY

EGFRY pocFiO2[[ EGFRYY

EGFRYY Ur[[ HYY

Frailtyh HCO3YY

HYY Hypertension

HbYY Lactate[[

HCO3YY O2 satY

Lactate[[ Ur[[

O2 satY

O2 satYY

pocFiO2[[

Ur[[

Clinical variables significantly associated with Cluster 17 by cohort (p = 0.001). Variables highlighted in bold were not included

within UMAP analysis.

Comp., complications; CRP, C-reactive protein; CVD, cardiovascular disease; EGFR, estimated glomerular filtration rate; K,

potassium; H, hydrogen ion concentration; Hb, hemoglobin; HCO3, bicarbonate; pocFiO2, fraction of inspired O2; O2 sat,

O2 saturation; Ur, Urea.
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components resulted in the largest range (2–65%). As such, the decision to use BIC resulted in a model with

a greater diversity of mortality risk between clusters, although some clusters had a negative silhouette

width, indicative of relatively poor separation. Future work will investigate the use of an entropy criterion

to combine components based on the loss of information (Baudry et al., 2010) and examine methods of

determining groups from multiple survival curves (Villanueva et al., 2019). Other model-based clustering

methods such as Hierarchical Density-based Spatial Clustering of Applications with Noise (Campello

et al., 2015) and the use of Dirichlet processes can also be explored (Kottas, 2006).

As cluster labels are independent of outcome, unbiased comparisons can be made about the observations

assigned to each subgroup.We chose to compare 28-day survival rates but other clinical outcomes, such as

subsequent development of long-covid, could be compared without retraining the model. Model-based

clustering allows validation of clusters in independent cohorts as the fitted model can be used to cluster

new data. Indeed, we observed a concordance of results between the training and validation cohorts,

which indicates that this model could potentially be used for analysis of any COVID-19 dataset provided

the same predictors were available.

We applied the clustering approach to clinical variables taken on the day of hospital admission to predict

subsequent mortality at day 28. This time point was chosen as most patients who die from acute COVID-19

succumb by 4 weeks after hospital entry, and it was felt that it would be challenging to extend prognostic

modeling beyond this time. The associated mortality rates of individual patient clusters were very hetero-

geneous and ranged from 2% for the 316 patients in Cluster 18 through to 65% for 94 patients within Cluster

24. A further striking feature was that values obtained from the training cohort were strongly predictive of

outcomes in the validation cohorts. As such, these findings show clustering of demographic, clinical, and

laboratory features taken at the time of hospital entry is predictive of medium-termmortality. This is impor-

tant as this information could be used to guide appropriate triage and clinical management at an early

stage of the patient journey.

It was interesting to compare themortality rates for patients within wave one and wave two of the pandemic

treated at the same hospital. Dexamethasone emerged as a standard of care for all patients with severe

COVID-19 who required oxygen therapy in July 2020 and as such would have been a default management
iScience 25, 104480, July 15, 2022 13
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approach for such patients in wave 2. The overall mortality rate fell by nearly 50% during this period and

lower 28-day mortality rates were seen for many clusters within wave 2, although no clear improvement

was seen in the very high-risk clusters of 24, 4, and 17 which included many patients with cancer, dementia,

and cardiovascular disease. This reveals that cluster analysis could be of value in assessing the differential

impact of new therapies on patient groups and identifying those which represent an unmet need.

Furthermore, this use of an unsupervised machine learning approach to define patient subgroups enables

identification of new and potentially unexpected interactions between clinical and laboratory variables. Pa-

tients in high-risk groups were characterized by medical comorbidity in association with laboratory vari-

ables such as impaired renal function and metabolic acidosis. The interaction between comorbidities

within clusters also revealed a number of interesting features (Figure 8). For example, although patients

with dementia and cardiovascular disease were enriched within the high-risk Cluster 24, this combination

was also seen in several lower risk groups such as 15, 9, 19, and 29. As such, a striking feature from the anal-

ysis was that clusters comprised complex combinations of clinical determinants that would not have been

easily predictable from clinical assessment. Ethnicity data was not available for the training cohort and in

the validation cohorts >50%were of white ethnicity but this was not a key driver of clustering with only Clus-

ter 15 associated with white ethnicity.

In summary, the application of untargeted machine learning to clinical data collected routinely at hospital

entry allowed identification of subpopulations of COVID-19 patients with distinct mortality rates and clin-

ical presentation on the day of admission. These were consistent across different clinical datasets and un-

covered prognostic interactions between clinical variables that could influence management decisions.

