Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(3-aminophenyl)phosphine oxide ethanol solvate

Jun Han,^a Wenguang Li,^b Shufang Wang^b and Juli Jiang^a*

^aKey Laboratory of Mesoscopic Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and ^bJiangguantun Middle School, Liaocheng 252022, Shangdong Province, People's Republic of China Correspondence e-mail: jjl@nju.edu.cn

Received 19 February 2009; accepted 12 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.059; wR factor = 0.149; data-to-parameter ratio = 19.7.

The title compound crystallized as an ethanol solvate, $C_{18}H_{18}N_3OP \cdot C_2H_6O$. It is the reduction product of tris(3-nitrophenyl)phosphine oxide. In the crystal, there are intermolecular N-H···O hydrogen bonds between neighbouring tris(3-aminophenyl)phosphine oxide molecules and O-H···O hydrogen bonds involving the ethanol solvent molecule.

Related literature

The structure of tris(3-nitrophenyl)phosphine oxide is described by Jean-Noël *et al.* (2004). For literature on related compounds, see: Michaelis *et al.* (1885); Dressick *et al.* (2000); Hessler & Stelzer (1997).

a = 9.1046 (13) Å

c = 12.020 (3) Å

b = 10.7595 (15) Å

Experimental

Crystal data $C_{18}H_{18}N_3OP \cdot C_2H_6O$ $M_r = 369.39$ Triclinic, $P\overline{1}$ $\alpha = 109.131 (3)^{\circ}$ $\beta = 94.245 (3)^{\circ}$ $\gamma = 114.028 (2)^{\circ}$ $V = 986.3 (3) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART CCD area-detector	5014 measured reflections
diffractometer	3420 independent reflections
Absorption correction: multi-scan	1659 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.058$
$T_{\min} = 0.947, \ T_{\max} = 0.954$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.059 & 174 \text{ parameters} \\ wR(F^2) = 0.149 & H\text{-atom parameters constrained} \\ S = 0.85 & \Delta\rho_{\max} = 0.53 \text{ e } \text{\AA}^{-3} \\ 3420 \text{ reflections} & \Delta\rho_{\min} = -0.41 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots N1^{i}$	0.86	2.62	3.469 (6)	168
$N2-H2B\cdots O1^{ii}$	0.86	2.14	2.987 (4)	168
$N2 - H2C \cdots O2^{iii}$ $O2 - H2 \cdots O1$	0.86 0.82	2.23 1.85	3.089 (5) 2.672 (3)	173 178

Symmetry codes: (i) x - 1, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of the NSFC (grant No. 20602017), the Program for New Century Excellent Talents in University (grant No. NCET-07-0425) and the Natural Science Foundation of Jiangsu (grant No. BK 2008259).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2158).

References

- Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem. 65, 5059–5062.
- Hessler, A. & Stelzer, O. (1997). J. Org. Chem. 62, 2362-2369.
- Jean-Noël, G., Fronczek, F. R. & Isovitsch, R. (2004). Acta Cryst. E60, o1646o1647.
- Michaelis, A., Michaelis, A. & von Soden, H. (1885). *Liebigs Ann. Chem.* 229, 295–334.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation

 $0.35 \times 0.34 \times 0.30$ mm

 $\mu = 0.16 \text{ mm}^{-1}$

T = 293 K

Acta Cryst. (2009). E65, o839 [doi:10.1107/S160053680900909X]

Tris(3-aminophenyl)phosphine oxide ethanol solvate

J. Han, W. Li, S. Wang and J. Jiang

Comment

Arylphosphines have been investigated extensively as ionic ligands for catalytically active transition metals in aqueous solution (Hessler & Stelzer, 1997), as starting materials for the molecular fabrication of materials (Dressick et al., 2000) and so on. As early as 1885, tris(3-aminophenyl)phosphine oxide had been synthesized in the Sn/HCl system but with low yield (Michaelis et al., 1885). The molecules of the title compound crystallized as an ethanol solvate (Fig. 1). Adjacent molecules are linked via intermolecular O—H···O and N—H···O interactions, such as O2—H2···O1, N2—H2B···O1, N2—H2C···O2 and N1—H1A···O2 from a neighboring molecule (Fig. 2).

