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Abstract

Activity recognition modelling using smartphone Inertial Measurement Units (IMUs) is an
underutilized resource defining and assessing work efficiency for a wide range of natural
resource management tasks. This study focused on the initial development and validation of
a smartphone-based activity recognition system for excavator-based mastication equipment
working in Ponderosa pine (Pinus ponderosa) plantations in North Idaho, USA. During mas-
tication treatments, sensor data from smartphone gyroscopes, accelerometers, and sound
pressure meters (decibel meters) were collected at three sampling frequencies (10, 20, and
50 hertz (Hz)). These data were then separated into 9 time domain features using 4 sliding
window widths (1, 5, 7.5 and 10 seconds) and two levels of window overlap (50% and 90%).
Random forest machine learning algorithms were trained and evaluated for 40 combinations
of model parameters to determine the best combination of parameters. 5 work elements
(masticate, clear, move, travel, and delay) were classified with the performance metrics for
individual elements of the best model (50 Hz, 10 second window, 90% window overlap) fall-
ing within the following ranges: area under the curve (AUC) (95.0% - 99.9%); sensitivity
(74.9% - 95.6%); specificity (90.8% - 99.9%); precision (81.1% - 98.3%); F1-score (81.9% -
96.9%); balanced accuracy (87.4% - 97.7%). Smartphone sensors effectively characterized
individual work elements of mechanical fuel treatments. This study is the first example of
developing a smartphone-based activity recognition model for ground-based forest equip-
ment. The continued development and dissemination of smartphone-based activity recogni-
tion models may assist land managers and operators with ubiquitous, manufacturer-
independent systems for continuous and automated time study and production analysis for
mechanized forest operations.

Introduction

Time and motion studies are used widely in forest operations and provide insight for improv-
ing efficiency and reducing delays in forest operations through the observation, analysis, and
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quantification of productive cycles and work elements [1-11]. Traditionally, harvest cycle
times and individual elements are estimated using stopwatches, video recorders and handheld
data loggers [12]. These studies are often labor intensive and cost prohibitive due to the man-
ual, observational sampling they require. The application of production functions and treat-
ment cost simulation models developed from time and motion studies is often limited in scope
due these constraints [13, 14]. The methods by which productive work is defined in forestry
and natural resource management are rapidly evolving, where traditional sampling techniques
are increasingly replaced by less labor-intensive methods resulting from advances in real-time
spatial data collection, activity recognition, remote sensing, and wearable and mobile technol-
ogies [15].

In forest operations, global navigation satellite systems (GNSS) have been successfully used
in various forestry applications to automate the sampling and production analysis of equip-
ment, monitor the movements of ground workers, and assess equipment and ground-worker
interactions for both safety and production purposes in lieu of or in support of traditional time
and motion methods [16, 17]. GNSS-supported approaches for production analysis have been
developed for timber harvesting equipment including skidders [18-22], forwarders [14], and
cable logging carriages [23]. GNSS devices work particularly well for equipment such as for-
warders and skidders due to the large distances they cover and the relationship of their move-
ments, speed, and location with their productive activities [14]. In harvester studies, Standard
for Forest Data (StandForD) and CAN bus data have been used in combination with GNSS
devices to perform production analysis [12, 24-26]. Further, Carter et al. successfully used
GNSS to monitor traffic intensity and soil impacts resulting from timber harvesting [27].

One limitation of many basic GNSS devices is the inability to share and process data in
real-time independently of additional hardware, limiting their usefulness for production anal-
ysis where immediate feedback and processing may be desired. GNSS-RF uses radio frequency
to transmit and share data in real-time independent of cellular and satellite infrastructure,
enabling data sharing in remote work environments and off-the-grid scenarios. The use of
these technologies for improving safety and situational awareness in forest management and
logging scenarios has received significant interest [28-31]. Further, real-time communication
between multiple GNSS-RF devices has successfully been used to assess independently moving
components of a single machine to characterize productive work elements [32, 33]. Classifica-
tion of component work elements using consumer-grade GNSS-RF is limited by the spatial
resolution and accuracy at which data can be recorded [32, 33]. GNSS accuracy degradation
due to multipath error from dense forest canopies or topography further limits the extent spa-
tially explicit data can be used for production analysis in forest operations [14, 16, 19, 34]. This
may prohibit the exclusive use of GNSS-based devices for data collection and production
representation where high-accuracy position, navigation, and timing (PNT) data are required
to ensure worker safety and effective work assessment [35], although these studies predated
recent advances in RTK system availability for mobile devices. When GNSS error is unaccept-
ably large, additional data inputs may be necessary to increase the robustness of production
models and ensure their improved accuracy and utility across varying sites and applications.
Sensor-based data, including those derived from triaxial accelerometers and gyroscopes, pro-
vide a rich, high-resolution, and highly descriptive data source for characterizing equipment
activities. Wearable and mobile devices, including smartphones and smartwatches, are regu-
larly equipped with inertial measurement units (IMUs), GNSS chipsets, and other sensors that
provide detailed information regarding the environment in which the device is located [36,
37]. Inertial measurement units (IMU) contain both a triaxial accelerometer and gyroscope
and enables the measurement of acceleration and angular velocity along three orthogonal axes
and are regularly used in activity recognition modelling [38].
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Activity recognition refers to the prediction of an individual’s actions based on sensor-
derived data capturing their movements or other biophysical characteristics and was first
deployed in the lifecare and wellness industries in the 1980’s [39]. Smartphone and smartwatch
ubiquity has led to rapid expansion in their use for human activity recognition modeling tech-
niques characterizing physical activities. Data collected from smart device-based accelerome-
ters, gyroscopes and sound pressure meters have been used successfully in various human
activity recognition applications [36, 37, 40, 41]. This includes uses in healthcare, behavior
modelling, commerce, traffic condition monitoring, transportation identification, intelligent
environments, fall detection, and to assess the wellness and fitness of athletes [37, 41-49].
Zhang et al. [50] and Akhavian and Behzadan [51] studied the use of smartphones for activity
recognition and classification in the construction industry, showing the ability of smartphones
to detect and define human-performed work activities. While sensor-based activity recogni-
tion has proven effective, model development and evaluation in the natural resource manage-
ment field provides new opportunities to quantify and log both human and equipment-based
work activities simultaneously within a common framework. Research on the development of
consumer accessible smartphone and smartwatch-based activity recognition solutions for nat-
ural resource industries is lacking.