Furthermore, such clusters may also reveal activation of different biological pathways and might therefore

uncover new mechanisms of COVID-19 susceptibility and a means to stratify therapeutic interventions in

phenotype-informed randomized control trials, such as optimizedmanagement of renal impairment, meta-

bolic acidosis, and cardiovascular disease for patients in Cluster 24. This approach has application to a wide

variety of clinical conditions and contributes to the growing expectation that artificial intelligence systems

will transform healthcare delivery and operate in real time to support clinical decision making in both acute

and chronic conditions.
Limitations of the study

Potential limitations of our study include the fact that the training cohort was derived from several clinical

sites and could contain site-specific effects with more exposure to reporting errors. The use of uncon-

strained covariance matrices in model fitting may limit scalability to larger and more complex datasets.

In this context, a diagonal covariance matrix may be more appropriate. In addition, missing information

was apparent across the three cohorts (Figure S1).
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ggplot2 (R package) Wickham (2016) https://CRAN.R-project.org/package=ggplot2

Code from this paper GitHub: https://doi.org/10.5281/zenodo.6320265 https://github.com/wdsquared/UMAP-assisted-clustering
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Paul Moss (p.moss@bham.ac.uk).
Materials availability

No materials were used in this study.

Data and code availability

d Theclinical data reported in this studycannotbedeposited inapublic repositorybecauseofethical constraints.

To request access to the development data, contact the Geriatric Medicine Research Collaborative (https://

www.gemresearchuk.com/, gemresearch.uk@gmail.com). To request access to the validation data, contact

the PIONEER Health Data Research Hub (https://www.pioneerdatahub.co.uk/, pioneer@uhb.nhs.uk).

d All original code has been deposited on GitHub (GitHub: https://github.com/wdsquared/UMAP-

assisted-clustering) and is publicly available as of the date of publication. DOIs are listed in the key resources

table.
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d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Patient population

Clinical data were acquired for patients admitted to hospital with COVID-19. The CovidCollab cohort is a

multicentre dataset of 6099 patients admitted between January and August 2020 and was used as the

training cohort in model development(Alsahab et al., 2021). Two cohorts of patients admitted to the Uni-

versity Hospitals NHS Foundation Trust Birmingham (UHBFT) were used for validation. The first cohort

(‘wave 1’) includes 996 patients admitted between January and August 2020. The second cohort (‘wave

2’) includes 1011 patients admitted between September 2020 and January 2021 (Table 1). Patients tested

positive for SARS-CoV-2 by PCR and/or antibody test within 14 days of admission. Mortality at day 28

(including after discharge) was determined for each patient.

Ethical approval was provided by the East Midlands–Derby REC (reference: 20/EM/0158) for the PIONEER

Research Database (data from University Hospitals Birmingham). For CovidCollab data, local, regional and

national approvals were obtained from all participating sites. In the UK, this study was registered as clinical

audit or service evaluation, with approval granted in line with local information governance policies, in line

with assessment and guidance by the Health Research Authority. At the lead site (University Hospitals Bir-

mingham NHS Trust), this study was registered as clinical audit (CARMS-15986). In other countries, local

principal investigators were responsible for obtaining approvals in line with their local, regional and na-

tional guidelines and recommendations. Only routinely collected data were collected and patient care

was not altered by this study. Anonymised data were securely transferred to the Birmingham Centre for

Prospective and Observational Studies, University of Birmingham via REDCap. All sites were required to

confirm that approvals were in place prior to being provided with logins; written data sharing agreements

were arranged where requested by individual sites.

Variables and missing data

Data obtained for each patient included demographic, clinical and laboratory variables taken on the day

of admission (Tables 1 and S1). Analysis was conducted in R (R Core Team, 2019) with RStudio (RStudio

Team, 2016). Missing data were quantified by cohort (Figure S1) and imputed from the observed data by

predictive mean matching (Bailey et al., 2020; De Silva et al., 2019; Morris et al., 2014). The Multivariate

Imputation by Chained Equations (MICE) (Van Buuren and Groothuis-Oudshoorn, 2011) algorithm was

applied independently to each cohort under fully conditional specification. 28 variables (continuous

and binary) (Table 1) were used for model development for which the maximum proportion of missing

observations was 36% in the training cohort, 43% in wave 1 and 42% in wave 2. A single imputation of

the training cohort was used for model development. Multiple imputations of waves 1 and 2 were ana-

lysed for validation (n. imputations = 5).

Data processing

UMAP was applied to the training cohort prior to model development (Melville, 2020) (Figure S2). Binary

variables were one-hot encoded (0/1), and all variables standardised prior to transformation (mean 0, vari-

ance 1). UMAP transformed the 28 clinical variables onto a lower dimensional embedding. Initial hyper-pa-

rameters were selected by visualising a 2-D embedding output (Figure S3). A Euclidean distancemetric was

used with a target of 40 nearest neighbours and a minimum distance of 0.25.