Experimental

The precursor, tris(3-nitrophenyl)phosphine oxide (1.032 g, 2.5 mmol), was added to a mixture of ethanol (30 ml), THF (30 ml), hydrazine hydrate (10 ml) and a catalytic amount of Raney Ni in a 100 ml flask. The mixture was heated to reflux and reaction progress was monitored by TLC. The pure product was obtained as colorless crystals suitable for X-ray analysis after removing most of the solvent and without further purification (yield > 99%).

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with $U_{iso}(H)$ = $1.2U_{eq}(C)$, $(1.5U_{eq}(C))$ for methyl groups), and with a distance of O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$, and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(N)$. Although the diffraction data were rather weak, the structure is unambiguous, nevertheless, the ethanol solvent molecule is rather poorly defined.

Figures

Fig. 2. The crystal packing of the title compound, viewed along the *a* axis.

Tris(3-aminophenyl)phosphine oxide ethanol solvate

Crystal data	
$C_{18}H_{18}N_3OP \cdot C_2H_6O$	Z = 2
$M_r = 369.39$	$F_{000} = 392$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.244 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.1046 (13) Å	Cell parameters from 706 reflections
b = 10.7595 (15) Å	$\theta = 2.6 - 19.5^{\circ}$
c = 12.020 (3) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\alpha = 109.131 \ (3)^{\circ}$	T = 293 K
$\beta = 94.245 \ (3)^{\circ}$	Prism, colorless
$\gamma = 114.028 \ (2)^{\circ}$	$0.35 \times 0.34 \times 0.30 \text{ mm}$
$V = 986.3 (3) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	3420 independent reflections
Radiation source: fine-focus sealed tube	1659 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -10 \rightarrow 10$
$T_{\min} = 0.947, \ T_{\max} = 0.954$	$k = -11 \rightarrow 12$
5014 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.059$
$wR(F^2) = 0.149$
<i>S</i> = 0.85
3420 reflections
174 parameters
Primary atom site location: structure-inva methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0599P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$

site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.32847 (11)	0.46681 (10)	0.24048 (9)	0.040
01	0.2533 (3)	0.4519 (2)	0.3452 (2)	0.048
02	0.0137 (3)	0.2243 (3)	0.3724 (3)	0.0692 (9)
H2	0.0879	0.2929	0.3632	0.104*
C12	0.5751 (4)	0.7116 (4)	0.2172 (3)	0.0450 (9)
H12	0.6148	0.6475	0.1749	0.054*
C7	0.4373 (4)	0.6580 (4)	0.2618 (3)	0.0398 (9)
C1	0.1745 (4)	0.3739 (4)	0.0993 (3)	0.0430 (9)
C13	0.4720 (4)	0.3909 (3)	0.2210 (3)	0.0380 (9)
C17	0.6849 (4)	0.3539 (4)	0.3165 (3)	0.046
C11	0.6559 (4)	0.8607 (4)	0.2346 (3)	0.049
C18	0.5679 (4)	0.4064 (3)	0.3238 (3)	0.044
H18	0.5539	0.4528	0.3996	0.052*
N1	0.7909 (4)	0.9160 (4)	0.1905 (3)	0.076
H1A	0.8373	1.0081	0.2021	0.091*
H1B	0.8298	0.8588	0.1510	0.091*
C14	0.4895 (4)	0.3209 (4)	0.1081 (3)	0.048
H14	0.4243	0.3095	0.0387	0.058*
C16	0.7007 (4)	0.2837 (4)	0.2010 (3)	0.052
H16	0.7776	0.2472	0.1931	0.062*
C6	0.0464 (4)	0.2340 (4)	0.0766 (3)	0.0486 (10)
H6	0.0446	0.1908	0.1324	0.058*
C5	-0.0779 (4)	0.1596 (4)	-0.0291 (4)	0.057
C2	0.1779 (5)	0.4355 (4)	0.0146 (4)	0.0548 (11)
H2A	0.2642	0.5277	0.0288	0.066*
C10	0.5934 (5)	0.9530 (4)	0.2983 (4)	0.0592 (12)
H10	0.6457	1.0527	0.3111	0.071*
N2	0.7780 (4)	0.3664 (4)	0.4182 (3)	0.0764 (11)
H2B	0.7646	0.4074	0.4886	0.092*
H2C	0.8497	0.3332	0.4116	0.092*
C9	0.4574 (5)	0.9015 (4)	0.3424 (4)	0.0599 (11)
H9	0.4176	0.9657	0.3844	0.072*
C8	0.3784 (5)	0.7539 (4)	0.3248 (3)	0.0534 (10)