Previous activity recognition modelling using accelerometers, GNSS devices, and gyro-
scopes in natural resource industries has examined applications for motor-manual felling,
motor-manual willow coppice operations, bandsaw mills, and carriages in cable logging opera-
tions [11, 52-55]. Pierzchala et al. [56] used a combination of smartphone derived IMU and
GNSS data, video recording, and tethered onboard computers to perform automatic work
phase recognition and subsequent quantification for a cable logging carriage with activity seg-
mentation success of 78%. Keefe et al. [40] was the first successful use of stand-alone smart-
phone-based data collection for the development of human activity recognition models in
forestry by assessing manual fallers in industrial forest operations. Using a smartphone secured
to the belt of a timber faller, the activity recognition model characterized manual felling work
elements and delay with accuracies between 65.9% and 99.6%. More recently, smartwatch sen-
sors have been successfully used to develop activity recognition models for rigging crew work-
ers setting and disconnecting log chokers on cable logging operations [57]. These new smart
device-based activity recognition applications show promise for further integration into forest
industries. There is a significant need for continued development of models for real-time pro-
duction analysis and logistics. For new automated technologies to be used for time study
research purposes, McDonald and Fulton [20] suggested several requirements need to be met:
1.) It must be unobtrusive, simple, and easy to implement; 2.) It must be applicable for a wide
range of machinery and site conditions without need for major reconfiguring; 3.) It must be
durable and robust; and 4.) It must produce data of comparable accuracies to that collected by
a skilled field crew. Smartphones and smartwatches have been shown to provide a technologi-
cal solution capable of meeting these evaluation metrics.

There is no currently published research on the development of stand-alone smartphone-
based activity recognition models to predict work cycle elements and production rates of
heavy equipment in forestry. Smartphones are useful for activity recognition model develop-
ment due to their ubiquity, unobtrusiveness, ease of use, portability, high storage capacity,
powerful computing, powerful embedded sensors, low energy consumption, extensive devel-
oper support and programmable capabilities [58-60]. Integrated production and logistic mon-
itoring systems for collecting and processing data regarding machine and operator condition
and performance are found in new forest equipment and exist for harvesters, forwarders, and
other equipment [24, 25, 56]. However, in most instances in the United States, these are typi-
cally machine specific, proprietary hardware and software systems that are limited to a single
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machine, application, and manufacturer. Mobile activity recognition tools using smartphone-
based IMUs present a standalone, mobile solution enabling integration, utilization, and cus-
tomization for a wide range of mechanized equipment and work activities through a single
device, similar to fitness tracking applications. Forest equipment movements entail unique,
but significant, actions including lateral movements, swings, hydraulic boom manipulation,
and hydraulic cutting or processing head operations. The distinct work elements and the cycles
they comprise may enable the development of activity recognition-based applications based
on equipment movements within their environments.

Accurately capturing, recording, and characterizing the elements of equipment is key to
successful activity recognition development and opens the door to correlating equipment pro-
ductivity analysis to environmental and site characteristics. The production and costs of mech-
anized felling, skidding, and processing equipment are directly impacted by forest stand
metrics (tree size, stand density, undergrowth) and geophysical attributes (slope, rocks, debris,
soils) [6, 8, 61]. Representing geographic and forest stand characteristics and their resulting
impacts on equipment trafficability, tractability, and productivity is important for developing
accurate, reliable, and robust activity recognition models for automating work activity
characterization.

Remotely sensed data may support activity recognition model development by providing
descriptive information related to site and stand conditions within the work environment.
Light detection and ranging (lidar) is used extensively in forest, range, and fire management to
quantify vertical forest structure, succession, and other forest attributes, as well as terrain mor-
phology [62-70]. Use of lidar to conduct inventories and to characterize geophysical and eco-
logical conditions across temporal and spatial scales can reduce inventory costs and improve
the resolution of data for land management agencies and the forest industry [71]. In forest
operations, lidar has been used to locate skid roads, log landings [64], detect disturbance
related to harvest [72-74], quantify harvesting productivity [8], delineate harvest units and
cable corridors [75, 76], and perform harvest system classification [77]. Additionally, Maltamo
et al. (2019) assessed the accuracy of stand stem distributions derived using single-tree data
from a harvester with an integrated positioning system and lidar metrics [78].

Area-based and individual tree-based approaches for deriving forest information from lidar
data have been studied and compared extensively [79-83]. With improvements in lidar tech-
nologies and increased pulse densities, individual tree-based analysis has rapidly increased
[84]. Pulse densities of 5-10 per square meter enable the efficient detection and segmentation
of individual trees, and many current lidar acquisitions are easily within or exceed this pulse
density [79]. Single tree detection and delineation is becoming a common tool for forestry
applications including characterizing individual tree attribute distributions at the population
level, modeling individual tree growth, classifying wildlife habitat, estimating carbon seques-
tration and other ecosystem services, modeling fire behavior, and precisely estimating biomass
for inventory and operational applications [85-87]. Individual tree metrics including height,
diameter at breast height (DBH), canopy base height, crown condition, crown area, biomass,
stem volume, and specie can be derived from segmented tree data [64, 71, 79, 88]. The Univer-
sity of Idaho Experimental Forest has incorporated lidar-based single tree inventory into man-
agement operations for applied research, demonstration and teaching purposes since late
2020. However, to effectively use these high-resolution, remotely sensed data for operational
forestry applications, it is also necessary to accurately position mobile heavy equipment during
regular work conditions in the forest. Lidar-derived single tree products can have high geo-
graphic precision and accuracy, but positional data derived from GNSS-based devices can
return high positional error. The inaccurate positioning of equipment or attachments in
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relation to remotely sensed products may lead to invalid assumptions regarding the relation-
ship between these two data types.

The integration of smart devices monitoring equipment movements with lidar-derived sin-
gle-tree information is critical to advance precision forest operations. Precision forestry, which
commonly utilizes remotely sensed data sources and analysis, is the forest management tech-
nique emphasizing data-intensive and innovative practices, technologies, and processes to
increase productivity, reduce costs, reduce negative site impacts resulting from management,
and increase overall forest management success [89, 90]. These concepts are used in forest
inventory and forest planning and have many opportunities for advancing industrial forest
operations, as described above, while also allowing forest management planning and imple-
mentation at microsite levels [18]. Advances in precision forestry could provide greater insight
into operational trends, processes, production, and machine interactions during logging oper-
ations for both production and safety analysis. In turn, this may lead to more sustainable, effi-
cient, and safe forest operations. The expansion of smartphone and mobile-based internet of
things (IoT) in forested environments through activity recognition will help evolve the defini-
tion, monitoring, and assessment of work in the woods.