Clustering model development

Gaussian mixture model (GMM) clustering was applied to automatically label the distribution of patients

after transformation by UMAP (Rasmussen and Ghahramani, 2001; Scrucca et al., 2016) (Figure S2). An

Expectation-Maximization (EM) algorithm was used to estimate GMM parameters with unconstrained

covariance matrices (Scrucca et al., 2016).

The number of UMAP dimensions to output for clustering,D, was determined qualitatively. Maximum likeli-

hood estimation of intrinsic dimension (Johnsson, 2016, 2019; Levina and Bickel, 2004) and Factor Analysis

of Mixed Data (FAMD) (Bécue-Bertaut and Pagès, 2008; Kassambara andMundt, 2020; Le et al., 2008) were

applied to determine a range for D based on data complexity. Iterative UMAP dimension reduction was
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used to test the effect of D on the clustering model. GMMs were fitted to each D-dimensional embedding

with between 2 and 50 mixture components. Average silhouette width (Batool and Hennig, 2021; Maechler

et al., 2019; Rousseeuw, 1987) and Bayesian information criterion (BIC) (Gideon, 1978; Scrucca et al., 2016)

were measured. The maximum D was selected which did not substantially reduce silhouette width or result

in high variability in BIC between models. From this, 4 dimensions (4-D embedding) were selected for on-

ward analysis (Figure S4).

The number of mixture components, K, and therefore clusters of patients, was determined using the

optimal BIC, maximum silhouette width, and a qualitative assessment of BIC and silhouette width plots

(manual BIC, manual silhouette). If multiple values for K were selected, the diversity of mortality rates

was then compared between these models and the mortality rate at day 28 after hospital admission calcu-

lated for K clusters. ISARIC4C modelling had shown that mortality rates varied markedly between high risk

and low risk groups (Figure 1) and the model with the largest range of mortality rate was therefore retained.

Based on this, the final reported model was a GMM fitted with K = 29 (Figure S4).
Clustering validation data

A two-stage process assigned patients from waves 1 and 2 into clusters detected by the GMM in model

development. First, the UMAP transformation learned from the training cohort was applied to embed

the validation cohorts onto the same 4-D embedding. Secondly, the trained GMM was applied to predict

which clusters the new observations should be assigned to with the highest probability. This was repeated

for 5 imputations and amajority vote was taken as the final cluster classification (Basagana et al., 2013). Sep-

aration of clusters was assessed for each imputation by silhouette analysis and estimates were pooled with

a 95% confidence interval (CI) by applying Rubin’s rules (Marshall et al., 2009).
2-D visualisation

For visualisation purposes the UMAP analysis was repeated to transform the 4-D embedding of the training

cohort from 4-D to 2-D. The same transformation was applied to each validation cohort and scatter plots

(UMAP plots) were created (Wickham, 2016).
QUANTIFICATION AND STATISTICAL ANALYSIS

Comparing cohorts

Complete cases of each variable were compared between the training and validation cohorts using a Wilcoxon

test for continuous variables or Fisher’s test for categorical variables (Fisher, 1935; Rey andNeuhäuser, 2011). The

Benjamini-Hochberg procedurewas applied to adjust formultiple testing (Benjamini andHochberg, 1995).Mor-

tality rate at day 28 after hospital admission was calculated for individual clusters across each of the three patient

cohorts and odds-ratios were calculated (95% CI, 1000 bootstrap resamples) (Mayer, 2020).
Cluster characterisation analysis

Fisher’s tests were applied to detect variables significantly associated with each cluster (p = 0.001). Contin-

uous variables were categorised into ordinal factors from literature review and tests applied to each factor

level (Table S2). Only variables where the association was significant in the training cohort and at least one

validation cohort were reported here. Results were summarised using word clouds with variables scaled by

the strength of the association in the training cohort (Chen et al., 2010; Fellows, 2018; Le Pennec and Slow-

ikowski, 2019). Word clouds were overlaid on to a UMAP plot of the training cohort to aid interpretation.

Clusters with fewer than 10 patients in either validation cohort were excluded.
Risk classification

ISARIC4C mortality score was calculated for each patient (Knight et al., 2020) and revealed 0–88% risk of

death within 28 days. Scores were divided into low (0–3), intermediate (4–8), high (9–14) and very high

risk (15–21) for plotting purposes. The training cohort was assigned a score based off a single imputation,

waves 1 and 2 were assigned a score based off the mode across 5 imputations. Kaplan–Meier (KM) (Ther-

neau and Grambsch, 2000) curves were constructed to estimate survival rates with 95% CI. A log-rank test

was applied to test for differences between groups.
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