H8	0.2857	0.7189	0.3553	0.064*
C15	0.6044 (4)	0.2679 (4)	0.0989 (3)	0.056
H15	0.6170	0.2208	0.0228	0.068*
C3	0.0530 (5)	0.3608 (5)	-0.0918 (4)	0.0677 (13)
Н3	0.0555	0.4027	-0.1486	0.081*
N3	-0.2044 (5)	0.0239 (4)	-0.0519 (4)	0.106
H3A	-0.2077	-0.0164	-0.0005	0.127*
H3B	-0.2811	-0.0214	-0.1178	0.127*
C4	-0.0726 (5)	0.2259 (5)	-0.1117 (4)	0.0687 (13)
H4	-0.1568	0.1768	-0.1822	0.082*
C20	0.0756 (6)	0.2038 (6)	0.4755 (5)	0.0963 (19)
H20A	0.1265	0.2969	0.5458	0.116*
H20B	-0.0150	0.1328	0.4941	0.116*
C19	0.1946 (8)	0.1515 (7)	0.4477 (6)	0.147 (3)
H19A	0.1414	0.0555	0.3825	0.221*
H19B	0.2426	0.1447	0.5180	0.221*
H19C	0.2800	0.2189	0.4239	0.221*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.041	0.039	0.040	0.017	0.012	0.016
01	0.051	0.050	0.044	0.021	0.021	0.021
O2	0.0604 (18)	0.062 (2)	0.081 (2)	0.0167 (15)	0.0085 (17)	0.0396 (17)
C12	0.050 (2)	0.036 (2)	0.042 (2)	0.0173 (19)	0.0080 (19)	0.0098 (18)
C7	0.043 (2)	0.037 (2)	0.037 (2)	0.0159 (18)	0.0056 (18)	0.0149 (18)
C1	0.043 (2)	0.047 (2)	0.041 (2)	0.023 (2)	0.0107 (18)	0.0159 (19)
C13	0.041 (2)	0.030 (2)	0.039 (2)	0.0122 (17)	0.0108 (18)	0.0129 (17)
C17	0.054	0.046	0.040	0.025	0.012	0.016
C11	0.049	0.045	0.042	0.012	0.007	0.019
C18	0.049	0.039	0.042	0.023	0.013	0.011
N1	0.082	0.056	0.078	0.021	0.031	0.024
C14	0.061	0.057	0.040	0.038	0.016	0.021
C16	0.056	0.055	0.056	0.034	0.021	0.024
C6	0.041 (2)	0.048 (2)	0.053 (3)	0.018 (2)	0.012 (2)	0.019 (2)
C5	0.038	0.042	0.067	0.013	0.007	0.001
C2	0.051 (2)	0.058 (3)	0.052 (3)	0.021 (2)	0.007 (2)	0.022 (2)
C10	0.071 (3)	0.038 (2)	0.056 (3)	0.017 (2)	-0.001 (2)	0.017 (2)
N2	0.096 (3)	0.104 (3)	0.046 (2)	0.076 (2)	0.004 (2)	0.014 (2)
C9	0.068 (3)	0.049 (3)	0.056 (3)	0.030 (2)	0.004 (2)	0.011 (2)
C8	0.056 (2)	0.048 (3)	0.052 (3)	0.024 (2)	0.007 (2)	0.016 (2)
C15	0.073	0.064	0.042	0.039	0.020	0.021
C3	0.070 (3)	0.071 (3)	0.058 (3)	0.033 (3)	0.006 (3)	0.023 (3)
N3	0.089	0.071	0.110	0.009	-0.009	0.020
C4	0.062 (3)	0.076 (3)	0.057 (3)	0.035 (3)	-0.004 (2)	0.013 (3)
C20	0.072 (3)	0.072 (4)	0.140 (6)	0.024 (3)	0.002 (4)	0.054 (4)
C19	0.158 (6)	0.134 (6)	0.132 (6)	0.039 (5)	-0.018 (5)	0.077 (5)