This study focuses on the development and validation of a smartphone-based activity rec-
ognition modelling framework for forestry equipment. Our first objective is to develop equip-
ment specific, smartphone-based activity recognition models for an excavator-based
masticator using random forest machine learning algorithm. Our second objective is to evalu-
ate the effects of sliding window sizes, window overlap proportion, and sampling frequency on
activity recognition model performance. Lastly, we evaluated the accuracy of matching equip-
ment body and attachment locations derived from consumer-grade GNSS-RF devices to lidar-
derived individual tree locations during operational mastication work.

If successful, the development, validation, and future implementation of smartphone-based
activity recognition models could assist land managers and operators by providing a ubiqui-
tous system for continuous and unattended analysis of mastication treatments. Additionally,
successful integration of lidar-derived single tree inventories and location-enabled activity rec-
ognition may facilitate the enhanced evaluation of forest and operational factors affecting
treatment production and cost analytics in real-time. This will simultaneously provide data
which can be used in planning and implementation of future forest operations and manage-
ment. If successful, identifying masticated trees within a single-tree stem map could also foster
accurate prediction of residual stand density, residual fuel characteristics, and other prescrip-
tion features to inform and prioritize cost-effective long-term management planning
scenarios.

Materials and methods

Study site

Three replicated stands on the University of Idaho Experimental Forest (UIEF) were sampled
as part of a larger fuels management operation with treatment units located in three UIEF
management units: Flat Creek; West Hatter; and East Hatter. The UIEF is located approxi-
mately 20 kilometers northeast of Moscow, Idaho in the Palouse Range. All sampled stands
were approximately 27-year-old ponderosa pine (Pinus ponderosa) plantations established fol-
lowing a clearcut timber harvest and subsequent prescribed burn. The primary fuel treatment
prescription was the reduction of stand density to a tree spacing of 5 x 5 meters using mastica-
tion. This pre-commercial treatment focused on reduction of stand density, treatment of west-
ern pine beetle damage, and hazardous fuels reduction for the residual stand.
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Mastication sampling and field procedures

A time and motion study was performed within the three stands to facilitate the observation of
mastication work cycles with corresponding and simultaneously collected smartphone sensor
data. Treatments were implemented with a tracked excavator (Kobelco ED150) running a
hydraulic disk mastication head (Promac Brush Cutter). Due to hazardous conditions for
observers during mastication and the density of the stands, observational sampling was supple-
mented with video recording captured by two Garmin Dash Cam 45 (Garmin®), Olathe, KA,
USA) devices placed within the machine cab. These devices provided time-stamped video and
audio recordings, enabling productive work cycle classification while increasing observer
safety and reducing sampling errors associated with poor visibility, observer inattentiveness or
element misclassification. GNSS-RF multi-transponder devices with 2.5 second sampling
intervals were secured outside the cab of the equipment to record movements and treatment
progression throughout sampling. Data recorded from these devices was shared in real-time
via radio transmission to a handheld receiver.

Google Pixel 2 smartphones (Google, Mountain View, CA, USA) collected the sensor data
necessary for activity recognition modelling. These devices were placed within the machine
cab oriented with the rear of the phones facing the front windshield. The AndroSensor appli-
cation [91] was used to record the IMU and other smartphone sensor measurements. Within
the AndroSensor application, a unique data sampling rate frequency was selected for each of
the three phones used: 10, 20, and 50 hertz (Hz). The 10, 20, and 50 Hz sampling rates
recorded information every 0.1, 0.05, and 0.02 seconds respectively. Device placement on the
equipment used in field sampling is shown in Fig 1.

In human activity recognition, sampling frequencies vary greatly from 1 Hz [92] to 200 Hz
[93, 94]. 50 Hz is often used to capture dynamic activities [58, 95], though 20 Hz has been
shown to provide acceptable recognition accuracy while also preserving smartphone battery
life [37, 45, 46, 96]. While decreasing sampling rate can increase the battery life of devices,
reducing frequencies too drastically can limit the potential for achieving accurate activity rec-
ognition [92]. Collecting data at a high sampling rate (50 Hz) enables data to be downsampled
to lower frequencies for additional analysis [60, 97, 98]. Therefore, the 50 Hz sensor data was
downsampled to 20 Hz and 10 Hz to determine if downsampled data returned similar activity
recognition classification results as natively sampled signals of the same frequencies.

Sensor data for acceleration, linear acceleration, orientation, and sound level was measured
during field sampling using the Google Pixel 2. The IMU in the smartphone is a combination
accelerometer and gyroscope that detects triaxial acceleration measurements in the x, y, and z

Fig 1. Smartphone, camera, and GNSS-RF transponder device locations on the masticator.

https://doi.org/10.1371/journal.pone.0266568.9001
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directions in meters per second squared (m s™), triaxial linear acceleration measurements in
the x, y, and z directions in meters per second squared (m s *), and triaxial orientation or tilt
using the gyroscope in radians per second (rad s™'). Sound pressure levels were measured in
decibels (dB) using an integrated sensor. Each recorded data point is assigned a date and time
stamp indicating the year, month, and day and the associated hour, minute, second, and milli-
second (Y-M-D h:m:s:SSS).

Productive work cycles and cycle elements were defined using the audio and video record-
ings obtained from the dash cameras used during sampling and were subsequently merged
with smartphone-derived sensor data. Cycle elements for the masticator are described in
Table 1 below.

Activity recognition modelling and assessment

Smartphone-derived sensor data processing. Activity recognition modelling using ran-
dom forests and other shallow learning algorithms primarily consist of four main phases: data
collection; segmentation; feature extraction and selection; and classification [37, 59, 99]. Once
data is collected, extracted from the smartphones, and work elements for the entirety of the
data set are manually added to the data based on corresponding time stamps, data was
imported into the R statistical programming environment where all remaining analysis and
modelling occurred [100]. The segmentation phase of activity recognition entailed dividing
the full data set into smaller time segments to simplify data retrieval. This process consisted of
two steps: signal preprocessing and windowing [37, 59]. The Google Pixel 2 accelerometer and
gyroscope report raw data in three axes (X, y, and z) enable the detection of orientation
changes. To reduce the impact of orientation on activity recognition performance, the vector
magnitudes of the triaxial sensors were calculated using Eq 1 [99, 101, 102]. This resulted in
orientation-independent measures for acceleration, linear acceleration, and orientation/tilt.

a=+/ax*+ ay* + az? (1)

In activity recognition, sliding windows are often used to segment data into set time series
where defined time domain features are calculated [37, 38, 43, 45, 46, 95, 103]. Studies have
examined and compared model accuracies using multiple window sizes ranging from 1 to 13
seconds [40, 43, 45, 57, 92, 95, 103-110]. Activity recognition accuracy is greatly influenced by
window size, with windows that are too short not covering the extent of the activity being clas-
sified and windows that are too long overlapping multiple unrelated activities [46]. Based on
our study objectives and prior research, four different windows (1, 5, 7.5 and 10 seconds) were
assessed to balance the ability of short windows to recognize simple activities and the ability of
longer windows to capture less repetitive activities effectively [37, 40, 111]. Assigned window
sizes are passed through the entire data set incrementally, with either overlapping or non-over-
lapping windows [112]. The strength of the impact that window size has on classification is

Table 1. Cycle elements used for the mastication time and motion sampling.