Geometric parameters (Å, °)

P1—O1	1.500 (2)	C6—C5	1.385 (5)
P1—C13	1.794 (3)	С6—Н6	0.9300
P1—C7	1.799 (3)	C5—N3	1.362 (5)
P1—C1	1.799 (4)	C5—C4	1.393 (5)
O2—C20	1.441 (5)	C2—C3	1.394 (5)
O2—H2	0.8200	C2—H2A	0.9300
C12—C7	1.381 (5)	С10—С9	1.361 (5)
C12—C11	1.398 (5)	C10—H10	0.9300
C12—H12	0.9300	N2—H2B	0.8600
С7—С8	1.388 (5)	N2—H2C	0.8600
C1—C2	1.381 (5)	С9—С8	1.383 (5)
C1—C6	1.399 (5)	С9—Н9	0.9300
C13—C14	1.376 (5)	С8—Н8	0.9300
C13—C18	1.380 (4)	С15—Н15	0.9300
C17—N2	1.370 (4)	C3—C4	1.361 (5)
C17—C18	1.390 (4)	С3—Н3	0.9300
C17—C16	1.396 (5)	N3—H3A	0.8600
C11—N1	1.362 (4)	N3—H3B	0.8600
C11—C10	1.387 (5)	C4—H4	0.9300
C18—H18	0.9300	C20—C19	1.424 (8)
N1—H1A	0.8600	C20—H20A	0.9700
N1—H1B	0.8600	C20—H20B	0.9700
C14—C15	1.377 (5)	C19—H19A	0.9600
C14—H14	0.9300	C19—H19B	0.9600
C16—C15	1.372 (5)	С19—Н19С	0.9600
С16—Н16	0.9300		
O1—P1—C13	112.04 (15)	N3—C5—C4	120.3 (4)
O1—P1—C7	110.89 (16)	C6—C5—C4	119.1 (4)
C13—P1—C7	107.89 (16)	C1—C2—C3	120.6 (4)
O1—P1—C1	112.16 (15)	C1—C2—H2A	119.7
C13—P1—C1	106.99 (16)	С3—С2—Н2А	119.7
C7—P1—C1	106.60 (16)	C9—C10—C11	121.7 (4)
С20—О2—Н2	109.5	С9—С10—Н10	119.2
C7—C12—C11	121.1 (4)	C11-C10-H10	119.2
С7—С12—Н12	119.5	C17—N2—H2B	120.0
C11—C12—H12	119.5	C17—N2—H2C	120.0
C12—C7—C8	119.3 (3)	H2B—N2—H2C	120.0
C12—C7—P1	122.6 (3)	С10—С9—С8	120.1 (4)
C8—C7—P1	118.1 (3)	С10—С9—Н9	120.0
C2—C1—C6	119.5 (3)	С8—С9—Н9	120.0
C2—C1—P1	122.8 (3)	C9—C8—C7	120.0 (4)
C6—C1—P1	117.7 (3)	С9—С8—Н8	120.0
C14—C13—C18	120.2 (3)	С7—С8—Н8	120.0
C14—C13—P1	122.0 (3)	C16—C15—C14	120.6 (4)
C18—C13—P1	117 9 (2)	C16 C15 U15	110.7
	117.8(3)	С10—С13—П13	119./

N2-C17-C16	121.0 (3)	C	C4—C3—C2		119.3 (4)
C18—C17—C16	117.5 (3)	C	С4—С3—Н3		120.4
N1—C11—C10	120.0 (4)	C	С2—С3—Н3		120.4
N1-C11-C12	122.2 (4)	C	C5—N3—H3A		120.0
C10-C11-C12	117.8 (4)	C	C5—N3—H3B		120.0
C13—C18—C17	121.3 (3)	H	H3A—N3—H3B		120.0
C13—C18—H18	119.4	C	C3—C4—C5		121.6 (4)
C17—C18—H18	119.4	C	С3—С4—Н4		119.2
C11—N1—H1A	120.0	C	С5—С4—Н4		119.2
C11—N1—H1B	120.0	C	C19—C20—O2		109.0 (5)
H1A—N1—H1B	120.0	C	С19—С20—Н20А		109.9
C13—C14—C15	119.4 (3)	C	D2—C20—H20A		109.9
C13—C14—H14	120.3	C	С19—С20—Н20В		109.9
C15-C14-H14	120.3	0	D2—C20—H20B		109.9
C15-C16-C17	121.0 (4)	H	H20A—C20—H20B		108.3
C15—C16—H16	119.5	C	С20—С19—Н19А		109.5
C17—C16—H16	119.5	C	С20—С19—Н19В		109.5
C5—C6—C1	120.0 (4)	H	H19A—C19—H19B		109.5
С5—С6—Н6	120.0	C	С20—С19—Н19С		109.5
С1—С6—Н6	120.0	H	H19A—C19—H19C		109.5
N3—C5—C6	120.6 (4)	H	H19B—C19—H19C		109.5
C11—C12—C7—C8	0.0 (5)	Ν	J2—C17—C18—C13		-178.7 (3)
C11—C12—C7—P1	179.4 (3)	C	C16—C17—C18—C13		-0.6 (5)
O1—P1—C7—C12	148.9 (3)	C	C18—C13—C14—C15		-0.6 (5)
C13—P1—C7—C12	25.9 (3)	P	P1—C13—C14—C15		178.5 (3)
C1—P1—C7—C12	-88.7 (3)	Ν	V2—C17—C16—C15		178.3 (3)
O1—P1—C7—C8	-31.7 (3)	C	C18—C17—C16—C15		0.2 (5)
C13—P1—C7—C8	-154.7 (3)	C	C2—C1—C6—C5		-1.4 (5)
C1—P1—C7—C8	90.7 (3)	Р	P1—C1—C6—C5		178.1 (3)
O1—P1—C1—C2	137.1 (3)	C	C1—C6—C5—N3		-179.3 (4)
C13—P1—C1—C2	-99.7 (3)	C	C1—C6—C5—C4		0.3 (6)
C7—P1—C1—C2	15.5 (4)	C	C6—C1—C2—C3		1.4 (6)
O1—P1—C1—C6	-42.5 (3)	P	P1—C1—C2—C3		-178.1 (3)
C13—P1—C1—C6	80.8 (3)	Ν	V1—C11—C10—C9		179.1 (3)
C7—P1—C1—C6	-164.0 (3)	C	С12—С11—С10—С9		-0.3 (6)
O1—P1—C13—C14	145.0 (3)	C	С11—С10—С9—С8		0.4 (6)
C7—P1—C13—C14	-92.6 (3)	C	С10—С9—С8—С7		-0.2 (6)
C1—P1—C13—C14	21.7 (3)	C	С12—С7—С8—С9		0.0 (5)
O1—P1—C13—C18	-35.8 (3)	P	P1—C7—C8—C9		-179.4 (3)
C7—P1—C13—C18	86.5 (3)	C	C17—C16—C15—C14		-0.1 (6)
C1—P1—C13—C18	-159.2 (3)	C	C13—C14—C15—C16		0.3 (5)
C7—C12—C11—N1	-179.3 (3)	C	C1—C2—C3—C4		-0.1 (6)
C7-C12-C11-C10	0.1 (5)	C	C2—C3—C4—C5		-1.0 (6)
C14-C13-C18-C17	0.8 (5)	Ν	V3—C5—C4—C3		-179.5 (4)
P1-C13-C18-C17	-178.4 (3)	(C6—C5—C4—C3		1.0 (6)
Hydrogen-bond geometry (Å, °)					
D—H···A	D-	—Н	H···A	$D \cdots A$	D—H···A

N3—H3A…N1 ⁱ	0.86	2.62	3.469 (6)	168
O2—H2…O1	0.82	1.85	2.672 (3)	178
N2—H2B···O1 ⁱⁱ	0.86	2.14	2.987 (4)	168
N2—H2C···O2 ⁱⁱⁱ	0.86	2.23	3.089 (5)	173

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

Fig. 2