Element Description

Move | Starts when machine begins track or boom movement to successive masticating or clearing element and
ends once head contacts material

Masticate | Starts when mulching head contacts standing tree and ends when tree bole is fully masticated.

Clearing | Starts when machine initiates mulching or moving downed trees, shrubs, etc. and ends when machine
starts subsequent element

Travel | Prolonged machine walking within previously masticated area from one mastication location to the next

Delay | Any interruption to the productive cycle that falls outside previously described elements

https://doi.org/10.1371/journal.pone.0266568.t001
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dependent on the amount of overlap of subsequent windows [46]. While overlap enables the
classification of activities in smaller time intervals than the window, it does require greater
computational capacity than non-overlapping windows [104]. 50% window overlap is com-
monly used in activity recognition modelling [38, 43, 51, 95, 110, 111], though other window
overlaps, including 90%, have been used successfully [40, 57, 105, 109]. Window overlaps of
50% and 90% were selected for this study.

Within each sliding window, time domain features were derived using mathematical and
statistical techniques [113]. Nine time domain features were calculated: including the mean,
maximum, minimum, kurtosis, variance, standard deviation, skewness, root mean square
(RMS) and signal vector magnitude. These selected features were comparable with those used
in Zhang et al. [50], Keefe et al. [40], Shoaib et al. [111], and Zimbelman & Keefe [57]. Mean is
a versatile metric for various types of sensors for discriminating between rest and activity in
multi-activity recognition and assists in preprocessing data by removing random spikes and
noise [46, 113]. Similarly, RMS, signal vector magnitude and standard deviation are all effec-
tive statistics for activity classification and distinguishing between periods of rest and activity
[46]. Skewness is used to measure “the degree of asymmetry of a probability density curve
compared to the average” [50]. The purpose of sampling and data collection of various sensors
is not to restore the raw signals of activities, but to detect different activities according to their
statistical properties using the aforementioned time domain features [92].

Random forest. Following windowing, the data were separated into training and testing
sets with a 70/30 split, respectively, to provide an unseen partition of data for final model
assessment. Stratified random sampling was applied to each cycle element class to preserve ele-
ment distribution ratios between testing and training data. Random forest (RF) was selected to
develop machine learning algorithms for the productive cycle element classification. RF is an
ensemble classifier that produces multiple decision trees using bagging and randomly selected
subsets of training samples and variables to provide a majority vote from which a prediction is
made [114-118]. Excellent classification results, speed of processing, and the ability to reduce
bias, correlation, and overfitting compared to other classification and regression trees (CART)
models make RF one of the most widely used machine learning methods available [118-121].
In activity recognition modelling, random forest has been widely tested with high levels of
resulting classification success [40, 43, 47, 50, 57, 102, 103, 105, 108]. Performance was found
to exceed 90% in instances when using multiple smartphone-based sensors and RF classifiers
[36, 50].

Forty unique RF algorithms were developed to account for all combinations of sampling
rate (10 Hz, 20 Hz, 50 Hz, 10 Hz downsampled, 20 Hz downsampled), window overlap (50%
and 90%), and sliding window length (1 second, 5 seconds, 7.5 seconds, 10 seconds). The
workflow for all data processing and model development is found in Fig 2. The R package
caret (version 6.0-88) was used for all random forest training and development [122].

Hyperparameters, specifically mtry and ntree, are adjustable components of random forest
which can increase the performance of algorithms when properly tuned. The mtry parameter
determines the number of variables split at each node of the decision trees and ntree is the
number of trees used in the forest [118]. Repeated k-fold cross validation with 10 folds and 3
repeats was used on training datasets to train and validate mtry and ntree values for the
machine learning algorithms. Mtry values (1-25) and ntree values (1-550) were assessed dur-
ing this process. The final selected value for mtry was chosen based on the maximum accuracy
achieved. For ntree, it is understood that prediction accuracy increases at a decreasing rate as
trees are added and larger values for ntree increase computational demands [114]. To balance
processing time and model performance, ntree was selected by determining the point at which
out of box error (OOB) and accuracy (%) of the model stabilized [123]. These hyperparameter
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Fig 2. Activity recognition modelling data inputs and workflow.

https://doi.org/10.1371/journal.pone.0266568.g002

values were then applied to the final training of the random forest algorithms which then pre-
dicted the test data.

The multiclass area under the curve (AUC) of the receiver characteristic operator (ROC)
was used to evaluate the individual element characterization and overall activity recognition
algorithm performance using the multiclass.roc function of the R pROC package (version
1.17.0.1) [124]. This measure of performance is commonly used for binary and multiclass clas-
sification algorithms [125-128] and performs well when working with imbalanced datasets
[57, 126, 129-131]. The AUC for ROC represents the probability of a classifier ranking a ran-
domly drawn positive before a randomly drawn negative [132]. In general, AUC provides an
aggregate measure of classifier performance across all thresholds. This value falls between 0
and 1, with higher values indicating better performance [133]. AUCs between 0.5 and 0.7 are
considered low accuracy; 0.7 and 0.9 are moderate accuracy; and accuracy is considered high
when AUC exceeds 0.9 [125]. These values were converted to percentages. The AUC of all 40
trained random forest models were compared to determine which combination of window
size, window overlap, and sampling frequency returned the highest AUC. The highest value
indicated the best performing model overall.

Final model performance was also assessed using the confusionMatrix function in the caret
package [122]. Five metrics quantifying the classification success of the activity recognition
models per cycle element were provided by this function: sensitivity, specificity, precision, F1,
and balanced accuracy. These accuracy metrics determined the impact of sliding window, win-
dow overlap, and sampling frequency on activity recognition performance. Sensitivity, also
referred to as recall, is the true positive rate and represents the percentage of instances where
an element was correctly classified [126]. This metric is calculated by dividing the number of
true positives by the sum of the true positives and false negatives. Specificity is the true negative
rate and is the percentage of negative instances correctly classified [126]. To calculate specific-
ity, the number of true negatives is divided by the sum of the true negatives and false positives.
Precision is used to capture the percentage of classified elements that represent an actual
occurrence of that element and is calculated by dividing the number of true positives by the
sum of the true positives and false positives [126]. In a basic sense, precision represents how
sure one can be of their true positives, while sensitivity represents how sure one can be that no
positive classifications are missed for a particular class. F1-score, or F-measure, combines the
sensitivity and precision into a single performance metric and represents the harmonic mean
of these two metrics [133-135]. This is the most common performance metric used in
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unbalanced classification problems [136-138]. The value of the F1-score ranges from 0 to 1,
with values close to one indicating high classification performance [133], though they can eas-
ily be converted to a percentage scale and were in this study. Finally, the balanced accuracy
was found for each model which combines the sensitivity and specificity metrics to find their
average and works well with balanced and imbalanced data [133]. The equations for F1-score
and balanced accuracy are found in Eqs 2 and 3 where F1 is the F1-score, and BA is the bal-
anced accuracy.

Precision * Sensitivty

F1=2 (2)

*
Precision + Sensitivity

BA = — (Sensitivity + Specificity) (3)

DN | =

Lidar point cloud processing procedures

Airborne laser scanning (ALS) is a commonly used lidar acquisition method for natural
resource applications and derived products include terrain elevation, vegetation heights, stand
volume, tree density, and tree species identification [68, 69]. The ALS data used in this study
were collected using an Optech Galaxy Prime Lidar system mounted on a fixed-wing aircraft.
This was part of a 9,363 km” (3,615 mile?), multi-agency, state-wide, lidar acquisition per-
formed by Atlantic LLC in October 2019. Nominal point spacing of 0.33 meters and an average
nominal pulse density of 9.11 pulses m > was achieved. Individual tree detection and segmenta-
tion derived from the lidar point cloud was performed by Northwest Management Incorpo-
rated (NMI) using a proprietary software and processing workflow associated with NMI’s
ForestView™ software [139]. This point-based lidar processing resulted in a full coverage ITD
stem map for the four main University of Idaho Experimental Forest (UIEF) management
units. In addition to individual stem coordinates, each predicted information associated with
each tree included species, height (m), crown height (m), diameter (cm), crown diameter (m),
and gross volume (MBF). It should be noted that the 9.11 pulses m™ point cloud density used
to develop the individual stem map using NMI’s ForestView™ software was an experimental
evaluation using lower resolution pulse densities than are typically used to develop this com-
mercial remote sensing product. Point densities of 16-20 pulses m™ are typically used.

Cycle element and individual stem location matching

Quantifying intensive equipment production that accounts for individual tree characteristics
requires matching individual mastication events with single tree locations. The machine’s loca-
tion for each mastication element was determined by aligning time series data for the
GNSS-RF transponders and observed time and motion data. Once the equipment location for
each mastication element was determined, it was then necessary to locate feasibly treated
stems within the treatment zone of the masticator at that point in time. The equipment used
had a maximum boom reach of approximately 9 meters. A circular buffer of 7 meters placed
around the cab’s locations during mastication elements enabled the filtering of trees to include
only those within the equipment’s reach. 7 meters was used because the mastication of stand-
ing trees does not enable full boom extension, thus limiting the overall reach of the machine.
Potential target trees were further filtered by accounting for the orientation of the machine
cab within the stand in relation to the stems in the treatment zone. The cab and boom
GNSS-RF devices enabled the derivation of the cab’s orientation as an azimuth. The azimuths
between the equipment cab and each target tree within the associated buffer was then quanti-
fied. Cab-to-boom and cab-to-tree azimuths were compared, and it was assumed that cab-to-
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Fig 3. Identifying target trees. Process for identifying potential target trees for mastication using GNSS-RF-based
equipment locations, equipment orientation, equipment to tree orientation, and individual tree locations.

https://doi.org/10.1371/journal.pone.0266568.g003

tree azimuths within +/- 10 degrees of cab-to-boom within the treatment zone indicated a fea-
sibly masticated tree. All spatial analysis was performed using the sf packages in R [140]. Visual
representation of the process used for identifying potentially treated trees using the stem map
and GNSS-RF positions is shown in Fig 3.

Results
Work sampling and cycle analysis

Summarized results from the mastication work sampling data are found in Table 2. A total of
88,829 seconds (~24.7 hours) of mechanical fuel treatments were observed across the three
treatment units, with units 1, 2, and 3 accounting for approximately 41%, 29%, and 30% of the
sampling time, respectively. The equipment performed the move element most often during
work sampling, accounting for 32.2% of the overall sampling time, which corresponds directly
with the most individual occurrences of a single element, 1,348. Delay and travel occurred sig-
nificantly fewer times than the other elements, accounted for the smallest percentages of total
duration of sampled time, but also had the highest mean element duration, largest range of ele-
ment durations, and the largest standard deviations in element durations. The delay element
had the largest coefficient of variation (223.8%) indicating a large variation of values around
the mean. This is, in part, a direct result of the large range of observed element durations with
a total of 2,244 seconds (37.4 minutes) separating the longest and shortest elements. Total sam-
pling duration for the clear, masticate and move elements were relatively equal and accounted
for 26.0, 28.7 and 32.2% of the total work sampling time respectively.

Table 2. Work sampling summary statistics for mastication equipment by element for the full field sampling period.

Element n Total Duration (s) Total Duration (%) Mean (s) Range (s) SD (s) CV (%)
Clear 932 23132 26.0 25.7 2.0-202.0 24.6 95.7
Delay 53 8417 9.5 211.5 14.0-2258.0 473.4 223.8
Masticate 921 25499 28.7 23.7 2.0-139.0 18.6 78.3
Move 1348 28626 32.2 20.2 2.0-207.0 17.7 87.7
Travel 33 3155 3.6 96.6 10.0-298.0 55.8 59.8
Total 3287 88829 100.0 27.0 2.0-2258.0 56.1 207.7
https://doi.org/10.1371/journal.pone.0266568.t1002
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Fig 4. Repeated 10-fold cross validation ntree training results for the 50 Hz sampling rate and 10 second sliding
window for both the 50 and 90% window overlaps.

https://doi.org/10.1371/journal.pone.0266568.9004

Random forest and activity recognition

Following the repeated 10-fold cross validation training and evaluation for the machine learn-
ing algorithms, 40 final random forest algorithms were evaluated using each combination of
data sampling rate (Hz), sliding window size (seconds), and sliding window overlap (%). A
ntree value of 150 was used for all random forests, with model training indicating a stabiliza-
tion of error and accuracy at this number. This was found across all models, with training
results for the 50% and 90% window overlap models for the 50 Hz sampling rate and 10 second
sliding window algorithms shown in Fig 4. While larger ntree values provided slight increases
in model performance, added benefits were outweighed by the significant increases in process-
ing time. Increased processing time is a concern because of the delays caused in potential
future real-time model applications. A ntree value of 150 provided an acceptable balance
between model performance and processing time.

Opverall activity recognition performance was quantified using the area under the curve
(AUC) with results for all models (5 sampling rates, 4 window sizes, 2 window overlaps) dis-
played in Fig 5. In every instance, models with 90% window overlaps significantly
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Fig 5. AUC results for activity recognition models. Comparison of activity recognition model area under the curve
(AUC) percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10
seconds) for each work element (clear, delay, masticate, move, travel) and for full models (All).

https://doi.org/10.1371/journal.pone.0266568.g005
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Table 3. Activity recognition performance metrics for the best performing classification model (50 Hz sampling rate, 10 second window, 90% widow overlap).

Element AUC (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Balanced Accuracy (%)
Clear 96.0 82.2 93.5 81.5 81.9 87.9
Delay 99.9 95.6 99.8 98.3 96.9 97.7
Masticate 96.9 86.0 94.5 86.1 86.1 90.3
Move 95.0 84.2 90.8 81.1 82.6 87.5
Travel 99.2 74.9 99.9 98.1 84.9 87.4

https://doi.org/10.1371/journal.pone.0266568.t003

outperformed models with identical sampling rates and window sizes but 50% window over-
laps. Increasing sampling rate led to increases in AUC in most cases and similar trends were
found when accounting for sliding window size. These trends were exaggerated in models
with 50% sliding window overlaps. Final model selection was based on overall model AUC,
with the best overall performance resulting from the 50 Hz sampling rate, 10 second sliding
window, and 90% sliding window overlap combination with an AUC of 97.8%. AUC values
for individual elements are found in Table 3.

The influence of sampling rate, window overlap, and window size on activity recognition
sensitivity, specificity, precision, F1-score, and balanced accuracy are found in Figs 6-10,
respectively. Like AUC, window overlap had the greatest impact on model performance for all
metrics, with 90% models performing better than 50% overlap models. Increases in sampling
rate provided marginal increases in model performance, with 10 and 20 Hz data downsampled
from the 50 Hz data performing better than the natively sampled 10 and 20 Hz data for classifi-
cation. Positive trends between increasing model performance and increasing sliding window
size were also seen, with 10 second windows returning the highest performance metrics in
most instances. Select work elements in some models returned higher performance metrics at
7.5 second windows than 10 second windows, but this was not consistent for all elements in
these classification algorithms. Performance metrics for the best performing activity recogni-
tion model (50 Hz sampling rate, 10 second sliding window, 90% sliding window overlap) are
found in Table 3.

The ranges of performance metrics used to assess the classification of the 5 work elements
(masticate, move, clear, delay, travel) for the best model are as follows: AUC (95.0-99.9%);
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Fig 6. Sensitivity results for activity recognition models. Comparison of activity recognition model sensitivity
percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for
each work element (clear, delay, masticate, move, travel).

https://doi.org/10.1371/journal.pone.0266568.9006
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Fig 7. Specificity results for activity recognition models. Comparison of activity recognition model specificity
percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for
each work element (clear, delay, masticate, move, travel).
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sensitivity (74.9-95.6%); specificity (90.8-99.9%); precision (81.1-98.3%); F1-score (81.9-
96.9%); and balanced accuracy (87.4-97.7%). The delay element was correctly classified with
the highest percentage of all elements and had sensitivity of 95.6%. Travel had the lowest sensi-
tivity at 74.9%, but also achieved the highest specificity at 99.9%. The very high specificity
means other work elements were rarely incorrectly classified as travel, though lower sensitivity
shows actual travel events were incorrectly predicted as other elements relatively often,
approximately 25% of the time. Travel element misclassification was most often associated
with the move element, with 250 travel events incorrectly classified as move (Table 4). The
move element had the lowest specificity at 90.8%, with 787 clear, 66 delay, 574 masticate, and
250 travel elements incorrectly classified as move. This shows the activity recognition model
had the lowest ability to discern between false positives and true negatives with the move
element.
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Fig 8. Precision results for activity recognition models. Comparison of activity recognition model precision
percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for
each work element (clear, delay, masticate, move, travel).

https://doi.org/10.1371/journal.pone.0266568.g008
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Fig 9. F1-score results for activity recognition models. Comparison of activity recognition model F1-score
percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for
each work element (clear, delay, masticate, move, travel).
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50% Window Overlap 90% Window Overlap
10 Hz 10 Hz - DS 20 Hz 20 Hz - DS 50 Hz 10 Hz 10 Hz - DS 20 Hz 20 Hz - DS 50 Hz
100
e | — |
/—-\ /_—_
901~~~ N— /— /— /_._——
S %0
<
= /
o /é ﬁ F
) /\
1 575101 575101 575101 575101 57510 1 5 75101 5 75101 5 75101 5 75101 5 7510
‘Window Size (sec) Window Size (sec)
Element — Clear — Delay — Masticate — Move — Travel

Fig 10. Balanced accuracy results for activity recognition models. Comparison of activity recognition model
balanced accuracy percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5,
7.5, 10 seconds) for each work element (clear, delay, masticate, move, travel).

https://doi.org/10.1371/journal.pone.0266568.g010

Table 4. Confusion matrix. Confusion matrix for the best performing activity recognition model (50 Hz sampling rate, 10 second window, 90% window overlap) indicat-
ing true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Actual
Clear Delay Masticate Move Travel

Predicted Clear 5692 26 486 726 53

Delay 1 2333 7 29 4

Masticate 440 13 6570 588 18

Move 787 66 574 7207 250

Travel 2 3 2 12 970

https://doi.org/10.1371/journal.pone.0266568.t004
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Fig 11. Time domain feature variable importance. Variable importance of the top 20 time domain features used
during model development for the best performing activity recognition algorithm in terms of mean decrease in Gini.

https://doi.org/10.1371/journal.pone.0266568.g011

The confusion matrix in Table 4 provides a detailed summary of activity recognition classi-
fication, with green shaded cells indicating correctly classified instances for each element. It is
clear from the confusion matrix that the greatest misclassification occurred between the move,
masticate and clear elements. The precision measures for all elements exceeded 80%, meaning
over 80% of all elements predicted as a particular element were correctly classified. In all
instances, the balanced accuracy exceeded 85%, showing the ability of the model to account
for both positive and negative classification outcomes for elements as an average of specificity
and sensitivity. Areas under the curve (AUC) exceeding 95% for all elements shows excellent
overall classification accuracy and activity recognition performance for this model. Each indi-
vidual event shown in the confusion matrix represents a single 10-second window used for
activity classification. Models with smaller window sizes would contain larger numbers of
instances within each cell because more windows were necessary to elapse the entire sampling
period. The importance of the top 20 time domain features used in the final model are
described by mean decrease in Gini and are found in Fig 11. Features from the gyroscope and
sound derived features were consistently some of the most influential features in the models
for all combinations of factors, consistent with the findings of Keefe et al. [40].

Stem and cycle element matching

A total of 11,758 individual trees were detected within the treatment units, though work sam-
pling did not encompass the entirety of the planned treatment area due to time constraints
(Table 5). During the work sampling period, 1,140 individual trees fell within the 7m buffer of
the equipment cab while masticating. Only 221 of these trees were within a range of azimuths
from the cab to constitute a feasibly treated tree based on the GNSS-RF coordinates derived
from the cab and boom transponders. In all, 921 mastication elements were observed during
work sampling, though only 890 of these elements occurred with a lidar detected tree falling

Table 5. Machine and individual stem location matching. This table displays the number of lidar-derived individual trees based on the ForestView™ software: within the
overall treatment units; within the 7m treatment buffer of the machine cab during mastication elements; and within the cab buffer while corresponding with the machine
orientation. The total number of mastication elements and the number of elements where an individual tree fell within the machine buffer and matched the machine orien-

tation are also shown.
Lidar-derived Individual Trees
Total Buffer Buffer + Azimuth
11758 1140 221

https://doi.org/10.1371/journal.pone.0266568.t005

Mastication Elements
Total Buffer Buffer + Azimuth
921 890 315
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within the 7m cab buffer. 315 masticate elements could also be matched with an individual
tree based on machine orientation at the time of mastication. More masticate elements (315)
were matched with an individual tree than there were feasible unique trees (221) because mas-
ticate elements were matched with the same unique tree on multiple occasions. It can be
assumed that once a tree is masticated, it can no longer be masticated again. Therefore, a maxi-
mum of 24% of all masticate elements (221) could be matched with a unique individual tree
based on data derived from lidar-based individual tree locations and GNSS-RF-derived
machine locations.

Discussion

Class imbalance has been shown to impact and bias classification results toward the majority
classes [141]. The most common sampling methods to fix imbalanced data are over and under
sampling [142]. Over sampling approaches resolve data imbalance by duplicating cases of the
minority class but at the expense of computational intensity required for machine learning,
and increased risk of model overfitting [142-144]. This leads to computationally demanding
models. Under sampling entails the reduction of majority classes to meet minority class sample
sizes but can lead to a loss of valuable data trends and information necessary for effective clas-
sification and was therefore not used in this study [137,143]. A third approach, synthetic
minority oversampling technique (SMOTE), generates synthetic examples as opposed to data
replication used in traditional oversampling methods, but are limited to binary classification
models [143]. Ultimately, the data imbalance did not appear to have significant impacts on
activity recognition model performance, even in the delay and travel minority classes, as seen
in the performance metrics found in Table 3. Therefore, sampling procedures to address class
imbalance in the data were forgone. This decision was further supported by Kamei et al. who
found sampling techniques provided no performance benefit for classification tree models
which encompasses random forest algorithms [145] and Dittman et al. [146] who concluded
sampling procedures are not always a necessary step for classification because random forest
classifiers’ robustness to imbalanced data.

While imbalance likely contributed to the slightly lower sensitivity of the travel element,
this was not a concern, as the F1-score and balanced accuracy remained relatively high at 84.9
and 87.4%, respectively. The travel element is operationally similar in function to the move ele-
ment, apart from element duration. These similarities in the move and travel elements may
account for the comparatively poor sensitivity of the travel element. Here, data imbalance may
have favored the majority class (move) over the minority class (travel) during classification.
During classification, travel was misclassified as 7nove more than any other element. The con-
fusion matrix (Table 4) showed actual travel elements misclassified as move 250 times, which
account for approximately 20% of the actual travel element occurrences and 77% of the total
travel element misclassifications. In future work, the travel and move elements could be com-
bined into a single element to simplify classification given their operational similarities. Pri-
mary productive cycle elements: masticate, clear, and move, returned sensitivities exceeding
80% and balanced accuracies exceeding 85% showing the strength of the model in classifying
these work elements (Table 3).

Despite being a minority class, delay returned the highest performance metrics for AUC,
sensitivity, precision, F1-score, and balanced accuracy among all work elements and the sec-
ond highest specificity only behind the travel element. The machine was predominantly sta-
tionary during delay, simplifying the classification of this element and attributing to the
comparatively high performance metrics. The limited impact of data imbalance identified in
this study may vary with other datasets and should be examined further in future studies. The
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sensitivity (74.9-95.6%), specificity (90.8-99.9%), precision (81.1-98.3%), F1-score (81.9-
96.9%), and balanced accuracy (87.4-97.7%) for element classification of the best performing
activity recognition model were similar to those in other studies using random forest algo-
rithms, though all other studies focused on human activity recognition [41, 47].

All time domain features were retained for the four sensors during modelling. To reduce
the time and complexity of model processing for future iterations, the number of time domain
features could be reduced by excluding less influential predictors. For example, the limited
presence of linear acceleration in the top tier of time domain feature importance suggests this
sensor data could potentially be excluded in future work without significant impacts to overall
model performance. The five time domain features with the lowest importance were all
derived from linear acceleration. The high importance ranking of the sound pressure meter
derived time domain features is consistent with the findings of Keefe et al. [40]. Sound is a
valuable measure for activity recognition for equipment as delay, lateral machine movements,
clearing of light materials, and the mastication of standing stems all expectedly produce dis-
tinct levels of sound and should be included in future modelling efforts.

Window overlap percentage was the most influential factor associated with improved
model performance for all combinations of sliding window length and sampling rate. The 50%
window overlap was outperformed by the 90% window overlap by significant margins in all
instances. This is consistent with findings from other studies [57, 109]. For example, the 50
Hz, 10-second sliding window model returned an overall model accuracy of 68.8% for the 50%
window overlap and 84.8% for the 90% window overlap. One disadvantage of a greater win-
dow overlap is the added computational load of the model, with 90% overlap models taking
longer to process than 50% overlap models. However, the increased performance metrics for
activity recognition necessitates this computational cost to ensure effective and accurate mod-
els. Despite longer processing times, 90% window overlap can support real-time activity recog-
nition by increasing the frequency at which predictions are made on the data and users receive
activity characterizations [105].

Marginal improvements in performance metrics were obtained by increasing from 1, 5,
and 7.5, to 10-second sliding windows for the 90% window overlap models. For example, the
overall model AUC for 50 Hz, 90% window overlap models for the 1, 5, 7.5, and 10 second
windows were 97.1, 97.7, 97.8, and 97.8, respectively (Fig 5). Window size impacted model
performance more significantly for 50% overlap models than the 90% overlap models, which is
supported by Khusainov et al. [46]. Overall AUCs for 50 Hz, 50% window overlap models for
1, 5,7.5, and 10 second windows were 86.4, 89.6, 90.6, and 91.2, respectively. While 1, 5, 7.5,
and 10 second windows can be used with similar effectiveness when using 90% window over-
laps, the increased processing time required by the shorter window sizes should also be consid-
ered. Shorter sliding windows require high computational overhead because the recognition
algorithm must classify more total windows than a larger window length would require over
the same period of time [112]. The 10-second window provides strong model performance
while minimizing this computational cost, which is an important consideration in real-time
activity recognition. Increasing window length has also been shown to improve the perfor-
mance of activity recognition models [40, 105, 111, 138]. This is contrary to findings of Zim-
belman and Keefe who found better model performance with shorter window sizes when
modeling work activities for rigging-crew workers on cable logging operations [57]. These
findings may differ for other forest equipment where work element duration may favor shorter
window lengths due to faster transitions between subsequent elements and the inability of lon-
ger window lengths to differentiate between short actions.

While limited, there were model performance improvements when moving from the 10 Hz
and 20 Hz sampling rates to the 50 Hz rate. Highly active or “agitated” movements have been
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shown to be more accurately represented by higher sampling rates [37]. These improvements
were more significant with the 50% window overlap models compared to the models with 90%
overlap. A similar relationship was found with sliding window length. When accounting for
only the models using a 90% window overlap, all models regardless of sampling rate returned
strong values for AUC exceeding 90%, indicating strong classification success. The strongest
classification models resulted from the 50 Hz rates. The increased performance of down-
sampled 10 and 20 Hz models over natively sampled 10 and 20 Hz models was likely a direct
result of these data being a subsample of the 50 Hz data. The performance trends in relation to
cycle element, window overlap, and window size mimicked those seen with the 50 Hz models,
albeit with slight performance reductions.

Reduced battery consumption associated with sampling at lower frequencies [45, 96] was
not found to be a necessary consideration in this study and computational resources needed
for modelling were not impacted by sampling rate. During field sampling, all smartphones
experienced similar battery draw when removed from auxiliary power, though longer periods
of sampling and additional computational requirements associated with real-time activity rec-
ognition may show greater discrepancies. The use of equipment auxiliary electricity to power
devices while sampling removes any concerns about sensor sampling frequency or other fac-
tors impacting battery life of devices during use. This is a distinguishing consideration when
using smart devices for activity recognition on equipment versus human activity recognition
where auxiliary power may be unavailable or cumbersome.

Integrating GNSS-RF derived machine positions and lidar-derived individual tree detection
and segmentation to provide equipment positioning in addition to the smartphone activity
recognition model was ultimately ineffective for our data. The ~25% success rate achieved
matching mastication elements and individual stems is not operationally useful. The poor
matching performance limits confidence in the stems which were matched, and further work
should explore more effective and accurate means for this process. The exact reason for this
poor performance is unclear and a combination of multiple factors may have led to the out-
comes encountered. First, the accuracy of the individual tree detection (ITD) product used in
this study has not been assessed. However, ITD accuracy of the ForestView™ algorithm was
quantified in a separate study on the University of Idaho Experimental Forest using lidar data
with an average pulse density of 20 pulses m™ [139]. Recall of ITD ranged from 0.36 to 0.67 for
varying canopy cover conditions and is comparable to other ITD algorithms [139]. It is
assumed ITD recall for this study is likely less than that determined by Sparks and Smith [139]
due to the lower pulse density of the lidar data used. It is possible that suppressed or intermedi-
ate trees were occluded or omitted during lidar-processing which would have reduced the
number of detected stems, especially in areas of high stand density [147-150]. The mastication
treatments primary focused on stand density reduction and stand improvement. Stems that
were masticated were often smaller than those left in the residual stand. The use of terrestrial-
based lidar may prove a more effective means of producing precise and accurate stems maps
used for this application in future work. Mobile terrestrial laser scanning systems help reduce
occlusion and omission and enable easier acquisition of multi-temporal lidar data sets [151,
152].

Increasing the precision and accuracy of the GNSS positioning of the equipment during the
operation is another area for improvement in future work. Improving equipment positioning
relative to individual stems detected from lidar would likely increase the accuracy of detecting
removed stems. It is well established that forest canopies impact the accuracy of GNSS devices.
However, the increased availability of consumer technologies to improve the GNSS accuracy
of mobile devices provide new opportunities to enhance real-time positioning and logistics in
forested environments. External smartphone antennas, raw GNSS data collection, availability
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of consumer-grade devices with differential correction and improved dual-frequency GNSS
chipsets available for the newest generations of smartphones provide opportunities to greatly
increase GNSS accuracy [153-159]. These technological advances may reduce the need for
dedicated GNSS-RF devices and streamline activity recognition and positioning integration.
This could in turn reduce variability associated with fusing sensor data from multiple devices.

Conclusion

We have shown that models developed from the smartphone-based sensors placed in machine
cabs can be used to characterize activities of mastication treatments to reduce fuels in forested
stands with balanced accuracies for elements between 87.4% and 97.7%. As the first known
smartphone-based activity recognition study for mechanical forestry equipment, it was neces-
sary to examine multiple factors impacting recognition accuracy and set the foundation for
future equipment activity recognition modeling research. By demonstrating the application of
this technology for automated productivity analysis, we have advanced research supporting
ubiquitous smartphone-based activity recognition solutions for forestry equipment. This work
can be improved by further refining field sampling and modelling procedures and integrating
new mobile technologies enabling the collection of sensor and accurate positional data from a
single device. Additional field sampling with varying topographic and stand conditions, opera-
tors, and equipment types should also be completed to help quantify the extent to which these
factors may impact activity recognition performance given the limited scope of conditions
encountered in this study. Activity recognition of forest equipment using consumer available
devices is an important advancement in the field of precision forestry and forest operations
management. By identifying effective sampling and modelling processes, future work can
focus on refining and optimizing data processing and model development and continue
advancing toward real-time data support in smartphone applications. The current era of forest
digitalization and smart and precision operational forestry necessitates land managers, opera-
tors, and researchers are equipped with the latest resources and technologies to successfully
address complex forest management challenges. Accurate and efficient assessment of equip-
ment productivity and work practices through activity recognition is valuable for advancing
safer, more cost effective, and sustainable operational forestry supply chains.
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